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Abstract

Three-dimensional nume?ical integrations of the Navier-Stbkes
equations have been made for parameters corresponding to some previous
laboratory studies of Taylor columns. The results help clarify the
character of these flows and confirm previous ideas concerning the
role played by inertial waves in flows which have been described as
'leaning Taylor columns'. The wavelike character is not obvious in
laboratory studies due to viscous effects. Integrations in shallow
domains indicate the validity of the assumptions of two-dimensionality

for these flows.
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Lo Introducfion

Previous work on transverse flow past obstacles in a rotating
fluid has largely centred on the study of "Taylor columns'". For
sufficiently small values of Rossby number (R :L(/_{LL’ where U is
the flow speed,KZ the rotation speed and L a typical horizontal
length) the rapid rotation constrains the motion about the obstacle
to be two-dimensional (the Taylor-Proudman theorem: Proudman 1916,
Taylor 1923). The flow past the object can then be divided into
two regions separated by an imaginary cylinder with axis pafallel
to the axis of rotation, which circumscribes the object. Outside
this cylinder (a 'Taylor column') the flow behaves as if it.vere
encountering a solid cylinder. The exact conditions for a Taylor
column t& form have been discussed by Hide (1961) who proposed a
criterion depending on the‘change in vorticity necessary for fluid
filament to cross the object, compared with the voriticity of the
basic flow. It follows thata a Taylor column should form when
,&' = 1_)’_!& s> 1 (h is the height of the object and D the
depth of the fluid). This is the criterion for virtually no flow
over the obstacle and should be distinguished from the criterion
for the flow to be nearly two-dimensional. The axial scale of
a disturbance with horizontal scale L will be L-/12 and

tﬁus we require /JL » -l:- P> 'I for nearly two-dimensional

DR
motion. :
All the theoretical work in bounded systems (eg Jacobs 1964,
Stewartson 1967, Ingersoll 1969) supposes /JL > 1. but
individual studies differ in the magnitude of ’42 apd whether

or not viscous effects are included or even dominate. By assuming

/JL » { these studies exclude inertial wave radiation;
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that the sloping disturbance is wavelike.

investigations including this effect are either in unbounded systems

(Grace 1926 and Stewartson 1953) at zero Rossby number, or f;r shallow
topography in bounded systems with small Rossby number (Cheng and
Stewartson, 1979).

In the laboratory experiments involving flow visualisation, the
discussion of the results and data has centred on the '"Taylor column"
phenomenon. In the present paper we suggest that the concept of a
Taylor column has been applied with misleading generality and show that
in some cases the flows are better understood in different terms. In
particular we feel that the concept of a "leaning" Taylor column és
introduced by Hide, Ibbetson and Lighthill (1968) could be reconsidered.

Previous laboratory experiments not involving flow visulaisation but

‘measuring the forces on an obstacle moving horizontally (Mason 1975 gng

1977) concentrate on the parameter range of the "leaning" Taylor columns

(4k S" , 'JA S:'{ )._—In t};s range a dra;force ~2.Q.? uv

(where @ is the fluid density and Y is the volume of the object)

was observed and its dependence on the aspect ratios of cuboid
objects was investigated. If A, B and C denote the lengths of the
cuboids in the directionsof li y U -9: , and % respectively then
for Cm < 1 the drag force was found to be ~~ 29.9 U Cz -
whilst for C/JAR 2 {1 the force was ~ 0.5 ﬂ? ug?c . For all
values of C/JA@ this result agreed with the theory of Stewartson
(1953), who considered the motioﬁ of an eliipsoid in an unbounded

inviscid fluid at zero Rossby number. The physical mechanism for

. Stewartson's drag is inertial wave radiation and Mason (1977)

showed how linearised inertial wave drag theory accounted for the

behaviour at C/JA@, <L 1 « Further evidence of the importance of
inertial waves in the parameter range of leaning Taylor columns is

provided by the inviscid study of Cheng and Stewartson (1979), who show
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En the present paper we present some three-dimensional
integrations of the Navier-Stokes equations for parameters of
relevance to these laboratory experiments. Previous three-dimensional
integrations by Huppert and Bryan (1976) were carried out for larger
values of 4£L « The present integrations enable the flow patterns
to be seen more clearly than the dye-wire techniques of the
experimentalists. They confirm the conjecture that inertial wave
radiation characterises the flow vhen»r/éL < 1 . A

In the appendix to Hide.Ibbetson and Lighthill (1968),Lighthill
develops general ideas concerning inertial wave radiation and
argues how this accounts for the leaning structure observed. His
analysis leads to a slope associatea with the leading edge of the
main wave-like disturbance, but does not account fora Taylor column

structure. His discussion is confirmed here,but the use of the

term Taylor column for an essentiallywave-like disturbance is misleading.

In the laboratory eiperiments the wave-like character is partially
hidden by the effects of viscosity which damp the waves within one
or two wavelengths. These effects are seeﬁ most clearly in the
numerical results but are also éonfirmed by some new experiments
involving careful flow visualisation.

\In § 2 we outline the numerical model and indicate the ranges
of parameters accessible to it. The laboratory appargtus is described

in § De IR § b we present the numerical and experimental results

-and finally in § 5 the conclusions.




2e Numerical model

The equations of motion governing the integrations reported in
this paper are the Navier-Stokes equations for an incompressible

rotating fluid ie

W
é.‘::-e-,.‘ﬁ.

ot

]

2
Vu -VP+2Q,\(¢¢-%;) + vV u
o ~
Na: =D
where Y :(q,v,u) is the velocity, P is the perturbation dynamic pressure, ¥V

is the kinematic viscosity, and .Q. is the basic rotation. Q%':(b( )0,0) is

the geostrophic wind, resulting from the background pressure gradient in

. the y-direction. The geometry and coordinate system are illustrated in

Figurel. The boundary conditions on the upper and lower surfaces are

‘?ﬁ-é‘.’.-;_v?:o ‘on z.‘-.zv—DA

o=

and “ = O on z_-:.l-([r,g)'

@

In both horizontal directions the domain of integration is taken to be
periodic. The main reason for this choice, apart from its numerical
simplicity, is the desire to avoid side-wall boundary layers requiring
spatial resolution.

The numerical techniques we use to solve the equations have
been discussed in Mason and Sykes (1978a and 1979) and will not
be presented here. An important aspect of the numerical method
concerns the approximate inclusion of the arbitrary no-slip surface

Z = l\(‘x,lg ) « We use a cartesian mesh and, in order for the

" 'method (which involves making the viscous stresses continuous at

Z :.It[x, 8) ) to be effectively second-order_ accurate, certain
reéolution reqt.;irements must be met. For the flows considered here
with Rossby number ﬁ,g 1 the errors incurred near the surface are

O (A/&) (Mason and Sykes, 1978a) where /A is the vertical mesh
epacing and & = ( V/.Q.)’i is the depth of the Ekman boundary layer.
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In practice we find the results to be essentially independent of A/§

vhen A/S &£ /3 . It follows that if, in the numerical
model, we can dispose 1 grid points up to the height Mg of the

topography, then ® must be >

~~

31\‘, /ﬂ « In the present work
" may be about 20 giving ) 2 ho/7 . For Rossby numbers
of unity and less this is the most stringent restriction on the
model resolution., At larger Rossby numbers the dominant
restriction is essentially an upper limit to the Reynolds numbers
which may be considered. For small Rossby number flows the

restriction on S/ho is only very severe for precisely those

cases when a numerical model which parameterised the Ekman

boundary layers (eg Vaziri ahd Boyer, 1971) would have utility.
In this paper some results are obtained slightly beyond the area of
efficient application of the method in order to illustrate the

change in character of some flows seen in laboratory experiments.



3« Laboratory apparatus

The essential purpose of the apparatgs was to tow an object
mounted on a thin horizontal plate through a tank of fluid which
was otherwise in solid body rotation. The fluid was contained in
a rectangular tank mounted on a diameter of a turntable. The length
of the tank.was 1.20 m and the width and depth 0.26 m. The depth
of the working fluid was generally less than the depth of the tank
and the upper surface to the fluid was free. The axis of the
turntable was vertical to within 10'“ radians and values of
angular rotation speed £ were .in the range 0.5 to 1.0 rad s°l
and constant to within 0.01%. The main errors in the experiment
arose from spurious convection currents present in the fluid.

These were miﬁimised by extensive thermal insulation and the use
of a thin film of o0il on the upper surface of the fluid to prevent
evaporation. fhe fluid was either water or, when a higher
viscosity was desired, a water-glycerol mixture. The final
magnitude of the background motions were ~ 0.0l cm Sfl. The thin
horizontal plate had thickness 3 mm and was suspended from a frame-
work by rods of 5 mm diameter mounted close to the edges Qf the
tank. The objects used were sufficiently small for themvto be

£ ‘

effectively isolated from effects due to these rods and the side-

walls. The plate was long enouéh for the initial flow effects

-involving the formation of kkman boundary layers to have subsided.

This meant that the Rossby number based on the length of the plate
had to be small. The other effect of the plate was a detlection

of the flow through the mechanism of vortex compression (eg Batchelor

-6-
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1967 p573). At smaller Rossby numbers than those for which data
is presented, this effect necessitated the use of a thinner
horizontﬁl plate. As discussed in Mason (19/5), effects due to
the parabolic shape of the free upper surface of the liquid should
be negligible.

The flow visualisation was achieved by means of the well known
Baker (1966) technique employing the p.H. indicator thymal blue.
Wires generating the p.H. change were mounted upstream of the objects,
from the frame work supporting the horizontal plate. Two 35 mm
cameras were attached to the moving framework to photograph from

above and from the side.
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4, Results

In all the results presented, both numerical and experimental,

ve have adopted a standard form of topography. We have chosen a smoothly-

shaped obstacle to avoid both separation effects from sharp edges in the

laboratory studies, and also numerical problems near sharp corners in the

integrations. The height of the topography is

he by of [Z (i) hr A< LY,

<
!130 for xz-h 8t 2 L e The relative size of the
computational domain was 10l in.the x-direction and 7.5L. in the
y-direction. This was large enough to effectively isolate the topography.

(a) Inertial wave regime

First we illustrate a flow typical of a so-called leaning
Taylor column., A laboratory and a numerical experiment have
been performed with the same basic parameters; these are given in
Table 1 case A. Ignoring factors of order W , /4L is the
ratio of the vertical wavelength of inertial waves with
horizontal scale l. to the depth of the container. Thus
here when ‘_=:2 we expect to see three-dimensional motion
characterised by inertial waves.

Figure 2 shows a comparison between the experimental dye
observations and the numerical results. Starting at the upstream
coor@inates of the vertical dye-generation wire, trajectories
h;;e been computed from the steady-state numerical velocity
field (by the method described in Mason and Sykes, 1979) and
superimposed onto a photograph of the experimental dye release.
The comparison is difficult because although the initial
coordinates are upstream of the centre of the obstacle in

both sets of trajectories, small spurious motions in the

experiment cause the dye to shift sideways slightly, into

=3



different parts of the velocity field, with consequent increasing

errors. By calculating trajectories using the numerical results from
different initial positions; it has been ascertained that errors due to

the spuriéus lateral displacements in the laboratory study are typically °

of the same magnitude as the differences visible in the comparison. }
However it is clear that there is good agreement in the character of

the flow. The disturbance decays both with height and in the downstream

-direction. Fig 3 shows the computed horizontal velocity vectors and

vertical velocity field a few Ekman layer depths above the tbp of

the obstacle while Fig 4 shows the same fields at'2'=q>/@2. The
wave-like character of the flow is evident and the horizontal fields
show thé transverse motion of the inertial waves. For comparison we
have made a calculation based on the inviscid linearised theory of Queney
(1947) (see appendix to Mason (1977) for details), and Fig 5 shows the
resulting ve:tical velocity field at a height comparable with the
numerical results in Fig 4b. 128 x 128 points have been used for the
numerical Fourier analysis of the topography in the linear theory, using

the same horizontal domain as the Navier-Stokes model and the results

are essentially independent of resolution. Fig 5 shows finer scale

details than could be expected in the viscous numerical integration.
The waves also extend much further around the domain, but near to the
obstacle the phase of the disturbance is similar to that observed.

Better agreement away from the obstacle cannot be expected, since the

results from the Navier-Stokes equations are clearly dominated by

1

viscous effects in this region.

Hide, Ibbetson and Lighthill (1968) measured the slope of the

_ position of maximum upward displacement of their dye. This slope . "

of the "leaning" Taylor columns was found to be 'S4 R s vwhere 'Fl

e e e e % 3 : ?---é—




is the Rossby numer based on the diameter of their spherical object.
This value of slope would not be expected to be in quantitative
agreemenf with that arising from an obstacle of difference shape,
as used in this study. For the numerical integration, the slope
was measured as 1.3R, where the length scale in the Rossby numBef,Li/flL)
is the base radius. Linear, inviscid theory also provides a means
of estimating the slope of the disturbance, but owing to dispersive
effects, the leading edge of the wavelike disturbance is not quite a
straight line. Notwithstanding this difficulti, the linear theory
prediction is in agreement with the Navier-Stokes result to within
about 20%. Ideally, the Navier-Stokes result should be compared with
the bounded, inviscid theory of Cheng and Stewartson (1979), but the
dominant effects of viscosity in our results limit the usefulness of
such a calculation.

The above .results clearly show how inertial waves account for

the main features of this type of flow. The influence of inertial

‘wave radiation on the force acting the topography is discussed below.

R




(b) Two-dimensional flow regime

In this section we illustrate two examples (B and C) of
two-dimensional flows which occur when ,di_:£>'1 « The parameters
involved are given in Table 1. In example B, viscous and inertial
effects are comparable. The ratio of the spin-up time of the flow
to the advection time EVZ/R =(-8% ,ctc. 0.1%4 in the inertial
wave example in which internal dissipation was also important.
Fig 6 shows the horizontal velocity vectors a few boundary layer
scales above the obstacle and Fig 7 shows the vertical velocity
fields at the same height (7d) and about half way up thé domain
(7b). From Fig 6 it is clear that /4‘ is not large enough for
the flow to be completely blockeé,though strong deflection with
much diminished flow above obstacle is evident. Fig 7a and b
give a clear indication of the almost complete two-dimensionality
of the flow. For comparison with previous results and with the
experiments Cited below, Fig 8 shows a view from above of some
flow trajectories. These show the same features as Fig 6.

In Fig 9 we present limiting surface streamlines projected onto
a horizontal plane (see Mason and Sykes (1979) for computational
details). These are fairly close to the interior flow pattern
when allowance is made for the 450 shift between stress and basic
flow direction due to the Ekman boundary layer.

In example C the horizontal flows are almost the same as in

example B and are not presented but some extra features can be seen

in the vertical velocity field. In example C, /dk is larger

1,
but viscous effects dominate, E/"/R = 8.32., The vertical

~ velocity field in Fig 10 shows more "twisting up" of the

regions of ascent and descent over the obstacle and in the lee

two positive contours can be seen., This is due to the vorticity

11~
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of the fluid which descendg from the obstacle. When the fluid
filaments ascend the obstacle they are compressed and acquire
negative vorticity much of which ig then lost though spirn-up.
Thus on descending from the obstacle and stretching,  the
filaments then acquire positive vorticity.

Whilst the latter examples are of interest in giving the full

Navier-Stokes equation solution for those flows, similar results

can be obtained from two-dimensional equations based on the
assumption 4{‘\ >> ‘{ as would be expected from the oi)served
two-dimensionality. Vaziri and Boyer (1971) have made a numerical
stﬁdy of these equations and compared the result with experiments.
The examples B and C presented here have parameter ratios falling

between those depicted in Fig 5(b) and (c) of Vaziri and Boyer.

 -l2-
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examples considered here the assumptlon AA <<" and /J‘ > { are .

Forces
—_—

In the homogeneous fluid considered here we expect a drag
force resulting from jnertial wave radiation (and subsequent
viscous dissipation) and also from viscous dissipation of the standing

disturbance produced by the obstacle. In Mason and Sykes (1978b) ;

the forces jnvolved in flow over small amplitude topography for ,dz << 1

and ’JA >>‘f are consldered. Due to the linearity of the Ekman
boundary layer equations the surface stress is proportional to the
meanvelocity in the interior. Since the motion is essentially

two-dimensional, the continuity equation implies the average of f

the meanvelocity, and thus the average viscous stress, is unchanged.
The force due to viscous dissipation arises from Fkman boundary layer

pumping dissipating the disturbance due to the obstacle. In the

never met and magnitude of the drag due to viscous dissipation is

difficult to estimate. However the general grounds upon which the

mean viscous stress was expected to be unchanged should applye. 5
In Table 2 the net viscous forces on the domain with and without

the obstacle are given and this result is confirmed.

The drag due to inertial waves was con81dered in deta11 by

Mason (1975 and 1977). In accordance with his conclusions in example

A we find the value of drag given by the inviscid linearised theory

is in fair agreement with computed values of pressure force in the

x-direction. The perturbation pressure force on the obstacle also
has a component in the y-direction; this is 'in the opposite direction
to the force due to the geostrophic pressure gradient, which has
magnitude Q_qu V s where \/ is the volume of the ooetacle.

and acts in the positive y-direction. The linear theory, in which the

a13s




flow is symmetric about the x-axis, gives no such force (cf Figures 5

and 4b). In the case of a complete Taylor column, /JL 3 1 and

: ,4/1 B> 1 s this y-direction perturbation pressure force has

magnitude ;251-9 uv y. producing zero net force in the y-direction
when the background component is added. Mason (1975) argued that the
approach of this perturbation force from zero to Q Q? uv could be
taken as a measure of the approach towards a Taylor column flow.
When scaled by :QSZQKA\/ the perturbation y-direction forces in

cases B and C are very similar. This follows from the prevously noted

similarity in flow patterns between these cases. The values of the

y (and x) direction forces in these cases are fairly similar to those
obtained for spheres in laboratory experiments (see Mason 1975 Fig 6).
The x-force in these cases may contain a contribution from inertial wave
radiation but the main cause is the viscous dissipation due to the

Ekman layers which was mentioned above.

14




56 Conclusions

We have shown the utility of a numerical model in sfudying
rapidly rotating flow over topography. The integrations have
confirmed previous conjectures by showing how the "leaning'" Taylor
column flow which occurs when R <1 and /‘L 5 1 can be largely
described in terms of inertial waves. When R &1 and /fL St
the flow outside the boundary layers is seen to be two-dimensional

o A
and accords well with models based on the stricter assumption, R< t

LO << .D.
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Figure 1

Illustrating thé domain of the Navier-Stokes equation
integrations.
Figure 2

Superposition of experimental dye traces and computed
trajectories from the numerical integration of case A. (See Table 1).
Figure 3

Results obtained from the numerical integration of case A.
Horizontsal sections at a height 'z = L.°+ 38 , where 8:("’/32-)&.

(a) horizontal velocity vectors (b) vertical velocity field.

The contour interval is 0-0(5wms'and the dashed lines denote negative

values.
Figure 4

Results obtained from the numerical integration of case A.
Horizontal sections at a height =z =’D/2 . -(a) horizontal velocity
vectors  (b) vertical velocity field. The contour interval is 0-00§ cm s'
and the dashed lines denotes negative values.
Figure 5

Prediction of linear theory for basic parameters corresponding
to case A. A horizontal section of the vertical velocity field at a
height 2z = D/2 is shown. The contour interval is 00X em 5
and the dashed lipes denote negative values.
Figure 6 A

Besul:ts obtained .from the numerical integration of case B.

)

Horizontal velocity vectors at Z = kp-r- 28  where 5=(>'/.2-)4.
Figure 7 ‘ |

Results obtained from the numerical integration of case B.

Horizontal sections of vertical velocity field at (a) &= l'a"‘ 35)

and (b) Z= D/Q . The contour intervals are 1710 and 132107 " NSP""'"’JS

._ dashed lines denote negativé values.

=18
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Figure 8

A projection onto a horizontal plane of computed flow trajectories ol z;'D/.'Z
iﬁ case B.
Figure 9
A projection on to a horizontal plane of computed limiting
(2-) L(ﬁ,'d)} streamlines for case B.
Figure 16
Results obtained from the num;erical integration of case C.
Horizontal section of the vertical velocity field at Z = L\°+ ’38 >

The contour interval is 8"!0-4 oms'and dashed lines denote negative values.

=19~




Case

Dimensional
parameters

Q. /rad s
L. /em
he /em

D //cnn
WU /em
"z/aﬁ‘sf'

dimensionless
parameters

R= UL
EE%L‘= (9V<§Sli)z z
E%/R
A = h /DR

A, 7 L/oR

Table 1 : Basic parameters

0.2

0.02

0.05
7.1 1072

0.14

0.1

0.01

0.612
2.4 107
1.19
27

53

0.1

0.1l

0,003

2.6 10™

8.3
107
213




Table 2 Net forces in MKS units

Casme A

undisturbed viscous force

in x direction 6.53 10~

in y direction s ona0
Final viscous force

in x direction 6.48 10-8

in y direction 5.26 10"8
Perturbation pressure force on obstacle

in x direction : 6.0 + 0.5 2079

in y direction 3.5 + 0.2 1077

Calculated pressure force
in x direction due to linearised 9.9 x 10~

inertial wave radiation.

Perturbation Pressure force on obstacle

scaled by Q.V_g wv
in x direction 0.40

in y direction 0.23

B

8
8

31110
2.85 10~

2.5 + 0,01 10”2
4.9 + 0.01 1077

0.35
0.68

5.55 1077
5.16 10~/

5.54 1077
5.13 10~/

4.2 + 0.2 1078

8.8 + 0.2 10°°

0.35
Ry




10

v\\<
Kw .U

-

z=S(x,y)

VOLL L LTI ELITIETEIGTETTE T

oy




Wy N T ﬂ T

.,.&

’ AL 4
P
¥ T S IRy 14
R s N2y e it
. At ;
P et

e AR v '

¥

.:..r " gy RS YT R OY SRORACH N g, -h

o s Seea A o o
1 L




ot

TS RS

j
|
:

—

=

—

-

Lol

Lol Ly Byt

=

—

—

!
]

|
+

LR R R R R R R R TR T T T T S Y O

!
R AR E )

Liliitrtreeryy

$;l§
R R
L T I T N R R R R R R R R R TR T T T T T O

l

!
)
4

G s e el T T T R R R 7 O e Bt S e R

L e e A e O R R R R R R R R R R T T A

L e T T T A N N R R R R R R R R R R I T O T S S S S

A R R R N T O T e

L A A R

L e e e R I R R X R R R R R XX NI I T T T O O A

- -

-

- -

-

-

4
i

i
b

[

R R R R
EEERERRR LYY

L )
b

‘
it

4
¢

()
b

- —
- -
B -
- -
- - —
- —
- - -
— -
- ~g -
— —— o Dlaarae
e — - .
- g, (N
- oy, OO A -
e o SNNNN S S
- \\\\\\-‘- -
i et NN e
- e NN
e ..x......‘\\\\‘,,..o‘,oa
- ab — —
-\ ~<e -
-5 S < L 5
- e T

- o

- —
-

- -

- e -
— -
-

-

L T T R A B B B R R R R R R R LR IR TN I T T T T S S U |

L T e T B I R R N R R R R R A 2 T T T T S

L T T A A R I A O N N N N R RN O 2 T T N R N N

L T T T T T B I N RN RN I N T N N Y N A

L T T T T B B R R R R O O N N T T N N N

L T T T e R A A N R R RN RN B A A

B Sy

L Y T T T I ORISR O O AT T SN S S N S

L T T T T T T I N N N R R RN R O T T T T T T S
{2 T T T T T R RN R R NN NN T T N T N S N O

L T T T T R I R R R R R R R O I A T T T I N

I T T e R AR R R E R R R R R R I T T T I N

IR EEEEEE A R I A )

4

}

-

=

—

—

IR ERERRREEEE SR A

o W W B W N B S W 5 i Y it |

-

1

1

-

-

-

© ol IS R D 07RO R S A SO e |

B BN RE R R RS RS




—————————— msidmnn

p——

PRl VA DY T e Bt 1O e ot T3 | W 1 1 1 0 A B B W) Fa oo hed Woasl oG WSs B L6500 | 3
3
- -0—.—.—.—.—.—‘—.—.—.—0—.—. —.-‘—.—.-—.—.—.—.—.—.—‘—. s
s > s B B = B P s = — i P - s > iy i iy > [ ¥
~ _-.-o—.—.—.—.—o—o———o—o—o —.—o-o—o—.—b—.—.—o—.*-o £
. ....—o—.—o-—o—.—.—c—.—o—.-o _._._._.—o_._.—.-—.....—o X
_—..-._.—».-.—.—o—o—.-o—o—o .........-.—.—o—.*—o-o—o»—o ?
——0-.—.-‘—‘—.—.—.—.—.—.—. —.—‘—.—.4—.—.—‘-’—.—.-‘ ;
:
e e > S = b S = =b = — s > = = > = > =& {
do vt = = =B B =t > b > — - = =~ —> — = —> = —> | :
lo e e > B = e B =P SR gy s e ol Sl . . b ¢
I I D O R e Aenaieng > > .~ —- - > = = e = —> & [ £
o i i ) o | | A SN e g T e i, 05 L e ¥
o ol e s i B B > =y B = B “‘_._..._......._._... . ¥
Ao o 0 oo =0 =0 =6 =5 —& =& > > R e g g s el oy =l S =W -
@ B e R SIS SIS SRR I I e +i» a ¢
TR st e s s (o e G | O DU ““.._..._._.,._...-o... : ?
__v-o—o_._.—o—o—.—..o-o—o-‘r. ‘\\\_.4‘—._._._._.—..0 4
el e e T T i < | D e el X _'L‘\“_..o—o_._._....._‘.o |
_.._._._._.—o—o_._._..o_o,ow-“\“.._.-v—o_._._.....,.,o Y
L o > > = > = > > o - =" f_\“-‘.-_o—v_._._.......o_'
do oo v-—v-—o—o—o-—o->—- —g “‘_,_._o—-_._._._._._-... ;
_—.—b-.-o—.—o—o—o—.—.—?—o—ow“*—.—'—‘“’—‘—.—o—.-.—'"
Ao et > e P > e - > 4 — . > > > —- —> —> > >
dr o o> - - - —Q—.—.—-’—._.....—,—.—'—'—D
—1-._.—..—’—-.—.—.—.—.—.-‘—-. —.—.—.—._.—._.—.—.4.—.-.
__._...._....._..._._..._. _’—.—.—.—.—’—.—‘—0-‘—..’
—_ s > > > > > > > > - > = -o—o—o—.-‘—.—o—.—b-o—o-.

- -—.—.‘-.—.—.-’-‘—.—.—.—. —.—’-—.—.—.—.—.—.-—.—.—.-—.
—*-.—.—.—’—.—.—.—.—'—.—. —.—.—-.—.-.—.—-.-‘—’—&—.-‘
-—.—.—.—.—’—.—.—.-’—.—.—. —.—.-.—.—’—.—’—.—.—.—.-.
——.—’—.-’—.—.—.—O—.—.‘—O—. “—.—.—.—.—.—.—.—.—.—.—.—.

e Tt B A e A I R P e 5o B 2 B ) 2 0 ) 0 P R el MRSl i : g ey pR (U GG O SR 0 ‘
1
«
'
-
O T T VA T Y U S UM A I 0 O 0 6 T R 1w
I. = ¥ -
!, ~ b~ .
i
- -
— =
- —
. - =
- -
5 5 N
i s A S, -
- \ 5
- \ -
3 - [} =
| - ' -
\ -4 ‘ =®
. - ' =
| - ] = \
. - ) -
-4 N e~
' - ' -
{ - '} o
— ] =
- ' =
- ] =
. ] / &
1 - / =
i -/ -
- -
i <
3 L4 —! —
i - 5
) .
1 .
;T i ) e e S G PR [ L o 2 T 505 I L L R e R P WA g v S Jd A A T




rrraa,
0o e PO 0000,

LS e

-
L

o

-o——-—en—.
oot e,
- e

-

/"
Nawoo

7

e m———
pee -

-

ol s b

ey sapea TR S I TR A R

W




—

- e - e e w e e e e - - e - W W e - -
-— e W e e W W A - G- G- - - — . - W - - - - -
- - e e e @ e G - - .- . - - e W - - - - e
-] - e W A W e - W N W e - -— e e W= W e e e
- - e e W e - - W - - - — -—— e e e - W e -
- - e e e e e e o e - - -— — e e - e e e e
- - e et e e e e e a e e
@] - - ¢ 4 ¢ S e G G G G G PPV BBIIIIDILG GG T - - - - - W @
-] o= o o @ o o o @ o= o .n'.llill\‘:""l//”" -— e e e e - e e
> - - - - - - - - o o o !.110\:4.///////"' - o o @ e @ o e
-l - - o e e e e e - e - 1!19!1:1///1//1' - o o @ o o o o
o i N e TR e s A NS VRPN Gt i s e S s e ) e 1 i e
O s P e P Dy BRI S e L P, S e L AURUST SUTL Y Sr s i i SO e S A e
B! SR e T e L N P SR R Ad S L BT e e e R S i e
@] = o= o o o o o o= - e = s = -....~\....\\’\\‘0|t||l0l'.'
1'!.0;0-10.1110rl4N’,z.;.‘.;....-\\\\\0\0|o|0|0|0..0..
o] o= O @ @ S S S G S & & N rII/l/lrrv\\\\Q*b\I\ - o e o o o
- e e e e e e e e = = s N l/l./lvl N S i T A L N R e
. e £ W L AW N e e h o - - - - - -
Qlilil""""ffflﬂrl//:“.'“\\\ - - - e A e - e e
N
04(10!.!"0:"""/‘///.‘“ e a4 - o A A e e e
NS [P e s Sl SR S O e S e ST S G S S A T
- e e e W e e e e e S L e ew - - @ @ @ G o= @ o a=
- e e e i W e e W e e e - e e e e e a -
- - e e - e e e e e e e - o @ o o o o o o
- - e e W e e e W e e e - G B e O @ o o
- e e e e e e e e e e e - -—-— e - W - e e e
- - e e e e - e - e e e e -—-— e e e - - . e
-— e .- e e W - e W W e - e - e W W e e e - -
- e - W W - - - - - W= W~ -— - e W e e e e -

o A

t

0% o8 4 15 8

-

| Wl - PR (AR s B B BV e

t

0 e s S0
| S S G

e e e R B R B R AR SRR e T

t
!
T

Rl o s SO,
e T

$4:0.00000 04t

 ERE i 11 U TR 3 06 L W)

, B, G o8l 2 6 B

b
I

p s e T AREE RN RERE S Yt
t
T

1
!
1

—
—
—

-

Sy AT Ay e s e s e T s sy

o8 44 &

i
!




S
I~

R
Set=2

T BN 022t S ) s 5 M s

1

e e o YR O G T

12 |

T

| B a0 5 R

1

PEZ e MR W E R B A A

e —— ISR NS TR SN

o8 34 »




e ko

1

1

1

e 0 G0 a5 05 D S0 6 0 5 T

1

I |

Y s 0 G I A

1

L St L 1 O O P U5

e vy o

,
|
ST e i
. PR T | g | | | 1 TR SR P R B N RS 1 B o IR S R S | | 1 1 1 1 i 1 1 i 5

i

| g

| p

1

.
s i oL 95 3 : TR R R e o P IR




9, 0 » »




e 1o 8

TERTEEITETEa




PR

1

| NS P T N TA T S0 U Bl (5 s IR

| e

1

T

T

T

T

| 038 N O8I 78 R R R L

| 228 EO I A e A S R

t
i

@ v »




