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MOUNTAIN WAVE GENERATION BY MODELS OF FLOW OVER SYNOPTIC SCALE OROGRAPHY

By M J P CULLEN and C A PARRETT

Meteorological Office, Bracknell

SUMMARY

Cross sections of a forecast of flow over the Alps using a high
resolution limited area model are studied. They show considerable
lee wave activity on the scale of the whole Alpine ridge, in
addition to the expected lee cyclogenesis. These waves appear to
have a larger horizontalscale than observed mountain waves, but
similar vertical structure. They are examined further using a two
dimensional model. The results suggest that the mechanism for
suppression of wave activity by rotation may be deficient in the

models and that better numerical procedures may be needed.




1-, INTRODUCTION

Despite extensive recent work on the problem of synoptic scale flow
over orography, there is still a large gap between the thecretical work,
often using very simple linear models; and studies using modern forzcast
models. A companion paper attempts to extend the theoretical :nderstanding
towards nonlinear quantitative results. This paper examines forecas: model
performance more closely in order to check that it is realistic and to
compare it with other recent studies, for instance Del'Osso and
Radinovic (1984). Some disturbing features are found, in studying which the
ALPEX or other similar data sets will be important. The paper concentrates
on high resolution modelling of flow over well resolved mountain ranges
and does not treat the question of the parametrization of sub grid-scale
orography in numerical models.

Results from the Meteorological Office fine mesh model with grid
lengths down to 37.5 km are examined to see whether the expected flow
separation occurs. They show that large inertia-gravity waves are
generated.The scale is larger in the horizontal than those observed
by Hoinka (1984, 1985) and appear to be more related to the scale of
the mountains than the model grid-length. Since the forcing by the cross
mountain wind is also much less than in the case studied by Hoinka, the
waves may be unphysical. The amplitude increases considerably as the
grid length is reduced from 75 to 37.5km and contaminates the forecast
of the lee cyclone which had been quite successful in the 75 km
integration. Del'Osso and Radinovic (1984) obtained a good forecast of a
lee cyclone with a 50 km grid and a rather smoother representation of the
orography. Detailed examination of their results shows a suggestion of
a similar wave. Their case contained a weaker cross mountain flow than
the one used in our paper, so their results do not necessarily conflict

with ours.



To investigate this further, results are shown from a two dimensional

version of the forecast model, using a cross section over the Alps taken
from a three dimensional analysis and modified to be in exact thermal wind
balance. The integration shows a large wave of the same horizontal scale
as the mountain barrier. The results >{Kl2mp and Lilly (1978) suggest that
such a model correctly simulates the gravity wave response of flow over a
ridge when the Coriolis term is unimportant. The close correspondence

between their results and aircraft data suggest that the finite difference
procedure is adequate for that type of flow. On larger scales the study

of Williams and Hori (1970) shows that the tendency of the fluid to

produce an unbalanced hydraulic jump reduces with Rossby number; and the

work of Parrett and Cullen (1984) confirms the ability of finite

difference models of the shallow water equations to reproduce this transition
correctly. Results from applying the same finite difference procedure to a
semi-geostrophic model are also shown, which suggest that it is hard for the
scheme to compute a balanced solution. This numerical difficulty may
contribute to excessive wave generation in primitive equation models. In
three dimensions the tendency may be reinforced by a lack of the flow separatio
described in reality by Buzzi and Tibaldi { 1978) and illustrated by some

of the ALPEX data.

2 RESULTS FROM A FORECAST MODEL

Three dimensional solutions for flow over the Alps are presented
using a complete limited area forecasting model.

The model used is a limited area version of the Meteorological Office
forecast model. The model is described in Gilchrist and White (1982). The
finite difference formulation is described in Cullen (1983) and the physical
parametrizations in Foreman (1983). Details of the boundary formulation
and a fuller description of the model are given in Dickinson and

Temperton (1984).
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Results are shown using resolutions of %+ latitude by )%b longitude

and of %@° X 'ﬁ&: . The topography was extracted from a data set with 10’
resolution to the coarser of the grids used. It is shown in Fig 1 (c¢). In

order to illustrate the convergence of the finite difference solutions for a
fixed mountain shape, the coarse resolution topography was then interpolated to
the finer mesh. This was done to avoid numerical problems caused by grid-scale

variationsin the topography. Other experiments (not shown in this paper)

extracted the topography on the fine mesh.

Initial data for this study were derived from a global analysis on 2
1ﬁfxtﬁ; grid, interpolated as required. The topography was grown to its
full height over the first three hours of the forecast. To provide the best
illustration of the effect of the mountains on the flow, the forecasts
shown are for data time 12Z on 2 March 1984. The 500 mb and PMSL charts for
this time are shown in Fig 1(a) and (b) respectively. A deep depression over
the North Sea and associated upper vortex transfer southeastwards during the
subsequent 24 hours with a strong northerly flow becoming established over
the Alps and a lee cyclone forming over the Gulf of Genoa.

Cross-sections along longitude 8.5°E, shown as the line AB in Fig 1 (c),

are shown for the 18 hour forecasts. The forecast using the 3@? X'sh: grid :
shown in Fig 2. Care is necessary in interpreting such cross sections, because
the flow is not two dimensional. The frontal surface can clearly be seen in ths
potential temperature cross-section. There appears to be a wave downstream o
the Alps with a half-wavelength of about 1° of latitude. The wave axis slopes
northward with height and the vertical wave-length in the troposphere is very

large. There is a large increase in amplitude at 250 mb in the lower

stratosphere, directly above the top of the mountain. The northerly component
of the wind is shown in Fig 2(b). There is a marked acceleration in a region
above the mountain. There is no obvious sign of flow separation at the height

of the ridge crest.

The vertical velocity (Fig 2(c)) shows the region of upslope ascent an
a very strong downslope wind. These are associated with the standing wave

in the potential temperature field. There is also a region of lee side




upward motion at all levels except the lowest. This is associated with the

lee cyclone development as illustrated by Buzzi and Tibaldi (1978). In
order to examine the amount of flow around rather than over the Alps a map
of the wind at sigma level 0.87 is shown in Fig 3. The circulations associated
with the original depression, now over Germany, and the lee cyclone are well
seen. There is some ridging in the wind over the Alps, where the flow 1
attempting to balance the pressure field, but no sign of diversion of the
wind round the barrier. Similar results were obtained from the levels above
and below (0.79 and 0.935).

The same cross sections using a M{'*'Sh: grid in the forecast
model are shown in Fig 4. The potential temperature cross section (Fig 4(a))
shows a sharper frontal surface with the wave better defined. The wavelength
is now nearer 3 , though there are shorter waves superposed on it. The
maximum at 250 mb has led to two model layers having the same potential
temperature and convection being released. The northerly wind (Fig 4(b))
shows a similar but more intense pattern over the mountain. The vertical
velocity shows the same main features but additional shorter waves are
superposed on it. Values reach 224 mb/hr, double those using the coarser
grid.

These integrations were repeated using data from 12 hours earlier when
the flow over the Alps was slack and the initial growth of the mountains would
not generate waves. They were also repeated without moisture and with
vertical diffusion in the stratosphere. Different cross-sections were examine
The forecasts were also carried out using a different position for the lateral
boundary of the model.All the forecasts showed waves qualitatively similar to
those illustrated. The vertical structure is consistent with interpretation of
the wgves as mountainfforced gravity waves. They are not, however, two
dimensional. The transient details, however, were affected by the latgral
boundary and the starting time of the forecast. The vertical diffusion only
reduced the wave amplitude at upper levels. The use of "envelope" orography

(Wallace et al., 1983), in which the mean mountain height over a
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grid square is increased by adding the standard deviation of the orographic

height within the grid square, increased the amplitude of the waves and the
height of the maximum in the stratospnere.
3k TWO DIMENSIONAL MODEL RESULTS

a. Description of experiment

The gravity wave response of the forecast model is now studied by using
a two dimensional model. On the horizontal scale of the case study, the
Corioclis zerm is important; the Rossby radius associated with the Alps is of
order 200 km. Williams and Hori (1970) show that the effect of the Coriolis
term is to make waves less likely. We study here to what extent waves are
suppressed in an integration using a two-dimensional cross section of the
previous experiment. The data were chosen as a typical section, and modified
so as to be in exact thermal wind balance. Verification of the model against
the true evolution is thus not appropriate, the interest is the amplitude of
the wave response.

The finite difference scheme uses staggered variables and second order

centred differencing. The difference equations are, in the standard notation
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Ku Kv and Ke are artificial viscosity coefficients. The form of the

viscosity is chosen to ensure mass and momentum conservation. If a hydraulic
jump is formed in the solution it can then be treated correctly, Parrett and

Cullen (1984). To prevent possible reflections from the lateral boundaries,

the viscosity is increased linearly over the four gridlengths next to the

boundaries.

The initial shape of the mountain was given by

¢, = “‘iH (Cos((X—xo)/L)~ L) M (e-%,) ¢ bu

= O Qlkuuf‘e -

The equations were then solved with u = O at the ends of the channel and

the mountain translated at a speed of 15 ms-l. A uniform grid with 101
points in the horizontal and 20 in the vertical was used, giving a gridlength
of 13 km. A convective adjustment scheme was found necessary, despite the
lack of forcing terms, to deal with overturning moﬁntain waves. A Vertical
diffusion scheme with a coefficient dependent on the local Richardson number
was used. The coefficient was chosen to prevent the Richardson number

based on grid point values falling below i and was based on standard mixing

length concepts.




b, Results of integrations

The initial fields used for the integrations, shown in Fig 5, were

obtained from a typical cross-section of a three dimensional analysis across
the Alps. This was done by extracting the wind component parallel to the

mountain onto a grid, and calculating a geostrophically and hydrostatically

1

balanced potential temperature field, ignoring the mountain. A smooth

"sine-shaped" mountain was then introduced and 8 interpolated onto sigma

levels using a cubic spline, and from this a balanced v field was re-
calculated. This process was preferred to the more usual method of growing
orography at the start of a forecast, to try to eliminate excitation of
spurious waves.

Figures 6 to 9 show the finite difference results after 12 hours of
integration. The most striking feature of these is the large "jump-like"
wave seen in the troposphere above and to the lee of the mountain; the
isentropes (Fig 6) in the middle and lower troposphere have the same shape
as the free surface in a hydraulic jump (eg Parrett and Cullen, 1984).

This feature closely resembles the observations and numerical simulation of

a strong mountain wave over the Rockies shown in Klemp and Lilly (1978),
including the strong downslope wind (Figs 8 and 9) associated with the down-
ward displacement of the isentropes above the lee slope, and the abrupt
transition to strong upward motion downstream of the mountain peak associated
with the jump in the isentropes.

The wave/jump feature is evident throughout the depth of the troposphere
and slopes upstream with height indicating downward transfer of horizontal
momentum, as expected in hydrostatic mountain waves and as seen in the
computations and observations of Klemp and Lilly. The upstream tilt with
height is more obvious at 6 hours (not shown), before the region downstream
of the mountain becomes destabilised by the strong descent of high potential
temperature air and its subsequent undercutting of lower potential
temperature air. Similar areas of less stable air have been observed in

the atmosphere, downstream of mountain ranges (Hoinka, 1984).
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In Klemp and Lilly's observations there is a low-level wave and rotor

downstream of the mountain range and here in our model there is something
resembling a large rotor in the lee of the mountain associated with ascent
(Fig 9) approximately one mountain width downstream of the peak. This
ascending air seems to be partially returned towards the mountain near

the top of the destabilised region at about 250 m and fed into the ascending
part of the hydraulic jump. This return circulation is not seen in Klemp and
Lilly's observations. Here, it seems to form part of a vertical wave in the
cross-mountain flow (Fig 8), which is also seen above the mountain at a
higher elevation.

Very large wind shears above the lee slope were obtained despite the
inclusion of both horizontal and vertical diffusion to simulate turbulent
mixing in regions where Ri is small. It was found that despite relatively
large vertical diffusion coefficients being used in areas where R: £ ‘/4,
it was impossible to keep R: > % in some areas above the lee slope. The
vertical diffusion did have the effect of greatly reducing the otherwise very
strong ( » 60 cm s_l) upward motion approximately one mountain width down-
stream of the mountain.

Figure 10 shows the potential temperature field produced from a run that
included a layer of enhanced vertical diffusion at the top of the model, which
increased linearly upwards from just above the tropopause. One can see that
part of the double-structured wave in the stratosphere evident in Fig 6
has been lost, indicating that this part of the wave, produced by reflection
of wave energy from the upper boundary (and which slopes downstream with
height), has been dissipated by the enhanced vertical diffusion. Other runs
with increased horizontal diffusion towards the upper boundary (not shown) ,
produced slightly less damping of the reflected wave, also tending to diffuse
the wave directly and spread it out horizontally. This shows that it may be
necessary to include a layer of high diffusion near the upper boundaries of

numerical models to reduce such spurious reflected waves.



i Two dimensional semi-geostrophic model

Both the primitive equation integrations described so far produce
considerable wave activity. If this is not realistic, then either the
numerical procedure is tending to excite waves, or the mechanism which tends
to suppress them in the presence of rotation is not operating effectively.
To provide further evidence, the two dimensional semi-geostrophic equations
are integrated using the same finite difference procedure as for the primitive
equations. These have to be solved implicitly for u and w. A procedure for
doing so is described by Cullen and Purser (1984). The implicit equations
are solved by a pseudo-time iteration which allows 10 times the physical
time for the geostrophic adjustment process to operate.

The results can be compared qualitatively with the exact but low
resolution Lagrangian solution described in the companion paper. The
iteration does does not achieve convergence over the mountain top and there
is a discrepency of 2.5 ms-1 in the geostrophic balance at high levels. The
implied cross mountain wind is shown in Fig. 8(b). A region of upstream
deceleration and the acceleration over the mountain top are predicted. How-
ever, the accelerations extend high up over the mountain with short wave-
length oscillations in the vertical. This reflects the slow convergence of
the iteration at high vertical wave numbers. A better procedure is clearly
needed.

The difficulties in obtaining this solution, which should contain no
waves, suggest that the finite difference procedure has great difficulty in
maintaining a balanced solution. It is therefore not surprising that it
readily generates waves when applied to the primitive equations.

4, DISCUSSION

The structure of the waves produced in the two dimensional integrations
is very similar to that observed and predicted for flow over the Rockies by
Klemp and Lilly (1978). Similar waves over the Alps and Pyrenees have been

reported by Hoinka (1984, 1985). Rather similar waves appeared
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in the three dimensional integrations. In all these cases the wavelength

of the "hydraulic jump" was less than 1° of latitude. The vertical
displacement of 6 surfacesreached Z km. The waves produced in our
integrations have a large horizontal wavelength, apparently associated
with the scale of the whole Alpine range. Their vertical amplitude and
locations of regions of maximum intensity appear realistic.

There are several possible contributing mechanisms which may produce
these waves. In the two-dimensional model all the flow is forced to cross
the barrier. The finite difference scheme cannot follow the semi-geostrophic
solution correctly in thiscase and produces large implied accelerations over
the full depth of the fluid. When the same scheme is used in a primitive
equation model this could lead to an excessive wave response. The Lagrangién
semi-geostrophic solution suggests that large accelergtions are only generated
in small regions near the mountains, leading to a different type of wave
response with localised generation. For the data used with mean flow speed
around lSms-l, static stability 10_5m.1 and density scale height 8 km, all
waves with a wavelength of greater than the order of 10 km will propagate
energy upwards and have an upstream phase slope. Thus there is a possibility
that the lower stratospheric maximum and large general amplitude in the
integrations are produced by wave trapping due to an unrealistic upper
boundary condition. The experiments with vertical diffusion in the
stratosphere are designed to allow absorption of the waves as they propagate
up. Though these eliminate the reflected part of the wave, the overall
reduction in amplitude is not dramatic, because most of the response is
non-propagating.

Another contributor seems to be the failure of the flow to separate
round the Alps, thus forcing much larger vertical velocities to be generated.
ALPEX data, eg McGinley (1984), suggests a much greater degree of separation

than is evident from Fig 3. This would suggest a failure of the integration
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scheme to produce the correct three dimensional flow. If this explanation

is correct, much lurther work will be needed to establish on what scales the
correct physical solution is not obtained and what integration techniques
are needed to get the correct solution in all cases, allowing for the
dependence on scale and static stability. The results from the ECMWF model
(Del'Osso and Radinovic (1984)) show a weak wave (their Fig 7). At some
other times in their integrations (private communication) a stronger wave is
visible. The difference in the synoptic situation at verification time in
their case makes it difficult to assess whether there is sufficient flow
separation. Considerable further work, taking advantage of ALPEX and
similar data sets, will be required to resolve this issue.
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Initial data for limited area model forecasts valid 12 GMT,

2 March 1984:

(a) 500 mb height (m), contour interval 30 m;
(b) PMSL (mb), contour interval 2 mb;
(c) topographic height (m), contour interval 200 m.

Cross section along line AB in Fig 1 (c) using 34" x “A: grid,
valid 06 GMT, 3 March 1984;

(a) potential temperature (°C);

(b) wind normal to mountain (ms—l);

(c) vertical velocity (mb/hr).

Wind forecast at sigma = 0.87, forecast as Fig 2. Full feather
10 knots.

gs [
As Fig 2, using W{' x Sy, grid:

(a) potential temperature (°C);

(b) wind normal to mountain (ms_l);

(c) vertical velocity (mb/hr);

Initial data for two dimensional integrations: (a) potential

temperature (K), (b) wind parallel to mountain (ms-l).

12 hour two dimensional primitive equation forecast: potential
temperature (K).

As Fig 6: wind parallel to mountain (ms-l).

Wind normal to mountain at 12 hours (ms-l): (a) primitive
equation, (b) semi-geostrophic.

As Fig 6: vertical velocity (cm s-l).

As fig 6: including vertical diffusion in the stratosphere.

<A




| (2)

Frq.










HEIGHT (M) =g : —— e
++ ek ./I'»I"wl". T S







PRESSURE (MB)

169

HEIGHT (M)

1,000 -

13000 -




v,
%

W DN e

,'.((1'(."(,

g L\

y
7o

~ \ \
&
7 ..\4 b
ESEET .
o R
e
\V.\\\\....
e i

LN

oy

b |







oo Q\/O\/ \/

MQ@




HEIGHT (M)

PRESSURE (MB)

14000 -

a . B
g







\\\//// | \

2///”\\ AW <

NN -
NN\

Fic,, 5(b)







22N\
(@A)

° o o = I

IR LN
AN //%\M

Fig. 7







*
@t
an® 9

e O




ST

 pya







