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Abstract

A rational asymptotic theory describing the perturbed flow in a turbulent
boundary layer encountering a small two-dimensional hump is presentede The
theory is valid in the limit of very high Reymolds number in the case of an
aerodynamically smooth surface, or in the limit of small drag coefficient in

the case of a rough surfacees The method of matched asymptotic expansions is

used tc obtain a mul%iple-structured flow, along the general lines of earlier

laminar studiese The leading order velocity perturbations are shown to be pre-
cisely the inviscid, irrotational, potential flow solutions over most of the
domaine The Reynolds stresses are found to vary across a thin layer adjacent
to the surface, and display a singular behaviour near the surface which needs

te be resolved by an even thinner wall layere The Reynolds stress perturbaiions
are calculated by means of a second-order closure model, which is shown to be
the minimum level of sophistication capabie of describing these variationse

The perturbation force on the hump is also calculated, and shown t0 be non=zeroes

1¢ Introduction

An understanding of boundary layer flow over surface-mounted obstacles
has many applicaxions.in aerodynamics and meteorologye A number of recent
studies have been directed at the problem, and much progress has been made for
the laminar flow cases However, the dynamics of the turbulent problem.are not
so well understood, although most boundary layers of practical interest are in
fact tﬁrbulent. The aim of the present work is the development of a rational
asymptotic theory of incompressible turoulent flow over a shallow hump, which
will hopefully elucidate the dynamics involved.

The laminar problem far asymptotidally large Reynolds number was first investi-
gated by Hunt (1971), and laterby Smith (1973), SmithSykes and Brighton (1977), and
Sykes (1978) using 'triple-~deck' theory. This is a three-layer structure using
matched asymptotic expansions, reviewed by Stewaxtson-(1974), and is more
general than the earlier two=layer, locally-valid structure of Hant (1971)e

The predictions of the triple-deck theory have been confirmed at moderate



Reynolds number by means of comparisons with numerical integrations of the Navier-

Stokes equations by Mason and Sykes (1979).
Townsend (1972) presents a linearised analysis of turbulent flow over a wavy
surface using a turbulence closure of the type proposed by Bradshaw et al (1967).
This is not an asymptotic theory in a strict sense, but simplifies the equations by
the neglect of various small terms. The main concern is with travelling surface
waves, but some results are presented for the case of a stationary wave. Also,
several numerical solutions of the equations for turbulent boundary layer flow over
topography under simple slosure assumptions have been obtained, eg Taylor and Gent
(1975), Deaves (1975), Taylor (1977). Hoﬁever an asymptotic study along the lines
of therlaminar triple-—deck studies can still contribute significantly to our under-
standing of the flow. Counihan, Hunt and Jackson (1974) give a theory of the far-
field turbulent wake behind a small bluff obstacle, but although the flow structure
is composed of layers of different asymptotic scales, the perturbations are not
expanded as a rational series in a small parameter, This makes the solutions
rathef specific to the problem under consid.ration, and the details of the dynamics
are obscured by the non-rigorous exrinsion procedure. Furthermore, the authors were
not able to obtain a smooth match with the wall layer on the lower bcundary. '
A linear analysis of the flow over a gentle hump is given by Jackson and Hunt "
(1975). This analysis considers iwo layers; an outer inviscid layer; and an
immer region where the turbulent Reynolds siresses are parametrised by means of a
mixing length closure. Trhore are some problems with matching the soluxions agaiﬁ
in this theory, but these will be discussed further below. One aspect of the
problem of flow over a huap which Jackson and Hunt (1975) do not address is the
question of the change in total force on the solid boundary due to the presence of
the obstacle. In view of the lamirar boundary layer force results of Sykes (1978) andi
Mason and Sykes (1979), which show that the reduction in surface stress in the wake
can largely balance thebpressure force on a small obstacle, it is not obvious what
magnitude the total force perturbation will have in the turbulent case. The

perturbation force requires hzgher order terms in the expansions to ve calculated,

and the difficulty with the calculation of such terms in the theony of Jackson and
Hunt (1975) was one of the motivations for the development of a rational asymptotic

theory,




Recent work on turbulent boundary layer shock wave interactions by

Adamson and Feo (1975), and Melnik and Grossmen (1974) has shown that asymptotic
flow structures of the same general form as tﬂé laminar triple-deck, but very
different in detail and dynamics can be constructed for turbulent flowe The
theory presented below is essentially én extension of the turbulent trailinge
edge flow developed by Melnik and Chow (1975) to the case of a gentle hump
lying within a boundary layers

The theory has a three-layer structure in the vertical, although the
~ innermost layer is extremely thin, and plays little direct part in the
dynamics other than providing the match with the lower boundary conditione
The analysis is presented using a horizontal length scale of the same order
as the boundary layer depth, as in Melnik & Chow (1975); however it will be
shown that the same structure applies over a wide range of length scaless
It is shown that the mixing length hypothesis, which assumes local equilibrium
for the turtulence, is inadequate for the intermediate layer, and a second=-
order closure turbulence model of the type described by Hanjzalic and Laundar
(1972) is employede This provides information on turbulence moments in
a&dition to mean velocity fieldse ‘The rational expansion procedure also
allows the calculation of higher order terms, and the total force is derived
and shown to be non=zeros

The turbulent flow to be described is very much less interactive than
the laminar triple=deck, mainly due to the small shear in the turbulent
boundary layere To leading order, the velocity perturbations are simple
given by linearised potential flow, and the most interesting new results
are the Reynolds stress perturbations. These show a very rapid adjustment
from the equilibrium wall layer values to the outer part of the stress
field which is strongly influenced by its upstream historye

The perturbations are all linearised, énd the fheony is unable to
deal with strong perturbations; unlike the triple-deck which is a

nonlinear theory capable of describing separatione In fact, this work




suggests that slopes of order unity are necessary to provoke separation; this
conclusion is supported by the work of Adamson and Feo (1975), and Melnik and

Grossman (1974 )e

2e Flow structure and ecuations of motion

Consider a turbulent boundary layer of thickness é developed over a
rigid lower boundary, with external flow speed uo 9 @s depicted in Fig 1.
The boundary layer is characterised by the small parameter & = Us /Uo i
where Uy - T is the stress on the flat boundary in the absence of
topographye We shall consider variations in surface elevation of order
on a horizontal length scale of order 5 °

The application of asymptotic methods to the problem of an incompressible
turbulent boundary layer on a smooth wall, eg Yajnik (1970), Mellor (1972),
has led to a systematic two-layer description of the flowe This consist= of
an outer defect layer on the scé.le of the boundary layer where the velocity
maé-nituda only differs from the free=stresm speed by an amount of O(E} ’
azid has a logarithmic variation as the boundary is approachedes This matches
with the logaritimic wall layer defined in terms of the variable 'Ef; Y /Y
where g is the distance from the wall and ) the kinematic viscositye Thus
the wall layer has a thickness of O(E-i‘R-i> where }2=Uc§/i is the keynolds
number based on the boundary layer thicknesse Hence, the upstream velocity

profiles required for the present work are taken to be

‘_‘&i) - 1~ sug(y) (2.1)
in the outer ;efect layer, where g=g /S and

Lo ST
O ' )‘6]>1

Here T?‘:,_ is the Coles wake parameter, K is von Karmanf®s constant, and L\/ @)

blg:.(&) i (242)

is the wake function, see eg, Coles (1956), Hinze (1959)e
The wall layer profile is assumed to satisfy

ulg) "’,5(;’ 4’(7++ @) .as g+—>v<>

u, (203)
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In fact, we shall only require that the wall layer be transcendentally

thin compared to the boundary layer scale, and make use of the asymptotically logarithmi
variation of velocitye Thus the aerodynamically rough wall can also be

included in the analysis if we consider the wall layer to have thickness Yo,

where go is the roughness length which is defined from the near-wall form

of the velocity prifile, ie

U.’(i) ~ (" 9: o g/§ — O (2.4)

Uo o

Therefore, defining 51{ i 9- /! Yo s the rcugh wall case has the same behaviour

s

as the smooth wall, since the constant 8 in (2¢3) can be absorbed into the
definition of i:,;;* o

Following Melnik and Chow (1974), we shall consider a dimensionless
perturbation of O(E"/"J\, which will be produced by a hump of height C/«iz:> o
He shall show that in the main part of the boundary layer, the Reynolds stresses
are subjected to a rapid distortion, whilst the stresses in the wall layer are
a.iwa;fs in equilibrium with the surface, Anintermediate layer is required
40 provide a smooth transition between the twc Reynolds stress valuese This
region turns out to have a thickness O(f 8) g ie smaller than the height of the
obstacle; and is thus a thin layer atta~hed to the carved surfacee This
structure is illustrated schematically in Fig 1.

As mentioned previously, it will be shown that the Reynolds stresses in
the outer layer are rapidly distortede This implies that a simple mixing
length or so=called ffirst order® turbulence closure assumption is inadequate
for a description of the entire flowe A more sophisticated closure scheme is

necessary, but we postpone discussion of our choice of closure until the next

sectione We now present the expansions and the equations for the velocity

fieldo
Outer lgﬁr

The undisturbed velocity profile is given by (2.1) and (2.2) where

3:5’/5 is the dimensionless nommal co-ordinate in the outer layer, Scaling

S



the streamwise cow-ordinate, X , by 8 s we expand the velocity and pressure

as follows
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B TR
where € is the density of fluid, and § =& 3(%) is the profile of the
! J

lower surface, ie the upstream profile g, is displaced over the obstacles

The basic Reyuolds stresses are (%’ Llf) s and since the perturbation

stresses

are O(E?

=/ S
i U:) , the outer flow is inviscid up to Ot d> e Thus,

the two leading order terms are simply the first two terms of linearised

potential potential flow, ie

and

Hence
and

where Pz/

ie the flow is irrotationale

boundary layer component, gL (‘5,‘ =g 5(1)> / : o

3__‘4_() e a—B’
e I
‘@.l/-' B P
Qx aa
Uy W _
ox 2 9y = O

é‘il + Y MM, Y 9_"_(-
ox ox : ad
.s_f_/z + WU E.V' A Vi v
o% ox >4

A 3_\_/1~

> 3y
Ve =

e -
Jinrden

=

N

~

<

s and we have used the fact that

(2.6)

(247)

(2.8)

(249)
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Higher order terms will involve the rotational

The lower boundary conditions on the outer flow equations must come from

matching with the inner layerse We next consider the wall layer of thickness




Yo, or SRS :
Wall layer

We define the wall layer variable g+= (g i 5589{1\)) /‘éo e Since we
nave the relation € {18/ =Of) (v e€r1eR=01)) from the requirement that
the asymptotic wall layer profile (2e4) (or (243)) must match with the outer
layer profile (2¢1), the wall layer is transcendentally thine Thus the total
stress gradient, ie Reynolds stress plus viscous stress in the smooth wall
case, is zero to all orders across the wall layer.

Using the asymptotic form (2.4), the wall layer condition is

ué B N ‘C’\vf{l} 4 &f " i

Uy K 45 ¥ 2 : (2410)

where 7T, is the dimensiocnless stress on the boundary, and . is the velocity
component tangential to the surfaces

We expand T.  as follows:

2 Wy ) ~T 3 21 3/1 t
Tro= 12 8 T 4 8 Tl v £ e Tia)+ £ TR) 4om s (2.11)

where the logarithmic terms are generated by the match with the Reynolds siress
sublayer, which we now describee

Reynolds siress sublaver

/ - -L 2N
The normal co-ordinate in this layer is taken to be Y <(y -8t ),"/5(5\ »

and we expand

L-‘-"(; e zfﬂ,(z,Y)w“ {_6’__8 & C,(({&(Y)"‘llzb* f}/%!f Z{g, T‘f%% ot

i (2412)
—ﬁ; = £iR(1,Y> + 5?2_ - 5%42 @,4— £ % /?4,_,,,
§Us
wherc %L(Y):‘ZI‘I\/—Q;;; Y
So v dating . voaostu dE L ov® (2413)
by
then
352/ e o O (2414)
v ; ¢
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80 we expand

® Fe ¥
¥ 23/2\/: (";y)* £ 2 t ié&E V3, + f%v; P

e . (2415)
(o]
Finally, the Reynolds stresses T. e —u‘/ud'/ are expanded as follows
: 7, B2
'E, kY /4 LEE (’x \/>+E ;J t amen- (2416)
L b

where /4 ‘J. is the dimensionless equilibrium Reynolds stress tensor near the
surface in the undisturbed flowe /4.J is a constant tensor because the Reynolds
stress varies on the scale O in the upstream boundary layere We also know
that A.z - /{ s @nd the only other non-zero components are the diagonal terms,
vhich are all negativee

Substituting the expansions (2412), (2e15), (2+16) into the Reynolds—averaged
Navier-Stokes equations, and remembering the non-orthogonal co-ordinate system,

we obtain a sequence of perturbation equationse The O(t 3} terms give

= dF
%

5=
2_;' LA
where 0/dx indicates a/ax’Yo
Thus U @) - U (x,0) ;
P&) - p@0) (2417)

\/,k(ar) \/) e >/ i‘l_[./' J
since the velocity and pressure must match with the outzr flowe

At o(i), we have

L T L e
by 9% dx
B O
D)/ '

where we have used the O i‘%> result that

ofe - - &
Y

The prime denotes differentiation with respect to U o

e RE@- PO 4 30

&) tx,0) + § %
98

(2.18)

\/:’@,Y) = — Y?g_z




At ‘O(i%?ni> s

= “ oz dx
o%L
b S
oY
From the match with the outer flow
LN :
(2.19
M3I - — _)_ L{'(X)
e
me O( i'%\/ terms give
b . — (i) :
Mis' L - OB . ol Fe BT ).~ U Ml Vil
Ix X Y olx ax AY (2420)
%F)'S S_(l
gy o 5
The Reynolds stress perturbation, T - s has made its appearance at

+“his order, and therefore some closure scheme is required before equaticus
(2.20) can be solvede We postpbne discussion of the turbulence closure until
thé next section, and consider now the lower order solutions which are
ihdependent of ~ny closure assumr¥ions.

leadine order solutions

The outer flow solution tc lowest order is potential flow, equations (2.6)
and (2.8), and the match with the inner layer (2413), (2415) gives the lower

boundary condition

V (2,0) = L‘g | (2421)
Thus Ve O
o 35' = =% o y=0 (2422)
Similarly, at O6)
VO (2.23)

o.nc* %%2/: —ﬁ(“{f) 9”8=O

: /
where Fz is defined immediately after (249)e
Hence the two lowest order terms are simply the liziearised \inviscid

potential flow terms for flow over the perturbed lower boundarye The

o,



corresponding terms in the inner Reynolds siress sublayer are obtained by
matching with these, and are just the potential flow solution values at the
lower boundary Y = £2§() , as can be seen from (2.17) and (2418).

Having obtained the leading order terms, it is possible to deduce the form
of the Reynolds stresses near the surfa;:e. First, in the wall layer, the
stresses are independent of distance from the surface, and the velocity is

given by the logarithmic profile (2e10)e From (211),

',-.~1 1+ 2{ ‘[“ i (__ S ' e L0 °

)
(!
—
|
o
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)

The matching of the boundary layer profiles requires £ ¢

% go
which can be regarded as fixing 3 e Then rewriting (2.1:}0) in terms of the
Reynolds stress sublayer variable >/ ’

d“.: ~ E flafiet et s[’"fz_z’,gl)*_ j [4 Ythe + -/rzg_;] (2425)

Beforc we can match with the Reynolds stress sublayer, we have to account

for the fact that the velocity is parallel to- the surface in the wa.ll layers
Thus the velocity in (2.25) must be multiplied by >0, where G ',
The final match with the Reynolds stress sublayer is obtained as

/2

4~ v letzry cbe gl vl i LMY'QFT>+.. (2426)
U Z “ 2 ¥ 2 K
Thus 7 = AUR)
4 2 2
T = AU U £ (227)
These surface stress solutions will be used to provide a lower boundary : .

condition for the Reynolds stresses in the Reynolds stress sublayer in the
next sectione Before proceeding, there is a further feature of the Reynolds
stress behaviour near the surface which can be deduced from (2420)e From

3
(2.25), we see that there is a logarithmic term in the velocity at Ols /‘) ’

ie e U L Yo @ :

0.




v
Thus,y remembering that \/, 7 "\/CM,/JX, and using the definition of [/LL(V),

the balance of terms in (2.20) as Y= (O must include the stress gradient term,
in fact,

éIlg\ - 2({’4! &’?\/ an Y——>O

3y (2428)

~

d>

Hence the first order stress gradient has a logarithmic singularity at
the surface, whilst the Reynolds stresses themselves vary like Yd,‘/ o
This does not prevent a maich with the zero gradient condition in the wall
layer, since the depth of the wall layer is ‘ranscendentally smalle This
singular behaviour of the Reynolds stress is independent of any closure
assumption, and is obtained by Adamson and Feo (1975) using a mixing length
closure, Counihan, Hunt, and Jackson (1974) also find a singilar behaviour
in the stresses near the surface, but they do not produce an asymptotic match
with the wall layere The rapid stress variation appears ‘o be produced by the
horizontal variations of velocity, and could well be a general feature of
perturbed turbulent boundary layerse

3¢ Turbulence closure ecuations

The Reynolds-averaged equations for the components of the Reymolds stress

tensor are obta.inable from the Navier-Stokes equations as

L{k Q u;MJ o po‘ & D‘j i S~o‘ (301)
X
where [{; is the mean velocity, 'u‘ud' is the Reynolds stress and
Po= -mm o, _ aw M
& z ¢ XL ‘)1"_
: ~ axk &xk
S\.\; T A é (u‘u l‘(k) _&_ HJ‘ St ..D_ ; P“n
: Xk ox o

Lower case letiers denote a fluctuating quantitye p{}' denotes the

production terms, QJ the dissipatioh, and S-S the third order correlationse

s . e



Although (3e1) is not useful as a predictive equation, since Du and
S;d* are unspecified, some idea of the orders of magnitude of the various
terms can be gleanede Using the expansion (2.16) for the Reynolds stress, the
mean-flow transport term on the left-hand side of (3e1) is O(ﬁm 6{3 5_(>
in both the outer flow and the Reynolds stress sublayere The perturbation
production terms in both layers are also 0(5;/3U35~'> s 8s can be seen by
substituting the leading orders for the velocity gradients in the definition

¢ - 53 3N
of D' e The undisturbed third-~order correlation .Y U, is C-/t 'v/; )9

9 ‘
therefore the nerturbation will be Cyi%:U:). This term represents the

turbulent transport of the Reynolds stresses, and therefore in the outer

layer the turbulent diffusion is :(?I’/Lil/osg—!)and in the Reynolds stress

sublayer it is [){Eﬁé&$3§‘t> o We have considered only the three basic

terms in equation (3.1) in order to assess the important mechanisms; the remaining
terms do not contribute diflerent orders of magnitude to the znalysise From this
crude analysis, it will bg seen that diffusion is negligible in the outer layer,
but is the same order as the other terms in tke Reymolds stress sublayere This
confirms the role of the Reynolds stress sublayer as a blending layer between

the wall layer, where the stresses are in local equilibrium, and the outer

flow, where the stresses are rapidly distortede It also prohibits any simple
turbulence closure scheme, since the solutions must encompass both the mixing
length result near the surface and the rapid distortion result at the outer

edges This conclusion is also reached by Britter et al (1979), where the 'rapid
distortion' theory of Batchelor and Proudman (1954) is used to calculate the
turbulence chaiiges in the outer flow.zy:&he closure scheme which we shall adopt is
the so-called 'second-order' closure proposed by Donaldson (1971), and developed 2
by Hanjalic and Launder (1972), and Launder, Reece, and Rodi (1975). In order not
to unduly complicate the equations, we shall not use the 'wall terms' of Launder,
Reece and Rodi (1975), but we shall use the simplified model of the rapid pressure

terms which they suggest. We also use the simplified model of the turbulent

diffisuion terms, Irwinand Smith (1975) have shown that this typé of model accounts

12,



for the effects of streamline curvature on the Reynolds stresses, and we
therefore have some confidence that the predictions for the problem under

consideration will be usefuls The modelled tex"ms we shall use are

Se e Cs/,a— “u“( d W ‘> D (““ %%8U> "Y(‘O‘Jl—fzs PS{’> (342)

d} &’(( ,D DI‘{,

where ¢ ="7«’—‘T( is the turbulence energy, VP; % p.‘L s and (g;‘ is the
Kronecker delta; and ’> 3’—)5‘\)‘ is the dissipation, assumed to be isotropice
Ci Cs' and y are empirical constants with the values recommended by
Launder, Reece, and Rodi (1975), namely 1e5, 0'25, 046 respectivelye The
first term in (3e2) is the turbulent diffusion, the second is the return=to-
jsotropy term due to Rotta (1951), and the third is the *rapid?! part of the
pressure correlatione We still need to specify D in order to close the

eqmations, and this is achieved by means of another transport equation as in

Hanjalic and Launder (1972), ie

Watr o0 S0 D (303)
ke 9 X "D éz‘k) Tt

where th:/'(l-s_) QL:O"S)Q& :2 °

This completes the closure of the Keynolds siress equation, and we can
now substitute the perturbation expansions (2416), (2¢12), and (2415) into
(3.1), (3+2)y (33) to obtain the solution in the Reynolds stress sublayere

We also need an expansion for D which we now make:
g} 1 :
D = g¥ L(o { _L 7 2"‘:D'(x,\/> e g f =3 (3sd)
— \
= ey .

Tne first order equations are (with Carlesian - a[e_r.'mé,‘veg)

?I'(? = -—("ﬂPﬂ -2yP- ¢ (T(b 29/> + —- (o
ox 3 n<7o

ot o i "”)(Au 5) — & é_(mmﬂ a/,,)) (345)

-_-(l)
a'zz o ..'(l’-y)ﬂz’ %Y =S 7'22) 29 > + Z'D,{
b)" = uﬁo‘/ 3 3

. (346)

-——(‘

—& (YD, ~ % \(hne200) —f D (igoVna 217

%\/( 7 >(/4 +320> Y(“i 22 — $9%
fD..

e Ty T = g e g




__'——/3—3 :"Zb’? = _Cl T:;g>+ ,? 2. D4
QX 3 %\/ 3 ( (’)
'of \ / T-
el g) A+ 28.)—ef 2 (e207A22 9733
oY 0 %o (33f37> Y 57 (1)
A
6—12 e T) el (')
Uy il —C'—\/Tz T "2) -6 9 o ST
¥ 24 e A 57 / (38)
ol Sl YD 2\ e e (Dl D2 N st ND
i “ﬁo\/ K'zx_ \/2 ( 9) () )jo fay(?O 22 5?>
— /hz 0% o A G Aok et 57?} ﬁ_‘JCT;('? i V,’L ;2@00 ;
Ly 57 vl Je s / 1557 ) vz ff—; : (349)

In the above equations
Jo = —Z’ (A4 Aozt ’433>
ke -
Zi. = "’L (1.. - /1_(2 4"33))

)
29 e f’ Tl
e dpdi(dh =35 ’“a"f v g

’Ozz: 2[;?_/22 f

(P “ 3 _— )
l\l = ’4:, _? = ’433 al‘_? S )
Y R
s <

The upper boundary conditions om equations (3¢5)=(3e9) are obtained by
letting Ya » ¢ This léaves only the production terms and the ®ranidt
pressure terms on the right-=hand side, and the equations are easily solved,
giving

| T"’ ~ {2l 2vlh AU, ~(2-% ¢ )3

> N {2(( Y\Azz- Y(A.«-Azz>§m = (2'2/3 X>§/

.T-(' 4 o= § Y (/41. ’/422> la", = 4/3 ¥ :S'/ (3410)
"-.Z') A oh N A8
D1 £ O
as \/")oao

The solutions (3¢10) match with the outer layer solutions, where the
only forcing terms in the equations are the production and frapid® pressure

terms throughout the layere

14



We also require a lower boundary condition, which is obtained from the

wall layere At the outer edge of the wall layer, the stresses and dissipation
satisfy the usual wall layer equilibriume Thus, with co~ordinates aligned with

the local surface, the Reynolds stress tensor is T} A

g
In order to match with the Reynolds stress sublayer solution, this tensor
must be rotated into the global cowordinate axes which are aligned with the

flat surfacees After substituting the expansion for T:, and rotating, we find

—() s 5/
|l| £ QA.'\“‘ 25(

T e haller o7

e e, ) (3411)
‘T—.(;) R F /4//"’422> £’
D‘l B 3(’(. /‘4 \/ 5

as /5 0.

The expression for D{ arises from the well layer dissipation, which
equals (TJ >31Q/t<_t,fr as ,Ldj*-—-: U

¥We now have a complete set of equations ér.d boundary conditions for the
determination of the first-order Reynolds siress perturbationse HWe do not
need to solve foz; ZZ3 since wc only require ;\_;3 in equations (365)=(3e9)e

Differentiating (2420) with respect to ) ,

2 ‘\, ' z
2 ?.”3\: £ + 5__1__'2( 0 &fL—I’ (3.12)
o LR av? e’ dx

The full solution for /{3 requires the outer solution in order to determine
PS s and this is complicated since the boundary layer profile, /(&/(31) is
involved, However, //3 is a third-order perturdvation and is not a
significant contribution to any speed=up effects; our main interest is in
the prediction of the Reynolds stresses, so we use (3¢12) to eliminate
from equations (3¢5)=(3¢9)e¢

Although a Fourier transform in the x~direction can be used to remové the
x-derivatives, equations (3¢5)=(3¢9) are too complicated to facilitate an

analytic solution despite their lineariiye. The equations were therefore solved

15"



numerically by means of a variable step Kutta~Merson integration routines Six
independent solutions satisfying the lower boundary condition were integrated
upward to some large value of Y, and then the linearity was exploited in

order to calculate a linear combination which satisfied the upper boundary
conditione This procedure could be foilowed for a number of Fourier modes

to calculate the solution for a particular shape of hill, but in the next
section we shall present the single Fourier solution onlye The lower boundary

condition cannot be applied at }/ =O since there is a singularity on the

‘ surface, so it is applied at some small value Y= Yo. The value of ){; was

varied until it was sufficiently small for the results to be insensitives
The upper boundary was also varied in a similar fashione

de Results for sinusoidal *ovocravhy

' We shall present the Reynolds stress perturbation results for flow over

the lower surface
e e (401)

In fact, it can easily be shown that if the wavelensgth is ./__ o Trather
than Q (TR théu the solutions are identical provided the amplitudes of the
Weorx solutioné are multiplied by er/IL s and the height scale is‘multipl:.i.ed
by L / 27 e That is, a shorter wavelength produces a larger amplitude with a
smaller vertical scalees In view cf this scale-independence of the solution,
and the lack of accurate cxi)erimental data for comparison, it was felt adecquate
to restrict the numerical solutions to the simple topography given by (4.1).
This is particularly suitable for the Fourier transform method of solution
which was dcscribed in the previous sections

In the solutions for the Reynolds stress variations presented below, the
boundary conditions m=re applied at >/=0'OI and Y=|00e These values were
determined by trial and error to be sufficient for the application of the
asymptotic conditions at these finite values not to a.f.‘fect the solutione
We only present the Reynolds stress perturbations below, since the leading

order velocity and pressure perturbations are simply the well=known potential

flow solutionse




Figure 2 illustrates the variations in the three components of the

turbulence energy in the Reynolds stress sublayere It should be noted that

this layer is thinner than the height of the surface variations, and lies

along the curved surfacee The trough of the wave lies in the centre of the
domaine The equilibrium dimensionless surface layer values of the

turbulence energy components are derived from the second-order closure model

as (& V5,000 )= (2-83,1°35,1:35) , A1 three perturbation
components show the anticipated singular variation near the surface; note

the logarithmic vertical scales The surface values are not identically in

phase with the topography due to the rotation of the Reynolds stress tensor

into the undisturbed Cartesian co=ordinate systeme However, there is a

general tendency for all three components to maximise in the neighbourhood of
the peak and minimise in the trough, as would be expected from equilibrium

layer argumentse The rapid disiortion variations are given by the asymptotic
behaviour at large x/ s and it will be scen that the streamwise component

is reduced over the peak, whilst the normal component is increased; these changes
have a similarmagnitude to the theoretical 'rapid-distortion results of Britter et al

1 . Betweenfhese two limits there is a dramatic variation of the turbulence
(1979

energy components. In general, there is a local maximum in the pertwdation

amplitude near \/==1 , and this maximum is roughly 180° out of phase with the
surface variation, The amplitude of this elevated maximum is slightly larger
than the surface layer amplitude. )
. uv
. The perturbation siress component éé%%a = -
Sislits

and shows the same general features as {he normal componentse As in figure 2,

T¥ 48 plotted in figure 3,

the minimum on the surface is slightly downstream of the peak of the topogcaphy
due to the rotation of the‘co-ordinaies. The elevated maximum in the

amplitude is also larger than the amplitude of the surface variatione

: The structure displayed in these results is qualitatively similar to the
numerical results of Taylor, Gent, and Keen (1976) for turbulent flow over a
wavy surfacee They only consider the surface layer flow,‘and apply a constant

stress condition on the upper boundary, therefore the quantitative values are

17,



not strictly comparablee Their results are also nonlinear, but they confimm
the very rapid variations of the Reynolds stress near the surface; this behaviour
was deduced in the previous section independen:tly of any closure assumptions
The application of a constant stress upper. boundary condition is not correct
since we have shown that there is a rapid distortion effect in the outer part
of the Reynolds stress sublayer, and this boundary condition probably has a
significant effect on their resultse

The magnitude of the perturbations in figures 2 and 3 is perhaps
surpricingly largee The topography (4.1) introduces a first-order dimension—
less velocity perturbation of magnitude unity at the surface, but 'I';he
relative changes in the Reynolds stress components at the elevated mascimum
is roughly three to four times larger than the relative change in velocitye
This is in broad agreement with Townsend ¥s (1972) calculations which give 2 ratio
between 2 and 5. These changes in Reynolds stress seem the most promising possibility for
comparison beiween experiment and theorys; nowever it should be remembered that these
variations are within a thin layer ad jacent to the surface, and are very difficult 1o
measure in wind=tunnel experimenis with artificially roughened surfacese

5e¢ Perturbation force on the lower bcundary

As mentioned in 31 o the change in total force on the lower boundary
js of some intereste This force js composed of the change in stresses on the
boundary which extend upstream and dovnstream of the obstacle, and also the
pressure force which acts locally on the humpe 'i‘he normal Reynolds stresses
are somewhat arbitrarily counted in the first category heree

The total force is given by !

B - (e PO AL (51)
where T is the stress tensor-, F is the pressure, " is the unit normal to
the surface, and the integration is calculated along the surfacee We first
calculate the drag contributiocn from +he Reynolds stress perturbationse The

leading contribution can be shovm to be : . :

By Le RS e

EH:S —o00
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from (3.11), and taking the expansion to second order, we find

-T_.Q\)('p O(\;: QUz _£/2+ U.Z»r QA 'Aﬁ}f”ul

Using the expressions for U, and [ 4 ie (2417), (2418),

o2
e = (20925 5% U5 -2An 5" el
53“:5 —po

3 S: (‘Quz("O\/ + C{,!Z_ §ie >c'('1

. O8Nyt
since j $hdx = O because f/, is the potential flow solutione For
—0r, o0 2 ‘.O" ’? :
potential flow f L(s Ax ’—J £ dlx s therefore the only contribution comes from
- -0
{ RNy o .
Uy o However, it is easy to show that ) (o (x, 0y = C, thus © 'R = (5

-5

s

and there is no contribution from the Reynolds stresses at +his ordere
The calculation of the pressure force is more difficult. We first note

that up to O( €¢£> , there are no terms influencing the pressure perturbation
which involvce the Reynolds siressese The Reynolds stresses first appear in the
oute» flow equations at C( f:7:>, whilst the _displacement vertical velocity
which provides the coupling between tne outer layer and the sublayer first
arises from equation (2620), and is O(ZS?Z> o All higher order vertical
velocities at the outer edge of the Reynnlds stress sublayer vary like >/ or
G )/ and simply match with the jnviscid flow in the outer layer with
undistvrbed profile {+¢ U, /8) . Since this flow, although rotational,

js still inviscid there is no resultant force on the lower boundarye ¥We have

e il 4y,

o 99X

therefore using (2.20), the only O\/{%> contribution as \/ — 68 comes

- from ihe stress gradient term, and if we denote this displacement contribution
by Vw g then

G- dn [ TPe0)-TE0N)

= U, + LA Uy Ah) ¥ (53)

using (3010) and (3+11)s

We emphasise that there are other toxms in the lower boundary condition

14

-




T T G

for the O(is—h> perturbation in the outer flow, but this is the only one which

T

produces a force, and we can consider \/3J in isolation since the equations '
are lineare : : ;
The O(i‘%)equations for the outer flow are

() 0
e L BRI 1., 9T OT: + Mz

Y I % >

% R e Y

B A —_ ’ul s o .4

X S\a, ox (S b‘a'l J (5 ) 1
¥ -0 —

d

) 2N
where (. ’ is the C/a’ ¢ ) Reynolds stress perturbation in the outer flow, and

N

NX)N}J represent the nonlinear interaction terms from the lower order
perturbation velocitiese The lower boundary condition on (5e4) is
Veiely + Vi oa 4= O (505)

where \/:m, represents the vertical velocity contribution from the inviscid

flow solutione

We define Yy=i,, +Usy similarly for V; P.- where |

57
a‘i‘;q-’; s DR” + A)X %
DK S;‘
NIV
Vo = e, My
% 3y (546)
au’mv + BV'_‘"V & O
dx 58
/
and iy \/Jw & Y= @ <
Then (.\ :
Vsl - & Oy . Omi . o7
rd 9% oOx >
a__\_/'_s‘o' i %E';Oe + a__q(z‘\ + 7.(1‘5 :
dx oY o oy (5.7)
AS‘Q + 5337" = O
ax D‘a :
and VS}( = \/ZM on Y= O

Now since the problem (5.6) contains just the elements of the inviscid
problem, there will be no force contribution from this; hence we only need to
solve the problem (5¢7)e

) ,
Now the Reynolds stress perturbations T‘;} are easily calculated from

0.

e



the rapid distortion limit of the second-order closure equations as
(T;f() = —Q L(' o bV‘,
1
Tzz\) o Cb(',‘ IOV'

(548)
T = —20 YAtA)v,
where a= -yY+ %Y//lu~4u>
bi= A &Y
C = 2%-p) A ~ iy At
Substituting (5e8) into (5¢7), we obtain
vzﬂ—g = Qg DA A a—zi('z (549)

3¢ ;
—COX

Define the Fourier transform (’I/c‘:,v> = r utz H§{> Adx 4 then
~ ~ - jeol ghicr: ¢
s /L\)! }(‘1\:> €. e
tbe ~ ) \ 7 4 o ~qol
therefore é._P;o? 52 @21:)- - —Q((’X\(*Z:.‘/*zz Jw Jeo § e d (5.10)
Sy i
Solving (510) with the lower boundary condition of (5¢7), it can be shown
that

v [

Zoo

(5011)

(P 11Ne)

;JMP;{ ' ¢a =

However, this is not quite the pressure force on the boundary, since i

is the pressure at the outer edge of the Reynolds stress sublayere We have to

calculate the O'_/ E%.,\ pressure change across the inner layere Now
’ “——'('3
—d + 3Taa _ Ny (5412)
dY Y

where /\/y is a complicated set of nonlinear termse I\ is quite straizhi-
forward to calculate /U)/ and to show that none of the terms produces an O/f)
change in 2’ across the la.yez;, but the algebra is rather tedious and is
therefore omitiede The result we require from (5.12) is that
(() ——-—(l)
APS'J (’I’O> = }Ds'}( ("I, O> o ’(93_ (’X,O> po /22 ('IIO>
where [¢y is the surface pressure responsible for the net forcee
y .
Thus P{u( = p;o((x,o> i (2»c>/4 + (Z'fL) £
O co 7 OO A
L R TR G G
—0o -0 ]
o [2 .
= & f A |
Hence the total pressure force, and also the total perturbation force on
{the boundary, is
1.



(5413)

S e

Note that the force due to the undisturbed boundary layer on a section of

length A is F; = E2LL3§§ s and since the slope of the obstacle is C?(€i>,
the perturbation force is O [(ﬂCﬂsfﬁ F; ] o Thus, although the perturbation
pressures are very much larger, most of the pressure field produces no net force,
The force result (5.13) does not really conflict with the result of Counihan

et al (1974) that there is z¢iro net force perturbation on the boundarye. Their result’
stems from a momentum integral calculation over a control volume whose size is of
too large a magnitude to obtain the result (5613)s The present result is cf the same
asymptotic magnitude as Tovmsend's (1972) calculation of the pressure force, although
there is some discrepzsncy in the numerical value. (5.13) implies that the average L
perturbation stress on & wavy surface would be ;:xiLLi g where X is the maximsgzts.
Although Townsend considers a wavelength ‘L\ much less than 8 g we shall show
in the next section that the modifications to the asymptotic theory to deal with are
trivial, In this case, Z can be da2fined as « /@»(LJES; Townsend computes the stress.
perturbation for ¢ between 0,05 and 0.033 and obtains results between ha*4% ana .

Aol S o Unfortunately the three values of ¢ . used do not give a mono=
tonic variation of the force, so it is impossible to say whether they are tending
towards a lower limite However, apart from the differences in the turtwlence models,
the next term in the expansion is likely to be of C{%fhg> and could be significant
at Tovmsend's values of &
.6e Discussion

The analysis we have presented is not strictly limited to topography with a

horizontal length scale of order és ; shorter humps are easily accommoduteds If *
we consider an obstacle of length Ale 53 g with n 2 O , we define an oufer

ns n\'\g
layer of thickness £ and a Reynolds stress sublayer of thickness £ o The

undisturbed profiles in the two layers will be
‘ u =1+n__€e‘£'.y E“&LQ})

a0, " i
and T S (xe)ebs | ¢ quL,(Y3 :
b i
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respectively, where U.ﬂ;i)«« 6151 /& and U/,f, (Y)N éxy/k. as 4, Y>> O .
Since the wall layer is transcendentally thin, these algebraic changes in outer layer
magnitudes have no effect on the lower boundary conditionse Thus, the equations will
be identical apart from the coefficient of the E@1£ perturbation, and the generation
of logarithmic terms in the outer layer expansion. The factor ntfni/a can be absorbed
into the definition of the free~stream velocity, which then leaves the equations
unchanged but uses the boundary layer velocity at height C(if) as the outer velocity
scale, This wide range of applicability could have been anticipated from the obser—
vation in §4 that the form of the solution is independent of the length scale, Clearl;
in any actual case with a finite value of © there will be some definite lower limit
on the size of the hump.

The situation is more complicated with longer humps, since the outer layer becomes
deeper than the boundary layer, and the boundary layer scale @st be retained as a
middle layer for the higher order perturbations. When the hump length is C’(z"‘§>>
or grea‘er, *hen the Reynolds stress sublayer merges into the main boundary layer and
the equations are dirferent since there is no ré.pid distortion region for the leynolds
stresses. On this length scale, the hump is much higher than the boundary layer, which
is a thin region on the surface, For length scales much longer than £ _(‘E s the
boundary layer is in local eq‘;zilibrium wiili the potential flow to first order everywhere
We shall .ot explore the structure of these long humps in detail, because the scale
already considered contains most of the essential features of the dynamicse. In all
cases, it seems that the slopes must be C>({> in order to provoke separation.

In view of the similarity oé the theoretical work of Jackson and Funt (1975), its
relationship to the peasent work will be examired. Jackson and Hunt consider onl&
two layers; an outer layer where the flow is inviscid as in the present work, and an
inner layer which bears some resemblance to our Reynolds stress sublayer, There is
some difficulty with the expansions, since they treat 5.(&4&5 and Z,[L./50> as
diffefent large parameters in some senses, where 1 and L are the scales of the inner
and outer layers respectively, However these quantities are both CD(E’? in the notatio

of this paper, and they are in fact required to be the same in order for their velocity
perturbations to matchs Given that N =O(£">, then AL S R0 ) e in
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Jackson and Hunt's theory, precisely as in the present work. However, a miiing
length closu}e is assumed for their inner layer, which has been shown to be ine
adequate in § 3 aboves The final result of Jackson and Hunt is that the inner
layer velocity perturbation is the potential flow solution at the surface plus a
contribution from the Reynolds stresses in the form of a Bessel function. But the
Bessel function contribution is relatively Cé/( //Q(5/$ﬁj) which is of the same
order as other neglected terms in the equation, hence the approximation is not
strictly rational, However,it is worth examnig  ther Selaton i the L&he of the
prestal asympelic ‘“zc:ﬁ.
One parameter of practical interest is the relative speed=up <1$‘=

/Z«LA;~ .fM{Jj)where /4«f7 3‘5?> is the velocity perturbation at a noint
distance 4 above the surface h(x) and wiyﬁis the upstream profile. If the
height of the hill.is small enougu for the nonlinear term &Q in (2,12) to be smaller
than the linear term ((z, ie /éé'g/ << £€is g0 that the obstacle is smaller than

Ozt '5\ , then the speed=up is easily'seen to ve As= U (1-2¢ebx /"3 in
the Reynolds stress sublayer, using (2.19). This is in agreement with Jackson and
Hunt's equation (3.235). By continuing tﬁe expansion for the surface stress (2.25), .
it can be shown that Z&s is unchanged in the wall=layer, as is Jackson and Hunt's ;
solution, Thus, although Jackson and Hunt's equations near the surface are not justi-
fied, their solution for the velocity perturbation is asymptotically correct throughout
layer. This is perhaps reassuring in view of the reported successes of the theory in
comparison with numerical resul&s, Deaves (1975),and atmospheric observations, Mason
and Sykes (1979).

Te Summary and conclusions

We have preccnted a rational asymptotic theory of turbulent beimdary layer flow
over a shallow hump, valid iﬁ the limit £‘<>C), where &€ 1is the ratio of the 3
friction velocity to the free stream speeds The flow structure consists of three
layers; an outer layer on the scale of the boundary layer, which is the same as the
length of the obstacle, a Reynolds stress sublayer, which is a thin layer deformed

along the éurface of the obstacle; and a very. thin wall layer adjacent to the surface.

The structure is far less interactive than the laminar triple-deck, because of the
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very small velocity gradients in the outer part of a turbulent boundary layer. The

leading order velocity perturbations are simply the linearised potential flow solutionse
The application of a second=order closure scheme to model the turbulent Reymolds
stresses provides a description of the tu;bulence quantities, and allows a match
between the equilibrium stresses near the surface and the rapidly-distorted stresses

in the outer flowe, One feature worthy of note is the very large gradients in Reynolds
stresses predicted near the surface, which implies that any numerical model of such
flows must resolve variations on the scale of the surface roughness length or the
viscous sublayer in the smooth wall case.

The rational expansion schemes also permits the calculation of the net force
perturbation on the obstacles This drag is of the order of the force produced by
the undisturbed flow on a section of the surface of the same iength as the obstacle
multiplied by the square of the slope of the humpe The largey leading order pressure
perturbations are governed by inviscid equations and produce no drag; this is in
accord with the observed result that small surface variations do not produce large
changes in net draz,

It is hoped that this derivation of a rational asymptotic theory has clarified
the dynamics of thé flow, in particular the role of the Reynolds stressess It should
also be possible to apply this type of analysis to further.problems involving
turvulent boundary layer flow over obstacles, eg wind generation of water waves, oOr

stably~stratified flow.
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Schematic illustration of flow geomeirye
Normal Reynolds stress perturbations in the Reynolds stress
sublayer for sinusoidal topographye Dashed contours denote a

negative perturbatione
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