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Summary

Semi-implict (SI) and semi-implicit semi-Lagrangian (SISL) methods have proved to be accurate
and computationally efficient for weather forecasting. On the basis of an examination of the
timescales and phase speeds of wave-like disturbances in the ocean, the number of iterations
required to solve the elliptic equations, and the timesteps used by present ocean models, it is
concluded that SI methods are likely to be 3-5 times more computationally efficient than present
methods for global models of 1/3° or better horizontal resolution and limited area models of 10
km or better resolution. For forecasting of mesoscale frontal activity with a resolution of 3 km or
better SISL methods are likely to be about 10 times more efficient than the methods presently
used. Non-hydrostatic equations can be used with SI and SISL methods without incurring
significant additional costs.

The pros and cons of various schemes for staggering the distribution of the model tracer and
velocity variables in the horizontal and vertical are reviewed. The C grid is marginally better than
the B grid for high resolution models and marginally worse for low resolution models. It is shown
that the Lorenz grid has an analogue of potential vorticity conservation. Some of the other
problems with the Lorenz grid identified by Arakawa & Moorthi (1988) may also be less severe
than they suggest. The velocity errors incurred over steep bathymetry in terrain following co-
ordinates are examined. An expression for the errors arising in Lin's (1997) scheme is derived and
compared with similar expressions for more well established schemes. An expression for the
torques on these co-ordinate cells is also derived. Finally the value of generalised horizontal
orthogonal coordinates is reviewed.
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1. Introduction

The questions addressed in this report are:

(a) how much could be gained by using semi-implicit (SI) or semi-implicit, semi-Lagrangian (SISL)
techniques in ocean modelling?

(b) what are the pros and cons of the various methods for staggering the model variables in the
horizontal and vertical and what use could be made of terrain following vertical coordinates and
generalised orthogonal horizontal coordinates?

Improvements of about a factor of lOin the efficiency of high-resolution weather forecast models
have been achieved, without significant detriment to their accuracy, by using semi-implicit semi-
Lagrangian (SISL) schemes. These schemes enable the timestep used in these models to be
determined by considerations of accuracy rather than by CFL type conditions for external or
internal gravity waves or advection by the wind. The timesteps of our present global ocean
models (at 1° and 1/3° resolutions) are limited by the CFL condition for internal gravity waves in
the regions where the effective longitudinal grid-spacing is smallest (at the edge of the region
where Fourier filtering is applied). Thus there are good reasons for asking how long a timestep
one could take with SI or SISL schemes without significant loss of accuracy, how much more
efficient these schemes would be than the present ones, and whether these schemes have other
benefits or disadvantages.

Section 2.1 provides a brief overview of SI and SISL schemes. Its aim is to provide reasonably
compact and simple explanations of the aspects of the schemes which are needed for the
discussion in the following sections. Section 2.2 summarises the propagation speeds of the main
waves in the atmosphere and ocean (see Table 1) and discusses the timesteps which could
probably be used in various applications without significant loss of accuracy. Section 2.3
discusses the factors which determine the computational cost of the solution of the elliptic
equations which arise in semi-implicit techniques. The range of eigenvalues of the elliptic
operators, which provides a good indication of the condition number of inversion of the elliptic
equations, is shown to depend on the phase speed of the waves and the dimensions of the
domain in quite a simple manner. The condition numbers for the barotropic flow in NWP and
ocean models are vastly different as are the condition numbers for the baroclinic and barotropic
flows in ocean models.

The level of diapycnal transport in the ocean is small enough to provide a significant challenge to
advection and integration schemes (in models with height or terrain following vertical
coordinates). The "implicit" diffusion inherent in some schemes is larger than estimates of the
actual transports. For climate integrations longer than 10 years in duration this is a major issue.
The cascade of enstrophy and energy to the grid scale and the resulting "implicit" diapycnal
transports are discussed in section 2.4. Finally in models with a horizontal resolution comparable
with the depth of the ocean (4 km) non-hydrostatic equations provide a more accurate
representation of the motion. Section 2.5 discusses the feasibility of using non-hydrostatic and
compressible equations for ocean modelling.

There is more or less general agreement that the C-grid is slightly better than the B-grid when the
model's grid resolves the Rossby radius. Section 3.1 examines the evidence for this by briefly
reviewing the dispersion relations for gravity, Rossby and Kelvin waves on various grids and
discussing the relative importance of stationary computational mode solutions and the accuracy
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of the calculations. Section 3.2 discusses the relative merits of 3 schemes for staggering variables
in the vertical. Particular attention is given to the representation of the normal modes and of
baroclinic instabilities and to the conservation properties of the grids. Section 3.3 discusses the
minimum requirements on the resolution of bathymetry needed by ocean models which use
terrain-following vertical co-ordinates, such as a <J co-ordinate. An error analysis is presented for
Lin's (1997) elegant formulation of the pressure force on the grid cells arising in generalised
vertical co-ordinates. The results are compared with similar analyses for the standard formulations

- of pressure gradients in <J co-ordinates. The torques arising on the grid-cells are also discussed.-
Section 3.4 briefly discusses how generalised orthogonal horizontal coordinate systems could be
exploited particularly in coastal modelling and global modelling.

Conclusions are presented in section 4. The main purpose of this report is to provide a factual
basis on which to base decisions about the direction of ocean model development at the Met.
Office. Some of the relationships and arguments laid out in this report seem not to have appeared
previously in the open literature. Although these are of interest in that they may be novel, they
have to be regarded as uncorroborated. As they need to be explained more fully than previously
published results they will inevitably have distorted the presentation. For all these reasons section
4.1 summarises these "new" results. Section 4.2 attempts to answer the two questions posed at
the start of the report emphasising areas of uncertainty where further work might help to clarify
the position.
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2. Time Integration schemes

2.1 Overview of semi-implicit and semi-Lagrangian schemes

The reader is referred to Staniforth & Cote (1991, 1999) for excellent introductions to this topic.
As is so often the case, the main concepts are illustrated here using the shallow water equations in
Cartesian geometry for a fluid of uniform resting depth H:

Du/Dt-jv=-g77x'
Dv/Dt+ju=-g77y,

D7]/ Dt+(H +7])(ux +Vy) =0

(1 )

(2)

(3)

Here u and v are the velocities in directions x and y, D/ Dt is the Lagrangian derivative, j is
the Coriolis parameter, g is gravitational acceleration and 77 is the free surface height. Subscripts
x and y indicate partial derivatives. The fastest waves in the system (1) - (3) have phase speed c

with c2 = gH.

(a) Explicit integration

A simple way to step forward (1) from time step 11 (when u , v and 7] are assumed known) to

time step n+ 1, time 6.t later, is to write Du I Dt as dU/dt+U.VU, to evaluate jv, -g77x and

uVu at timestep 11 and approximate dU / dt by a finite difference approximation centred at time-
step 11, involving u at steps 11+ 1 and n.-1. Using a superscript to denote the timestep at which
the variable is valid (e.g. U" is valid at step n), (1) becomes

n+l "-1) n n
(u - U = _(Un .\l)U" + [v - g7]x

26.t
(4)

A similar approach can be used in (2) and (3). With this approach the time-step must be chosen
so that external gravity waves do not cross a grid square within a leapfrog timestep (i.e.
e 26.t < Ax ).

(b) Semi-implicit integration

This restriction on the timestep is removed (as shown in (d) below) if =stt, in (1), -g7]y in (2) and

(ux+Vy) in (3) are calculated semi-implicitly, that is as averages ofthe values at timesteps n+1
and 11-1. All other terms (including Du / Dt) are calculated as in (a) above. Re-organising (1) -
(3) so that only the unknown values, namely U,,+l,V"+l and 7]"+1 appear on the left hand-side of
the equations one obtains:

u"+1+ g 617]:+1 = c;'
V"+l+ g 6.t77~+1= c;
7]"+1 + H 6.t(U;+l + V;+l) = c;'

(5)

(6)

(7)
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where the C" (for i = 1,2,3) are determined by values of u , v and 77 on timesteps nand 11.-1.

The horizontal divergence on step 11+1 in (7) can be expressed in terms of 7],,+1 by taking the
divergence of the horizontal momentum equations (5) and (6). This yields an elliptic Helmholtz-
type equation for 77"+1:

77"+1 - H I1t2 (77"+1 + 77"+1) = C"g . xx J'Y _ 4 (8)

where e; depends on e;',e~'and e;'. This equation, together with its boundary conditions, is

solved for 7],,+1 which is then substituted into (5) and (6) to enable U"+I and V"+I to be found.

Note that if only =sn, in (1) and -g77y in (2) are calculated semi-implicitly (i.e. (ux +Vy) in (3) is

calculated explicitly) a CFL condition restricting the timestep in terms of the external gravity wave
speed remains, though it becomes cl1t < Sx , which is less stringent than the original by a factor
of 2 (Brown & Campana 1978).

A similar semi-implicit scheme can be applied to the 3D hydrostatic primitive equations for u, v,e
and S (salinity). To explain which terms need to be calculated semi-implicitly in the equation for
conservation of potential temperature it is useful to write it in the form

DeIDt=et+uh.ve+weoz+w(e-eo\ =0 r (9)

where a reference profile eo (z) which is frequently used to facilitate the computations has been
introduced. This reference profile only depends on z (i.e. not on x, y or t). To obtain a scheme

in which the timestep is not restricted by the internal gravity wave speed the term weoz must be
calculated semi-implicitly. The full set of equations reduces to a 3D elliptic problem for a single
variable (see Ritchie et al. 1985 for the details in a specific case). Use of the reference profile makes
the problem separable for simple domains - such as that of the atmosphere in terrain following
coordinates. (Section 6.11 of Gill (1982) gives a clear explanation of the relationship between the
shallow water equations and internal modes in hydrostatic fluids.) This device of splitting a term
into a linear part which is calculated semi-implicitly (i.e. at timesteps 11-1 and 11.+1) and the
remainder which is calculated explicitly (i.e. at timestep n) is widely used and may be useful for
accurate calculation of the pressure gradients (see section 3.3(e) below).

(c) Semi-Lagrangian integration

In nearly all semi-Lagrangian schemes material derivatives, such as Du I Dt and De I Dt , for a
given model gridpoint with location x, are calculated by estimating the l.ocation at timesteps t"

and/or t,,_1 of a particle whose trajectory passes through (or ,"arrives" at) x at timestep t,,+I'

Consider first the case of a trajectory which is centred at time t" and extends between times t,,_1

and t,,+l' Figure 1, taken from Staniforth & Cote (1999), is a very helpful illustration of this

calculation for the 1D case. The displacement of the particle from x at time t" is defined to be

-a.; i.e. the particle is defined to be at point x - a. at time t". a. is determined iteratively as the
solution of the equation
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Figure 1: Schematic for semi-Lagrangian advection in lD, illustrating the actual (solid
curve) and approximate (dashed line) trajectories arriving at grid point xm at time til + f...t

and the definition of a", .

am+1 = Azu" (x - am) (10)

where am is the estimate of a on the mth iteration and evaluation of u(x-a) requires

interpolation of the fields known only at the gridpoints x to the estimated midpoints of the
trajectory at x-a. (10) provides a value of a which is 2nd order accurate (in M) for a trajectory
whose start point at time t,,_1 is given by x - 2a. Pudykiewicz and Staniforth (1984) show that a
sufficient condition for (10) to converge to a unique solution for 20 flow is that

f...t < [max(iuxi ,Iuyl ,ivxi ,lvyl)r1 • (11 )

This "deformation" Courant number restriction on the timestep is much less severe than cf...t < f...x

for well resolved flows. Using this trajectory one sees that %[u,,+I(x)-ull

-
1(x-2a)]/ Ar is a 2nd

order accurate estimate of Dul Dt which is valid at point x-a on time step til. To use this

estimate in (1) the other terms, namely fv and gl]x need to be calculated about the same point.

If the terms are calculated purely explicitly using their values at time t", the values must be
interpolated to the points x - a. For terms calculated semi-implicitly it is usually convenient and
more accurate to use the trajectory end-points. For example %[gl];+1 (x) + gl];-1 (x - 2a)] is a 2nd

order accurate estimate of g77x at the required point. Clearly the trajectory has been chosen so

that the terms on step n+ 1 are only used on the original grid. This means that after the re-
organisation of terms as in (5)-(7) the form of the equations is unaltered and semi-implicit
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solutions for the new timestep can be found as before. Thus with this choice, schemes which are
semi-implicit and semi-Lagrangian (SISL) arise naturally.

The quality of advection by semi-Lagrangian integration schemes is largely determined by the
accuracy of the interpolation of the fields. The errors in phase speeds and inherent damping in the
standard schemes are summarised by McCalpin (1988) following the calculations of McDonald
(1984) and discussed in section 2.4. A very wide range of advection schemes is potentially
available (Smolarkiewicz &: Rasch 1991, Toro 1997).

Up to this point only a 3 timestep framework has been discussed in which the calculations for the
fields at t +1 are centred at t . A 2 timestep framework in which the calculations are centred atn n

time %(tn +t,,+I) is now routinely used by many NWP centres. In this 2 timestep scheme all terms

in (1)-(3) are calculated using values at both t,,+1 and t". For these terms the "effective" timestep
for the 2 timestep scheme is half that in the 3 timestep scheme or, more precisely, for the same
time truncation errors twice as long a timestep can be used with the 2 timestep scheme as with
the 3 timestep scheme. To calculate the trajectory, an estimate of the velocity at time %(t" + t,,+I) is

calculated by linear extrapolation of the velocities at steps tIl and t,,-I' Other terms calculated

explicitly at step tn in the 3 step scheme can be similarly extrapolated. This will usually give a less
accurate approximation to the time integral of the term along the trajectory than obtained in the
3 step scheme. For example for a term R(t) (which does not depend on x) the error in the
integral for the 3 step scheme with timestep Ilt /2 is

J

1:=;',/12 3

E3 == 1:=-;',/12 {R(to +r)-R(to)}dr = RIl (to)llt /24 (12)

whilst the error in the 2 step scheme with timestep Ilt is

-J1:=;',112 3 1 11 3E2 = {R(to +r) -- RCto - Ilt / 2)+- RCto - 3!1t /2) }dr = -Rtf (to)M
1:=-;',/12 2 2 12

(13)

More importantly these extrapolated terms need careful treatment because they can make the
integration scheme unstable (Andrew Staniforth, personal communication). They can sometimes
be avoided by careful choice of model variables; for example explicit calculation of the terms
ntu, +Vy) in (3) can be avoided by re-writing (3) as:

CD / Dt){ InCH + Tf)} + Ux + V y = 0 . (14)

(d) Stability and phase speed of plane waves

SISL schemes in which all terms are calculated semi-implicitly (as in the 2 time-level scheme) have
dispersion relations for plane wave solutions which can be inferred quite simply from the
dispersion relations for the continuous equations. The stability of SISL schemes and their effect on
the phase speed of waves follow directly from these dispersion relations. As an example consider
the solution of (1) - (3), consisting of a plane wave superimposed on a zonal flow U which is
independent of x, y and t. The plane wave is of the form
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(u, V, 17) = Re{ (u, v, 17) exp itkx + ly - (JJt)} (15)

in which the variables with caret superscripts are constant amplitudes (independent of x, y and t)
and l2 = -1. The total time derivative Du I Dt for the plane wave when the 3 time-level scheme is
used is:

(U"+1(X,y)-u"-1(x-2VL'.t,y)] "( UA )-lSin[«(JJ-kU)L'.t]
_::_____;_---=-'----___;_-----=-:...::. = U X - Dt, Y ---=-_;___-'--_:_

2L'.t L'.t
(16)

Similarly the semi-implicit evaluation of the Coriolis term fv is:

V2[fv"+1 (x, y) + fv"-1 (x - 2U L'.t, y)] = fv" (x -U M, y) cos[«(JJ- kU)L'.t] (17)

The ratio Du I Dt/(fv) for the continuous equations is-l((JJ-kU)u/(fv) whilst for the SISL

scheme it is-ltan[((JJ-kU)L'.t] u/(fvL'.t). The same ratio of terms holds wherever «(JJ-kU)
appears for the continuous case in equations (1) - (3). Thus the dispersion relation for the SISL
scheme can be obtained from that for the continuous case by replacing occurrences of «(JJ- kU)
by tan[«(JJ - kU)L'.t]/(L'.t). Similarly the dispersion relation for the explicit scheme outlined in (a)

can be obtained for the case U = 0 by replacing occurrences of (JJ by sin[mM]j(L'.t).

The dispersion relation for the continuous case on an 1-plane is

(m - kU)2 = 12 + (kC)2 (18)

Thus the explicit scheme is unstable, for the case with 1=U =U, when kc/s: > 1 as then
sin«(JJL'.t) > 1. The SISL scheme is stable for all values of [ Jc,c and U because the inverse of the
tangent function provides real values for «(JJ- kU)L'.t between -Tr 12 and Tr I 2 whatever the

value of (12 + (kC)2)M2. Waves of short wavelength are slowed down sufficiently by the SISL
scheme to avoid breaking the CFL condition. Notice that the advection of the waves by the mean
flow U is independent of wavelength. Thus when timesteps longer than the CFL condition are
taken, the short waves can propagate in the model more slowly than they are advected by the
mean flow when the opposite is true in reality. This can lead to false topographic resonances and
the generation of noise. Rivest et al. (1994) and Ritchie & Tanguay (1996) offer techniques for
avoiding excessive noise.

(e) Accuracy

Robert (1981) provides a simple comparison of the magnitudes of time and spatial truncation
errors for the advection equation

dF I dt + cdF I dx = 0 (19)

applied to a wave of form
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F = Acosk(x - ct) (20)

Assuming that the primary errors are in the phase of the wave and using centred 2nd order
differencing in both time and space he finds that the root-mean-square error, Enns' intially grows

linearly with time t and is given by

12 3 2 2s.; =12k cA(& -cf..t )t (21)

Writing

Co =&j f..t, (22)

the ratio of the time truncation error and the spatial truncation error is

E,7nS(f..t)

Enns (Ax)

c2

2
Co

(23)

It is computationally inefficient to use a timestep with which the ratio in (23) is very small. A ratio
approaching 1 would give the most computationally efficient scheme. Ratios of 1/400 were
prevalent in atmospheric models before the introduction of semi-implicit methods and are typical
of present high resolution mid-latitude FOAM integrations (see section 2.2).

Clearly the above calculation is only a guide to the relative importance of spatial and time
truncation errors for the quite complex waves appearing in atmosphere and ocean models. It is
worth making two points relevant to its interpretation and use. Firstly (23) may not immediately
convey the potential improvement of SISL schemes. Explicit schemes are limited by the worst case
gridcells - where the grid spacing is shortest and/or the phase speeds largest. The waves in the
regions which limit the timestep globally are generally of very little geophysical consequence.
With SISL schemes there is the potential to choose the timestep suitable for the motions of interest
in the region of greatest interest. Secondly a similar calculation to Robert's can be made for the
propagation of Kelvin waves using (1) and (3) with v = O. (23) gives the error ratio for a two
timestep semi-implicit scheme whilst for a 3 timestep scheme E(6t) is 4 times larger.

2.2 Ocean and atmosphere timescales

Table 1 provides a summary of the phase speeds of the most important fast wave motions
relevant to atmosphere and ocean models used for climate and "weather" prediction. These
values are key to the discussion of this section. Most of them are easily .found in Gill (1982; G
hereafter in this sub-section).

The typical values for sound speeds differ greatly (see G appendix table A3.1 for water and pp
172-3 for air); the speed of sound in the atmosphere is similar to that of the external gravity waves
whereas in the ocean it is more than 7 times faster. The external gravity wave speed can be
estimated using c2 = gH and 10 km for the equivalent depth of the atmosphere and 4 km for the
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deep ocean. On the continental shelf, the water is no more than 200 m deep and the external
gravity wave speed is little more than 40 m/s.

Table 1: Phase speeds of various types of motions

Type of motion Atmosphere (m/s) Ocean (m/s)
Sound waves 300 1500
External gravity waves 300 200; 40 on shelf
First internal qravity wave 40 3
Max. wind/current speed 100 105

The phase speed of the first internal gravity wave in the ocean is a key value which is discussed on
numerous occasions in G (e.g. on pages 122, 161,437). Table 2 of Leslie &: Purser (1992) gives
equivalent depths for the internal modes in the atmosphere. The wind or current speeds in Table
1 are intended to be maximum values. That for the atmosphere is based on the winter-time jet
level wind and is a value quoted, for example, by Robert (1981). The Gulf Stream often exceeds 1
m/s so a maximum current speed of 105 m/s is perhaps a useful value for stability calculations.
Tidal currents on the shelf also frequently exceed 1 m/s.

Note that the maximum wind speeds in the atmosphere are about 2.5 times faster than the
internal gravity waves and 3 times slower than the external gravity waves. In the ocean it is the
internal gravity waves which have the intermediate velocities. They are about 60 times slower
than the external gravity waves and twice as fast as the fastest currents.

For NWP the speed of the weather systems is typically 15-20 m/s. The ratio of the spatial and
temporal truncation errors for systems travelling at this speed is approximately given by using
C = 20 m/s in (23). Integration schemes in which the external gravity waves and advection are
calculated explicitly (and sound waves are excluded) must limit ilt so that Co = 300+ 100 m/s.
Thus the time truncation error is typically 400 times (or more) smaller than the spatial truncation
error. If the external gravity waves are calculated implicitly, M can be increased until Co = 100
m/s. The ratio in (23) is still small (typically 1/25). Calculating the gravity waves and advection
semi-implicitly, as in a SISL scheme one can reduce Co further to a value of about 40 m/s without

significantly degrading the quality of the simulation.

In practice, of course, other processes (e.g. vertical diffusion, diurnal variations or radiative
transfers) can limit the time step in an NWP model. In models with coarse resolution (e.g. 3.5°x
4.75°) , such as many coupled climate models, these other processes have limited the timestep.
On a grid with (uniform) 200 km resolution SISL enables a timestep of about 90-120 minutes.
SISL comes into its own for NWP in models of high resolution (10-50 km resolution).

In existing ocean models, sound waves are excluded and the barotropic flow is handled
separately. This is because (see table 1) the external gravity waves move more than 60 times as
fast as the internal gravity waves and other waves. Important Kelvin waves do travel along the
equator (and the shelf break) at the speed of the first internal mode (3 m/s). Thus in seasonal
forecasting and shelf-break modelling, and probably coupled climate models, the above
arguments suggest that a value of c smaller than 3 m/s may not be particularly desirable.
However an ocean model's resolution is not usually improved in order to reduce the spatial
truncation error along the equator. A wave with a quarter wavelength only 4 times the grid
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spacing has only a 1% phase speed error due to spatial truncation errors and Ng &: Hsieh (1994)
neglect this source of error completely when discussing the numerical discretisation of Kelvin
waves. Other aspects of the simulation will usually limit its accuracy. So even if Kelvin waves
propagating along the equator are of primary interest it may not be necessary to limit the ratio in
(23) to be strictly less than 1.

For a model with 100 km resolution, demanding a ratio of 1,4 in (23) gives a timestep of 4 hours.
There are 2 reasons why this value is larger than the 1 hour currently employed in both the TOGA
and HadCM3 models which both have 100 km east-west grid spacing at the equator and whose
timesteps are limited by the internal gravity wave CFL condition. Firstly these models use a
leapfrog timestep in which the timestep is effectively double that in a two-step forward method.
Secondly the models do not have uniform grid resolution. In the TOGA model the north-south
grid resolution is deliberately chosen to be enhanced by a factor of 3 at the equator. In the global
HadCM3 model the east-west grid-spacing near the edge of the Fourier chopping region (at
75°N) is 4 times shorter than that at the equator. As discussed in section 3.3, global orthogonal
coordinates can be constructed with a similar ratio of maximum to minimum grid spacing at sea
points but a smaller ratio is somewhat difficult to achieve.

It is not clear that these ocean models would be stable with a 4 hour timestep. A diffusive
instability limited the timestep in the 3.5° by 4.75° ocean model. Appendix A suggests however
that this instability, which was first analysed by Killworth (1987), is actually specific to a particular
choice of discretisation of the barotropic streamfunction so should not be as restrictive as it once
was. Though FOAM attempts to resolve the diurnal cycle, neither TOGA nor HadCM3 do. Of
course, a timestep of 4 hours would be completely inappropriate if the diurnal cycle was
important to the simulation.

For a 1/3° global climate model a semi-implicit scheme could be expected to allow an increase in
the timestep of about a factor of 4 without compromising the accuracy of the calculation. If a 2
timestep approach could be used without compromising the quality of the simulation (see
section 2.4) the timestep could probably be doubled again.

In coastal ocean models the barotropic tides dominate the circulation. In the deep ocean these
can travel at 200 mls whilst in shallow water they tend to travel at 30-40 m/s. For the shallow
water the phase of the tides is of crucial importance so one cannot use timesteps which would
retard the barotropic wave speed. In models with relatively little deep water it might be possible
to use a SI method with much longer timesteps than CFL would give in the deep water without
significantly retarding the long wavelength deep water tidal fronts.

For deep ocean forecasting at mid-latitudes the phase speed of mesoscale meanders and eddies is
significantly less than the speed of the currents. The present 11 km FOAM model is able to use a
20-30 minute timestep. Requiring a ratio of 1,4 in (23) for a phase speed c of 30 crn/s gives a
timestep of about 4 hours. It thus appears possible that for very high resolution deep water FOAM
(e.g. 4 km resolution) SISL could enable timesteps about 8-10 times larger than at present.

2.3 Efficiency of solution of elliptic equations

As explained in the previous sections, semi-implicit schemes are able to take longer time steps
than explicit schemes. On each time-step the main task of a semi-implicit scheme is to solve an
elliptic problem for a single variable. An explicit scheme traces the full time history of the
evolution of the variable over this timestep whereas a semi-implicit scheme only needs to find the
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final values of the variable. 50 it should be possible to find cheaper solutions to the eilliptic
problem than a timestepping solution (Morton & Mayers 1994, p 218). This section discusses the
elliptic problems which arise in semi-implicit schemes and the rate of convergence of iterative
methods for their solution.

Table 8.1 of Gill (1982) provides a summary of the equations and dispersion relations for linear
wave motions obtained using combinations of approximations (e.g. hydrostatic, or rapidly
rotating) appropriate for various scales of motion in the atmosphere and ocean. The elliptic
equations which need to be solved for a given 51 or 515L scheme can be "read off" from this table.
The process described in section 2.1 (b) of moving the terms calculated at the new timestep to
the I.h.s. of the equations (see (5)-(7)) results in a set of equations identical in form to the
linearised equations with partial derivatives for any variable (e.g. au / at) replaced by the variable
divided by f:..t (e.g. u / f:..t). Only terms calculated semi-implicitly are included in the elliptic
operator. Thus, for example, the equations for a rotating fluid in table 8.1 are relevant to the
elliptic operator only if the Coriolis terms are calculated semi-implicitly.

Thus elliptic equations for the vertical velocity are easily found. For the hydrostatic case with the
Coriolis terms calculated semi-implicitly

1 2 2
(f:..t2 + f )wzz +N (wxx + w)Y) = 0 (24)

For a flat bottom ocean (or if terrain following coordinates are used) good approximations to the
boundary conditions for the internal modes are HI = 0 at the top and bottom of the ocean.

In NWP the standard approach to solving the 3D elliptic problem is to use a vertical mode
decomposition to obtain a set of 2D Helmholtz problems. In a spectral model the 2D problems
are solved directly (e.g. Ritchie et al. 1995). For semi-implicit schemes with only moderately long
timesteps it is probably only necessary in a spectral model to calculate the first few vertical modes
implicitly (Burridge 1975, Purser 1999b). More vertical modes need to be calculated implicitly
when 515L methods and longer timesteps are used. For the ocean geometry it is not at all clear
how to perform a similar decomposition without making undesirable approximations such as
confining the bathymetry to the lowest model layer (as in Hurlburt and Thompson 1980) so a full
3D iterative solution for the internal modes appears to be necessary.

The rate of convergence of solutions to (8) and (24) for iterative methods of solution, such as
successive overlaxation (50R) and pre-conditioned conjugate gradient, depends largely on the
range of the eigenvalues of the elliptic operators. For 50R the spectral radius of the eigenvalues
determines the rate of convergence. For symmetric positive definite matrices the rate of
convergence of the conjugate gradient solver can be bounded by the ratio K = IAI /IAI. of the

max nun

largest to the smallest eigenvalues (Golub & van Loan 1986 chapter 10 and p 530). The rate of
convergence of the preconditioned conjugate gradient solver depends on the same ratio of the
eigenvalues of the product of the matrices representing the preconditioner and elliptic operator.

Useful approximations to the eigenvalues are easily found by modelling the problems to be
solved as rectangular boxes in which case simple Fourier series expansions of the variables are
possible and the eigenfunctions are simple sinusoidal functions. For simplicity let the grid spacing
be uniform and Ax = f:..y, N2 be independent of depth, I be the number of model columns, J
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the number of rows, Q the number of levels and i, j, q be the column, row and level indices. (Q
and q are used here to avoid conflicts with the use of k as a wavenumber, N as Brunt-Vaisala
frequency and p as pressure.) To illustrate the various possibilities, the domain is taken to be

periodic in x and to have sidewalls to the south at y = 0 and to the north.

For the external gravity waves the boundary conditions can be reduced to Neumann conditions
(on the normal derivative of 17;1]" = 0). Assuming that the usual 5 point formula is used for the
horizontal Laplacian, the eigenfunctions of (8) are then

cos
1](i,j;k,l) = . k(2iTrI I)cosl(jTrI J)

SIll
(25)

with eigenvalues

1 .6.x
A-(k,l) = -2(1-cos Zkr: 1 I + l-coslTr 1J) __ (_)2

gH M
(26)

The eigenvalues with the largest magnitudes are obtained when k and I take their smallest values
(k = 0 and I = 1 or k =1 and l = 0) whilst those with the smallest are obtained for k = 112 -I,
l=J-l:

lA-I - 1.6.x 2
max - 4+ - -

gH I'1t2 '
(27)

lA-I. = 2[(TrII)2+(nIJ)2]+_1_ . .6.x2
2

nun gH I'1t
(28)

The Poisson equation '\121] = 0 is ill-conditioned for large domains because the ratio of maximum

to minimum eigenvalues is [(n / 1)2 + (n 1J)2rl . There is a limit on this ratio for the implicit free
surface. This is given by the square of the number of grid points travelled at the external gravity
wave speed in one timestep. This point was clearly made by Dukowicz & Smith (1994) who
showed that the rate of convergence for a semi-implicit free surface solver is much better than
that for a completely non-divergent barotropic streamfunction. As noted in section 2.2 the
timestep in NWP models which use SISL methods is chosen so that Co = .6.x 1 I'1t = 40 ms-l and the
ratio of eigenvalues is typically about 100. In present ocean models the timestep is limited by the
internal gravity wave speed (co = 3 ms-l) and the ratio of eigenvalues is (200/3)2> 4000. In
global ocean models with a regular latitude-longitude grid which have :a polar island and use
Fourier chopping an external gravity wave can travel a very large number of grid points round the
pole in a single timestep. The rate of convergence of the free surface in such models does appear
to be very slow near the pole (Malcolm Roberts personal communication). Guyon et al. (1999)
appear to obtain significant improvements in the rate of convergence of the barotropic solver (on
a relatively uniform grid with 2D domain decomposition) using a dual Schurr complement
method.
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The eigenfunctions for the internal modes are

cos
w(i,j,q;k,l,m.)= . k(2iJrIJ)sinl(jJrIJ)sinm(qJrIQ) I

S1l1
(29)

and the eigenvalues of (24) when f = 0 are

fu 2 2
IL(k,l, 111.) = -2(1- cos Zkr: I I + I+cos IJr I J) --2 ? (1- cos mn I Q) (30)

I1t (N&)

The ranges of k, I and m determine the maximum and minimum eigenvalues. m = 0 gives a zero
eigenfunction so 1::;ms; Q -1. A non-zero vertical velocity completely independent of i and j is
not a solution so at least one of k and lis non-zero whilst k::;U2-1 and [::;J-1. The
maximum and minimum magnitudes of the eigenvalues are approximately:

fu 2 2Q2
IILI . = 4+ At2 (NH)2max cs:

(31 )

2 2 2/1.;x; Jr
IIL!mjll = 2[(Jr II/ + (Jr I J)2] + I1t2 (NH)2 (32)

For a timestep which is only a few times larger than that for the CFL condition for internal gravity
waves the second factor will dominate in both eigenvalues and the ratio of the maximum to the
minimum eigenvalues will be approximately (Q IJr)2.

Marshall et al. (1997) suggest that this internal mode problem be preconditioned by the inverse
of the vertical component of the 3D Laplacian. The eigenvalues of the product of the
preconditioner and the elliptic operator are:

IL(k,l,m) =1+ (l-cos2kJrI I +1-coslJrI J)
&2 1
I1t2 (N&)2 (I-cos mit t Q)

(33)

The maximum and minimum magnitudes of the eigenvalues are then:

IILI . = 1+ L'lt 2 (NH)2
max 2-& Jr2

(34)

IILI =1 .min
(35)

50 the ratio of maximum to minimum eigenvalues is (C I CO)2 where Co is defined by (22). When

c I Co = 4 (which is a likely value for climate or seasonal modelling) the resulting condition
number is 16 which is rather modest. Good solutions should be obtained within 5 iterations. Of
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course other pre-conditioners, including ones using multi-grid methods (Smith et al. 1996), are
possible but this one is cheap to apply, easy to code and appears to be adequate. This conclusion
needs to be checked using the strongly variable vertical grid spacing typical of ocean models.

2.4 Grid scale closure

As outlined in the introduction, this section discusses the diapycnal transports implicit in upwind
advection schemes and th-e grid scale closure of the cascade of enstrophy and energy to small
scales. Subsection (a) provides some motivation for the discussion and (b) derives some
relationships between the diapycnal transport of density and the dissipation of potential energy
by biharmonic diffusion. Subsection (c) discusses the results of Roberts & Marshall (1998) in the
light of these results. Subsection (d) summarises well-known formulae for the dissipation inherent
in semi-Lagrangian and upwind advection schemes (such as QUICKEST) and (e) uses results from
(b) and (d) to estimate the ratio of the diapycnal transport by horizontal and vertical advection as
performed by these schemes, focussing particularly on models of 1° grid spacing. Finally
subsection (f) draws attention to the advantages for grid-scale closure of the variational
formulations of isopycnal diffusion and the Gent-McWilliams scheme suggested by Griffies et al.
(1998) and Griffies (1998).

(a) Diapycnal transport implied by horizontal biharmonic diffusion

Roberts & Marshall (1998) (hereafter RM) show that horizontal diffusion of tracers can produce a
larger diapycnal flux of tracer down through the thermocline than the upward diapycnal
transport associated with the upwelling "branch" of the thermohaline circulation which involves
vertical velocities as small as 4 m yr'. They diagnose this from integrations using models of
varying resolution in a simple box shaped mid-latitude domain which are driven by wind stresses
at the surface with no heat flux across the surface. After 10 years of integration the model's
density has increased considerably in the top 200 metres and the density has decreased lower
down corresponding to a lowering of the thermocline by 50 metres (i.e. 5 m yr'). In particular
they find that this is true not only for ocean models with a horizontal grid spacing of 100 km but
also for models with grid spacings down to 10 km. They suggest that a scale selective form of the
Gent & McWilliams (1990) scheme is needed to prevent diapycnal fluxes of tracer "even" in eddy-
resolving ocean models.

The level of the diapycnal flux of tracers in nature is not clear. Garrett et al. (1993) (p 292) note
that the effective diapycnal diffusivity K inferred from the inflow into isolated abyssal basins is
several times 10-4 rrr's' whilst more direct measurements in the thermocline by Gregg et al.
(1996) suggest that the value is typically 10-5 m2s-1 though it reaches 10-4 m2s-1 in the Florida
Straits and has been inferrred to be 150 10-4 m2s-1 below 4000 m in the Romanche fracture zone
(Polzin et al. 1996). There are two main sources of energy which generate mixing at small scales:
firstly instabilities of the gyre-scale circulation which generate an enstrophy cascade to small
scales; secondly internal gravity waves. The complex (and confusing) interactions between these
motions which can lead to mixing at small scales (e.g. by wave breaking) are aptly captured by
figure 1 of Thorpe (1988).

In addition to the physically realistic fluxes of tracer variance to the grid scale, numerical models
contain artificial fluxes arising from the numerics of the advection scheme. Advection by a
constant velocity (i.e. independent of x and y) should leave the shape of the advected tracer
unchanged but in practice the phase speed of propagation depends on the wavenumber and
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tracer variance is transported towards the grid scale. As Thuburn (1995 section 3a) points out
particularly clearly an advection scheme must dissipate grid scale variations or give spurious
results at the grid scale.

As background to the following arguments, it is perhaps worth summarISing briefly the main
elements of the enstrophy cascade. Quasi-geostrophic flows with no surface temperature
gradients conserve both energy and enstrophy. Most of the energy is transferred to larger scales
whilst enstrophy is mainly fluxed to small scales. For a statistically steady state in an inertial range
of wavenumbers where dissipation is negligible, the flux of enstrophy per unit mass from one
lengthscale (wavenumber) to another, e, must be independent of the wavenumber (for
enstrophy would otherwise build up or decay at particular scales). The total energy per unit mass,
E, and the energy spectrum per unit mass, E(K) , are defined by:

E = f p(u2 + v
2
)dVf pdV = f E(K)dK . (36)

If E(K) is solely controlled by the enstrophy cascade, it must depend solely on e and K. The
dimensions of E(K) are rrr' S-2 whilst those of £ are S-3. So

E(K) = yc2/3K-3 (37)

where yis a non-dimensional constant. This distribution of energy holds approximately in the
quasi-geostrophic regime at the long wavelength ends of the atmosphere synoptic scale (Charney
1971) and the ocean mesoscale. In this regime the available potential energy and kinetic energy
are approximately equipartitioned. At smaller scales, quasi-geostrophy does not constrain the
stretching of vortex tubes so effectively, energy cascades to small scales and the energy spectrum
does not fall so steeply with the wavenumber.

The main point to be taken from the previous paragraph is that vorticity and to a lesser extent
kinetic and potential energy are inevitably fluxed to the smallest scales in numerical atmosphere
and ocean models. The grid scale closure of this flux cannot be circumvented. Though there are
various approaches to the problem (e.g. Smagorinsky 1993 and Mason 1994) one can expect
some aspects of the dissipation to be controlled by the enstrophy cascade and to be rather
insensitive to the details of the numerical schemes used.

(b) Diapycnal transport of density and dissipation of APEby horizontal diffusion

Building on the arguments of RM it is possible to make an estimate of the diapycnal diffusion
arising from horizontal diffusion of tracers. The horizontal fluxes of potential temperature and
salinity due to biharmonic horizontal diffusion are:

F{~}-\7"A,\7;(~J ' (38)
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where Ae is the coefficient for biharmonic horizontal diffusion of the tracer. Assuming that the
density is linearly related to the potential temperature and salinity,

p =a(e-eo)+ f3(S -So), (39)

and ignoring variations in a and f3 one obtains:

Fh(p)=-Vh(AeV;,p) . (40)

The slope of the isopycnal surface is - V"p / p, so the component of the horizontal flux of density

across the isopycnal surface, Fd, is'

Fd(p)= VhP·Vh(AeV;'p)
Pz

Neglecting horizontal variations in p, (as in q-g theory) and integrating by parts with insulating
'"'-

boundary conditions (n.Vp = 0) one obtains

(41 )

JFd(P)dV=J-
AeCV;'p)2dV.

Pz
(42)

This flux (times g) is equal to a good approximation to the rate of decrease of available potential

energy ( APE) by the horizontal diffusion. From (6.10.11) of Pedlosky (1982),

a 2

APE = J2...LdV
2 p ,

(43)

The rate of change of APE due to horizontal diffusion of density, Ad' is then approximately

Ad = J _LpV;'CAeV;,p) dV = J -LAeCV;,p)2 dV .
Pz Pz

(44)

On the other hand, biharmonic horizontal diffusion of momentum with a viscosity coefficient A"
implies dissipation of vorticity at the rate

a~ / at = -V;, (AuV~~) . (45)

So the dissipation of enstrophy, e , by biharmonic horizontal viscosity is approximately

e = 1/2 J (a~ / at)2dV = - J~ V~CAuV~~) dV = - J (A" V;~)2 dV (46)
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(where integration by parts has been performed twice and boundary conditions have been
assumed negligible).

(c) Diapycnal transports in models resolving the enstrophy cascade

The dissipation of potential energy and enstrophy can be compared in various ways. Following
the enstrophy and energy cascade arguments, away from the boundary layers in the enstrophy
cascade regime one expects the rate of transfer of enstrophy to small scales to be almost
independent of wavenumber whereas the rate of transfer of energy to small scales should scale as
k-2• Thus the diapycnal transport to the grid scale should decrease rapidly as the grid resolution
is improved.

RM discuss the diapycnal transports in the western boundary current regions. Their arguments
suggest that the contribution to the domain average diapycnal transport should decrease with
the grid spacing, particularly once the resolution is high enough for the current to be inertial near
the boundary.

Thus RM's finding that the diapycnal transport by the horizontal diffusion varies little with the
horizontal grid spacing is not easily understood in terms of these scaling arguments. It is possible
that the scaling arguments can only be applied to models with horizontal resolution which
resolve the energy cascade more fully than those used by RM. It would be worth using (41) to
find where the diapycnal transports are largest in their experiments. Together with the scaling
with resolution of the isopycnal slopes and other variables in (41), this would illuminate RM's
results.

(d) Diffusion inherent in Semi-Lagrangian and upwind flux transport schemes

The diffusion implicit (or inherent) in semi-Lagrangian schemes is dependent on the order of
accuracy of the interpolation of the tracers to the upwind trajectory points. McCalpin (1988),
following the analysis of McDonald (1984), provides a number of useful forms in terms of the
amplification factor, A, of a wave of the form:

e(x,t) = e(ifix,n!:".t) = Re{A" expl kifix} (47)

For long waves the magnitudes of the amplification factors for first order (A]) to 4th order (A4)
integration schemes are:

IAII = 1-_!_a(kfix)2
2

IA31 = 1- 1~a(kfix)4

IA21 = 1-_!_a2(kfix)4
8

IA41 = 1__ 1 a2 (kfix) 6

36

(48)

where a is the residual Courant number (which equals the Courant number U!:".t / fix when the
latter is less than 1). 2nd and 3,d order semi-Lagrangian advection have an inherent biharmonic
viscosity proportional to the advection velocity for 3

rd order advection and to its square for 2nd

order advection. For grid scale waves (wavelength = 2 Lix) and small values of a
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IAl12 = 1-2a ,

1~12 =l-~a ,

IA212 =1-4a2

IAl = 1- 13
6
a'

(49)

These formulae show that for small Courant number the dissipation of the odd order schemes is
much greater than that of the even order schemes and that the dissipation at the grid scale of the
2nd and 4th order schemes is rather similar. McCalpin (1988) figures 1-4 show that at the gridscale
for Courant numbers larger than 0.1 the dissipation rate is high for all orders of interpolation
(even and odd).

The upwind 3rd order flux transport schemes developed by Leonard et al. (1993, 1996) have
similar dissipation rates to the 3rd order semi-Lagrangian scheme. For 10 advection of e with
small Courant number in the absence of flux correction these schemes are of the form:

e= II F" "F"i = Ui+Y2 i+Y, - Ui-y, i-Yl

F;:Y2=Y2(e:~1+e/')-(1-C;~Y22)(e::+1-2e:~ +et_I)/6 ,
II _ II A "I Ad' I _. u (1 II II n I)ci+Y2 - ui+'hLiA ot an l - l + /2 - Ui+Y1 Ui+Y1

(SO)

In the above F;+% represents the flux of e across the cell face between i and i+1, c is a non-

dimensionalised velocity and i' is the index (i or i +1) of the cell upwind of the interface at
i+Y2 . ATaylor expansion of this scheme (as in Webb et al. 1998) shows that to leading order the
effect of the scheme on tracers is:

&3
et = -uex -lul-e4x •

12
(Sl )

The resulting amplitude factor for long waves (for which the Taylor expansion is valid) agrees
with (48) for the 3rd order semi-Lagrangian scheme.

(e) Diapycnal transports of heat by semi-lagrangian and upwind flux transport
schemes

A simple estimate of the diapycnal transport by SL and upwind schemes can be made using (Sl)
and arguments similar to those used in (38)-(42) above. For completeness estimates will be given
for both the third order accurate scheme (Sl) and the first order upwind scheme whose error for
10 advection is: .

et = -uex +Y2fu:lulexx "" -uex +d I dX{y2fu:luleJ (S2)

Here the last term in (S2) has been expressed in a flux-like form, similar to (SO), neglecting any
terms involving spatial derivatives of u . Following (38)-(42), and treating the advection simply as
three 10 terms, approximate expressions for the diapycnal transports of density for the first and
third order schemes can be derived; the diapycnal components of the horizontal fluxes are similar
in form to those for harmonic and biharmonic horizontal diffusion respectively. The diapycnal
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transports of density by the vertical velocity, F.", and the horizontal velocities F" and their ratios
are:

Fw = Y2lwlllzpz F" = Y2lul pSxp,
Pz

t; I F" =AG1 & p,
Px lui Ax Px

(53)

for 1st order upwind advection and

1 I I 3F =-w&Pzzzw 12
1 P ,6._x3F = -lui xx Pxx

/I 12 Pz

t; I F" = _&_G1&3 e:
r: lui Ax3 Pxx

(54)

for 3rd order upwind advection. Furthermore the diapycnal vertical heat flux by the third order
scheme is given by

u; =pcplwl&3ezzz/12 (55)

Useful order of magnitude estimates of the ratio Fw I F" in (53) & (54) and the heat flux in (55) for
a given model resolution can be made using representative values for the velocities and scales of
motion. For our present models with 20 vertical levels and 10 horizontal resolution, Ax = 105 m,
Az ~ 200 m in the thermocline, the gyre-scale current has u ~ 5 cm s' and a horizontal length-
scale (away from the boundary currents), L ~ 20Ax, whilst w ~ 5 .10-4 cm s' and the vertical
length-scale, H ~ 5& . These values give F.v I F" ~ 0.8 for first order advection and F.v I F" ~ 12 for
3rd order advection. Taking the temperature difference between the surface and the deep water to
be 15 K, and using p=103kg rn' and cp =4.21031 kq' K"l with the above values, the vertical

heat flux, H w in (55), is estimated to be 0.2 W m", The estimates in this paragraph could easily be
in error by a factor of 2 or 4.

Integrations of the HadCM3 model using a simple upwind tracer transport scheme produced a 1
Wm"2 reduction in the net outgoing top of the atmosphere flux and a 0.5 K cooling of the sea
surface in the first 10 years of integration compared with a control run which used the standard
2nd order centred advection scheme (Pardaens & Gordon, private communication). A second
integration in which only the horizontal advection was computed using an upwind tracer scheme
gave much smaller (possibly insignificant) differences indicating that the change to the vertical
advection had been of greatest significance. These results appear to be moderately consistent
with the calculations presented above.

It might be thought that (55) implies that as the number of vertical levels in an ocean model are
increased the diapycnal heat transport due to third order upwind advection should reduce in
direct proportion with &3. However the thermocline is very poorly resolved in our models at
present. Thus on improving the vertical resolution smaller vertical scales will start to be
represented. One should expect the diapycnal transport due to third order advection to reduce
more slowly than the reciprocal of the cube of the number of levels.
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Griffies et al. (2000) note that unphysical overshoots in tracers will be selectively rectified by the
parametrisation of convective overturning in present ocean models. Convection will either flux
density downward or leave the state unchanged. So together with a poor advection scheme it
could support a spurious "unphysical" upward transport of heat. An upwind tracer transport or
SL scheme will tend to diffuse density upward (a first order accurate scheme would always diffuse
density upward). It would certainly be worth investigating the heat transport by the convective
parametrisation in the coupled model. Convective overturning in regions of strong vertical
motions such as the equator and western boundary would be unphysical and their magnitude
should be assessed.

(f) Griffies et al. (1998) isopycnal diffusion scheme

In the original isopycnal diffusion scheme, as implemented by Cox (1987) and used for many
years in the UM and the modular ocean model (MOM), the gradients in tracers and density were
calculated as centred differences over two grid squares and were hence insensitive to some of the
grid scale "noise". The Griffies et al. (1998) scheme for isopycnal diffusion of tracers is explicitly
formulated to ensure dissipation of grid scale variability on isopycnal surfaces. This is a significant
advantage for a scheme which needs to serve as a grid scale closure.

Gent & McWilliams (Gent et al. 1990 & 1995) formulated a parametrisation of sub-grid scale
mixing in which a "bolus" velocity additional to that related to the cell-mean momentum advects
the tracer field. The velocity field is derived from the slopes of the isopycnal surfaces and acts to
release available potential energy. Griffies (1998) shows that the flux transported by the skew-
symmetric part of the isopycnal diffusion tensor is identical (to within a vector whose divergence
is zero) to the advective flux given by the Gent-McWilliams formulae. Section 5b of Griffies (1998)
makes the important point that no grid scale variations are invisible to the skew diffusive flux
formulation so that it will act as a reliable grid scale closure for available potential energy. This
appears to be difficult to ensure with the original velocity field formulation.

Appendix B provides a concise statement of the functional used in the Griffies et al. (1998)
scheme and a derivation of the expressions for the fluxes given in that paper. Griffies et al. (1998)
refer to appendix C of the documentation of MOM3 (Pacanowski & Griffies 1999) for their
derivation. This occupies more than 20 pages of algebra including 300 equations. A concise
statement is useful as it might suggest how to formulate more satisfactory scale selective
("biharmonic") forms of the Gent & McWilliams scheme (RM section 5b). Appendix B also
discusses briefly the grid scale closure of the skew diffusive formulation.

2.5 Non-hydrostatic and compressible models

Tanguay et al. (1990) were the first to perform SISL integrations in which sound waves and non-
hydrostatic accelerations were calculated semi-implicitly. Marshall et al. (1997) provide a
formulation for an incompressible non-hydrostatic solver in which the pressure gradient forces
are calculated semi-implicitly but other terms, including the vertical advection of temperature and
advection of momentum are calculated explicitly (using the Adams-Bashforth integration
scheme). Marshall et al. (1997) make the point that the non-hydrostatic equations do not
introduce any gravity waves with higher frequencies than the hydrostatic equations. This follows
from Table 8.1 of Gill (1982) which indicates that (in the absence of rotation) in hydrostatic flows
the dispersion relation is
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0)2m2 =N2K~ , (56)

where m is the vertical wavenumber and K" the horizontal wavenumber whilst in non-
hydrostatic flow,

0)2( 2+K2)=N2K2In h h , (57)

from which it is clear that for any m and K", OJ is smaller for the non-hydrostatic equations. The
CFL criterion for these waves turns out to be strictest for the nearly horizontal motions. The CFL
criterion requires that

f..t < f..s / c = Kfu' / 0) (58)

where f..s is the grid spacing in a given direction and K is the total wavenumber. Writing the
angle between the wavenumber vector and the horizontal as ¢, (57) gives

OJ = Ncos¢ (59)

On any grid the shortest waves have Kf..s = Jr and using (59) in (58) one sees that the strictest
stability condition is obtained when cos¢ = 1, the case for horizontal travelling waves.

Killworth (personal communication) has outlined a number of reasons for wanting to avoid the
Boussinesq approximation. Some aspects of it can probably be avoided in a number of ways.
Clearly it is not needed when the fluid is allowed to be compressible. Tanguay et al. (1990) were
able to integrate a SISL scheme for a compressible, non-hydrostatic atmosphere. As the speed of
sound in the ocean but not the atmosphere is several times faster than the speed of barotropic
gravity waves (see table 1), some examination is needed of the effect of allowing sound waves on
the conditioning of the elliptic solver. The next paragraph suggests that allowing sound waves
into the system slightly improves the conditioning of the elliptic system (just as allowing gravity
waves improved the conditioning of the barotropic mode in section 2.3).

The linearised equations for a stratified, compressible, non-hydrostatic fluid are given in Gill
(1982) section 6.14 - see particularly (6.14.17)-(6.14.19). Substituting lI(f..t) for a / at in those
equations, as in section 2.3, and deriving a single equation for the vertical velocity w one obtains:

2 2 -1 a a \7" 1(1+ N f..t) (- + r) (- - I")w + ( h - " ) w = 0 ,
az az (c,f..t)

(60)

where

[' = ..!:. (.L _ N 2 )22-C, g .
(61 )
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This equation should be compared with (24) which for f = 0 applies for the hydrostatic,
incompressible case. At least for the special case when I" is independent of height its introduction
reduces the ratio between the largest and smallest eigenvalues of the vertical modes. Similarly the
ratio of the maximum and minimum eigenvalues for the horizontal modes is reduced by the
additional term (c/'1tr2• The impact of the term equal to 1 supplementing N2 !1t2 on the range of
eigenvalues is relatively subtle. It appears to slightly worsen the ratio of eigenvalues for the pre-
cond_itioned form considered in (33)-(35) but may be beneficial for other pre-conditionings.
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3. Grids

3.1 Horizontal grid staggering

As the French OPA and Princeton POM models use the C grid for their horizontal staggering of
variables whereas the MOM model uses a B grid, I feel obliged to summarise the arguments in
favour of each type of grid. Although most of the facts summarised here are easily established and
well known the weighting to be given to them is rather unclear. For the reader's convenience the
distribution of the primary variables u, v, p for grids A-D is illustrated in figure 2. The E grid is a
well disguised rotation of the B grid. Randall (1995) provides an informative discussion of it. To
avoid complicating the notation it is not discussed further.

(a) Dispersion relations for Rossby waves and inertia-gravity waves

The dispersion relations for inertia-gravity (Poincare) waves and for Rossby waves for each of the
grids A-D (and also for E) are stated by Dukowicz (1995) and illustrated for the cases a = 2~ and
a = ~ /2. Here ~ is the length of a grid cell (the shortest distance between points storing the
same variable) and a = c / f is the Rossby radius (c2 = gH for external waves). Note that figure
3D of Dukowicz appears to be incorrect and that Dukowicz uses A to denote the Rossby radius.
The wavenumbers which are represented by the grids A-D lie in the ranges -Jr::::; k~::::; tt,
-Jr::::; Zt-.y::::; Jr. A wave with k.Sx = Jr changes its sign from one grid point to the next in the x
direction (i.e. its wavelength is 2~ ). It is only reasonable to expect the dispersion relations to be
accurate for wavelengths longer than 4~ (i.e. kS» < Jr /2 ). Purser & Leslie (1988) argue that
the solution should be viewed as only including those wavelengths.

It is well known that for inertia-gravity waves the B grid is better when the grid spacing is coarser
than the Rossby radius a < ~ and the C grid is preferable when the grid spacing is finer
(a > Ax ). The Rossby radius of high order vertical modes is smaller than the grid spacing even in
high resolution atmosphere and ocean models so the performance of the grids for these waves in
high resoltuion models is mixed.

Usually the accuracy of the Rossby wave propagation speed is viewed as more important than
that of the inertia-gravity waves (this is assumed by SISL methods). Dukowicz (1995) suggests
that the B grid is better than the C grid for Rossby waves at all scales whilst Wajsowicz (1986)
concludes that the C grid is better when the grid resolution is better than the Rossby radius.
Within the region where the Rossby wave dispersion relation can be expected to be accurate
(0::::;k~::::; Jr / 2, 0::::;Zt-.y ::::;Jr /2) the relative advantages appear to be rather marginal and my
opinion is that there is no really important difference between these dispersion relations for the B
and C grids.

Hsieh et al. (1983) discuss boundary Kelvin waves and Ng and Hsieh (1994) equatorial Kelvin
waves on the Band C grid. For poor grid resolution the C grid represents the phase speed of the
waves better but the structure of the waves slightly worse than the B grid.
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Fiqure 2: Distribution of primary variables for qrids of type A-D.

(b) Stationary solutions

~~iifii. . .

c

D

An aspect of these dispersion relations which requires some discussion is the presence of
stationary grid-scale solutions (with OJ = 0). As the wave dispersion relations for inertia-
gravity waves do not depend on the sign of k or of I it is adequate for them to consider only the
first quadrant (k,l2.0). The A grid has 3 stationary solutions: at k&=Jr,If..y=O;
k.Sx = 0, lfly = n ; and kSx = n; My = Jr. The B grid has one at k~'( = st , If..y = Jr and the D grid has
two lines of such solutions one along kf..x = Jr and a second along If..y = Jr . The C grid does not
have any strictly stationary solutions.

Dukowicz (1995) shows that Rossby waves have false stationary solutions on the B grid for the
line kf..x = Jr , for the C and D grids for two lines, namely kf..x = 1C and If..y = Jr and that the A grid
does not have false stationary solutions.

The significance of stationary solutions is debatable. Le Roux et al. (1998, section 3) view them as
very significant, choosing their distribution of variables so as to avoid null spaces for the pressure
gradient and velocity divergence operators (i.e. non-trivial grid-scale solutions of \lp = 0 and
\I.u = 0 respectively). Le Roux et al. argue that for solution uniqueness and convergence null
spaces for these operators must be avoided - but this is not a completely compelling argument as
the null solutions generally lie outside the range of wavelengths (0::; kf..x::; Jr / 2, 0::; If..y::; Jr /2)
"resolved" by the grid. Checkerboard patterns lie in the null space of both operators on the B grid
whereas the C grid operators have empty null spaces.
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There are nearly stationary inertia-gravity waves on the C grid which Adcroft et al. (1999) view as
a problem worth solving for coarse resolution ocean models. They suggest a formulation which
has 4 velocity values within a grid cell, (the full horizontal velocity vector is stored at two points).
The dispersion relation for inertia-gravity waves is improved at the expense of introducing
computational modes with the inertial frequency. The dispersion relation for Rossby waves and
the representation of geostrophic balance (le Roux et al. 1998, section 2 and Purser & Leslie
1988) for this arrangement do not appear to have been examined.

There is a sense in which the stationary solutions distort the surface of the dispersion relation. For
example the shape of the dispersion curve for inertia-gravity waves on the B grid can be obtained
from the exact dispersion curve by pulling the (0 surface down to zero at the point k/sx = IT ,

If..y = st . The false maxima and minima in the dispersion relation result in incorrect group
velocities. The main errors in the dispersion relation lie however outside the region
(0::::; kl'u ::::;IT /2, 0::::;If..y ::::;IT /2) where it is reasonable to expect the dispersion relation to be
accurate.

(c) locations of vorticity and divergence tendencies

It is perhaps worth mentioning the relation between the dispersion relations and equations for
the rate of change of divergence and vorticity appropriate for Band C grids (Wajsowicz 1986
appendix). Taking the divergence of the momentum equations one obtains

WZ1 + fs + fJu =1/ Po v» (62)

Taking the curl gives one:

SI + fJv - fw, = 0 . (63)

On the B grid both these equations are naturally calculated at the same point as p.

On the C grid the divergence, wz' is naturally calculated at the same point as p but the vorticity
is staggered lying half a grid square north/south of u points and east/west of v points. Thus the
vortex stretching at the vorticity point must be calculated as a centred four point average of
values of wz' The dispersion relation for quasi-geostrophic flow can be obtained simply from (63)

by using geostrophic velocities for SI and fJv. The dispersion relation for inertia-gravity waves is

obtained at the divergence gridpoints. (62) involves a four point average of S evaluated at the

vorticity points. Each of these is calculated from (63) using a four point average of fwz.
Consequently a nine-point average of fl11

Z
is involved in (62).

(d) Accuracy

Purser & Leslie (1988) suggest that the accuracy of the dispersion relations in the range
(0 < k& < IT / 2, ()< If..y < IT /2) should be the main focus of attention. They use schemes with
higher order accuracies, including compact schemes, to achieve this. Given the rather poor
accuracy of the 2nd order schemes, particularly for the Rossby wave dispersion relation, this
appears to be a rational approach. Exploration of 4th order accuracy for the main terms in the
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vorticity equation seems justified. Which of the terms need to be calculated with this accuracy
implicitly and the effect on the conditioning of the elliptic solver would need consideration.

(e) Other factors

The C grid is the natural one to use to advect tracers using a flux formulation. Semi-Lagrangian
schemes would appear to "be more accurate at small Courant numbers when the velocity and
tracer points coincide. This point is also relevant to the choice between vertical grids (see below).

The C grid is more convenient than the B for pressure solvers (Marshall et al. 1997).

If the choice between grids is significant for ocean modelling I suspect it is because of the
performance of the grid in problems other than those discussed above - e.g. in modelling of
western boundary layers. Certainly the C grid is convenient for specification of free-slip
boundaries conditions (Adcroft & Marshall 1997).

3.2 Vertical staggering

Figure 3 illustrates the 3 most interesting' grids discussed by Tokioka (1978) and Arakawa (1988)
in their exhaustive coverage of the numerical discretisation of the vertical mode equations for
horizontally propagating inertia-gravity and Rossby waves. Gill (1982 section 6.11) explains the
derivation of the two equations and boundary conditions involved. The first equation is the
advective form of the density conservation equation derived using the hydrostatic relation by
linearising about a stratified background state:

PON2w = =P; (64)

The second equation is obtained from the horizontal divergence of the horizontal momentum
equations and the incompressibility condition (\l.u = 0). As shown in Gill (1982) table 8.1 this
equation depends on the scales of motion represented in the model. For quasi-geostrophic flow it
is

POf2WZ = (Pxx + Pyy)r (65)

For hydrostatic non-rotating flow it is

POWZl = (Pxx + Pyy) (66)

(Gill's table 8.1 has errors in the signs of these two equations.) For a flat bottomed ocean the
boundary conditions for these two equations are:

W=O at z =-H,

PI = Pogw at z =0.
(67)

For internal modes the latter is approximated well by w = 0 (Gill 1982, P 161). Seeking separable
modes of solution of (64) and (65) or (66) of the form
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W = w(z)lJt (x, y,t) and P = p(z)lJ(x, y,t) (68)

the vertical structure is determined by the two equations

2~ ~
PaN w=-Pz r
~ 2~

P = PaCe Wz

(69)

(70)

where ce is a separation constant with the dimensions of a velocity, and boundary conditions on
»<;

ware derived from (67).

k+Y2 ---------f};W------ k+Y2 ----------w--------- k+Y2 ---------f);W------

k -------});tl;V---- k ----p-;p~il;V--- k -------j:)~-tt;V----

r zk-Y2 ---------p-,W------ k-Y2 ----------w---------- k-Y2 ---------p-,-w------

(a) C-P (b) L (c) M-L

Figure 3: Distribution of basic model variables in the vertical: (a) the Charney-
Phillips grid, (b) the Lorenz grid and (c) the Modified Lorenz grid.

Figure 3(a) shows the Charney-Phillips (C-P) grid which stores wand P at half levels and p,U
and v at full levels. Note that the level number will be taken to increase with the height, z , The
upper and lower boundaries are at half-levels. (64) is applied centred about the half levels (as it
derives from the evolution equation for p) and (65) or (66) at full-levels (as they relate to the
evolution equation for the horizontal divergence). This arrangement is ideal for evaluation of (64)
particularly when N2 is assumed to be known. lt is also very well suited to discretisation of the
vertical component of momentum in non-hydrostatic models. Figure 3(c) illustrates an
alternative grid in which wand p are stored at half-levels and p,u and v at full levels. On this
grid (64)-(66) are all evaluated at the half-levels. This arrangement is a natural one if the density is
vertically advected using a flux formulation and allows a 2nd order accurate Richardson number to
be easily calculated. It is not well suited to discretisation of the vertical component of the
momentum equations in non-hydrostatic models. It also involves a vertical averaging of pressure
in (65) and (66). Figure 3(b) illustrates the Lorenz grid which also evaluates (64)-(66) at the half
levels. It differs from figure 3(c) only in that p is stored at the full levels rather than the half levels.
The grid shown in figure 3(c) will be termed the Modified Lorenz grid. On the Lorenz grid

Pk+l - Pk = g&(Pk+1 + Pk)/2 . (71)

The vertically averaged pressures at the full levels where U and v are held for the Modified
Lorenz grid also satisfy (71). Thus for centred 2nd order accurate formulae the Modified Lorenz
grid is equivalent to the Lorenz grid.
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Arakawa and Moorthi (1988) (hereafter AM) compared the Lorenz and C-P grids and identified
several apparent weaknesses of the Lorenz grid:

I. the advective term PON
2w=-gpzw in (64) is treated more accurately by the C-P grid. AM

suggest that it is always poorly represented in the layers next to the upper and lower
boundary on the Lorenz grid.

ii. only the C-P grid conserves an analogue of potential vorticity
Iii. the Lorenz grid gives a poorer solution than the C-P grid to the Eady problem
iv. the Lorenz grid has a computational mode in which p = 0 at full levels, w = 0 at half levels

and the density oscillates between levels: Pk+16zk+l = -p/1Zk

Points i, ii and iv are not as clear cut as AM suggest. Algebra supporting the following statements
is presented in Appendix C.

Using a flux formulation for the continuity equation on the Lorenz grid the advective term in (64)
takes the form:

wP
z
-7 wk+y, (Pk+l - Pk) + wk_Y, (Pk - PH)

2& 2&
(72)

In the layer next to the wall one of the vertical velocities in (72) is zero and the advective term is
half as large as the advective term for the C-P grid next to the wall. This is because the term is
calculated at full levels on the Lorenz grid and half levels on the C-P grid and so is twice as far
from the wall on the C-P grid as it is on the Lorenz grid. The underestimation (by a factor of 2) of
the vertical advection by the Lorenz grid at mid-depth in the 2 layer problem (AM equation
(5.16» is a special case which is not typical of multi-layer models.

Section (a) of appendix C shows that a flux formulation for the continuity equation on the C-P
grid can be found which gives an ideal form for (64). This formulation, which appears to be that
used by Arakawa & Konor (1996) does not have the most obvious (or desirable) form for the
continuity equation.

AM derive a potential vorticity equation for the Lorenz grid but conclude that it does not provide
a good analogue of the quasi-geostrophic form of the potential vorticity conservation relation. It
is shown in section (b) of appendix C that a small extension to the derivations of AM results in a
conservation equation which though not ideal is tolerably accurate.

AM's investigation of the simulation of baroclinic instability using the quasi-geostrophic
equations on the C-P and Lorenz grids shows that the Lorenz grid supports spurious short
wavelength instabilities in the Eady problem. Of these only the very short' waves with a steering
level within a grid spacing of the boundary grow rapidly. These modes are probably very shallow
and would not transport much heat (Held 1978). The Eady problem is well-known not to be
robust to small changes to its formulation. AM's simulations of the Green problem (which is more
robust) using the two grids look quite similar.

The computational mode obtained on the Modified Lorenz grid may be of some importance in
ocean models. AM explain that it arises because the winds are driven by the pressure field on full
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levels. On the C-P grid the wind shear between adjacent (full) levels is directly related to the
density at the half level inbetween. In other words the thermal wind shear on the Lorenz grid
involves no vertical averaging:

Pof(uk -Uk-I) =-g5yPk-Y2 (73)

By contrast on the Lorenz grid the pressure field on the full levels is the average of the pressure
fields on adjoining half levels and only the pressures on the half levels are tightly coupled to the
densities. As discussed briefly in section (c) of appendix C it appears that regardless of the number
of levels in the model there is only one computational mode and its structure is the very specific
one described in point (iv) above.

One reason why this mode may be important is that simple centred-time centred-space vertical
advection schemes generate grid scale noise in the density profile which will project strongly into
it. At least where the ocean bottom is flat, the computational mode is dynamically passive and
stationary. Thus its amplitude is likely to increase steadily with time where the vertical advection
projects strongly into it; Rossby waves and inertia-gravity waves will not act to "disperse" it.
Results from 1D advection/convection experiments such as those reported by Griffies et al. (2000)
are thus more relevant to 3D numerical models than would otherwise be the case.

A second reason why the mode may be significant in ocean models is that the surface pressure
field and the bottom pressure field in the Modified Lorenz grid are affected by it. The mode is zero
at the full pressure levels but non-zero at the surface and bottom of the model (which are at half
levels). The free surface height in free surface models is thus likely to be noisy. Damping of this
noise without regard for the noise remaining in the density field will generate grid scale noise in
the vertical in the pressure field at full levels. It seems likely that this would drive noisy vertical
velocities.

Leslie & Purser (1982) studied the accuracy of the vertical modes on an unstaggered grid and the
grids shown in figure 3 using 2nd, 4th and 6th order accurate numerics. They demonstrated that
using higher order schemes gives significant improvements in the representation of modes of
intermediate wavenumber. The performance of the original and modified Lorenz schemes were
similar for all the schemes that they used and the C-P grid had a clear edge in performance over
the Lorenz grids at each order of accuracy.

3.3 Terrain-following coordinates

(a) Advantages and disadvantages

The potential advantages of vertical coordinates which allow the upper and lower boundaries of
the model to smoothly follow the upper and lower boundaries of the ocean are: (a) intersection
of coordinate surfaces by the boundaries or coarse representation of the lower boundary as a
series of steps are avoided, (b) surface and bottom boundary layers can be resolved, (c) flows up
the continental shelf break and accompanying bottom pressure torques should be smoothly
represented. Ocean models using these coordinates have mainly been applied with high
resolution to model the continental shelf.

Over steep bathymetry these coordinate surfaces inevitably have quite large slopes. Horizontal
pressure gradients are calculated as the sum of the pressure gradients along these surfaces and
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vertical pressure gradients. Each of these two gradients is typically much greater than the
horizontal gradient. The angle between the coordinate and isopycnal surfaces is also typically
larger than that in z coordinate models. The problems using horizontal diffusion or dissipative
advection schemes discussed in section 2.4 are thus likely to be more acute in these boundary
following coordinates.

(b) Errors in pressure gradient calculation

Mellor et al. (1994) present a useful example which indicates the order of magnitude of pressure
gradient errors which can be expected in ocean models. The scaling of this error with grid
resolution and other factors is discussed in (c) below. Their example uses a model with 20 km
horizontal grid spacing and 21 layers with equal a coordinate spacing to model flow over the
continental break. The bathymetry descends (smoothly) by nearly 4000 m over a 200 km
distance. A horizontally uniform density field is specified which is representative of the area-mean
density field for the North Atlantic. After 90 days of integration (in which the density field is held
constant) the horizontal velocity along the bathymetry (which should of course be zero) is 5 cm/s
near the surface and 7 cm/s near 2000 m depth. These are substantial errors; the latter velocity is
particularly undesirable as it is comparable with the velocity of deep western boundary currents.
The errors depend strongly on the resolution of the bathymetry by the grid. HadCM3 and the
operational global FOAM model use much rougher bathymetry than this example. Together with
the scalings indicated in (c) below it appears that these coordinates are not attractive for models
with worse than 20 km resolution.

Song (1998) provides a recent summary of methods
and papers which have aimed to ameliorate this
problem (and its counterpart for the atmosphere).
Subtraction of the domain average density field Po (z)
is one partially successful technique. It is not quite
clear why this has not been applied using averages
over much smaller domains (e.g. domains only slightly
larger than the stencils required for vorticity and
divergence discussed in section 3.1). A widely used
approach is to ensure conservation of depth integrated
angular momentum and/or analogues of the
conservation of energy in conversion from kinetic to
potential energy (Arakawa & Suarez 1983). Most
authors also aim to obtain exact results (zero pressure
gradients) for horizontal isopycnals when the density
or pressure depends linearly on the chosen
coordinate. McCalpin (1994) and Chu & Fan (1998)
have used more accurate (4th and 6th order and also
compact) algorithms to calculate the pressure
gradients along the constant o surfaces.

. Lin (1997) and Stelling & van Kester (1994) discuss
Figure 4: Pressure forces on a general finit I h . hi h th ure force. I di II rru e vo ume approac es rn w IC e press
vertica coor mate ce .. hon each momentum cell IS calculated directly as t e
integral over all the faces of the cell of the normal pressure forces (see figure 4). Stelling & van
Kester use 1st order accurate formulae where the coordinates slope particularly steeply. In view of
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the steepness of ocean bathymetry this may be essential. Lin's approach is simpler and is the only
one discussed here. His formulation was designed for an atmospheric model. According to his
results his formulation substantially outperforms the Arakawa & Suarez (1983) formulation for an
idealised test case. Sub-section (c) below derives an expression for the error in Lin's formulation
((77) below) when the isopycnals are flat and compares it with a similar expression derived by
Mellor et al. (1994). Sub-section (d) discusses the pressure torques on cells which have sloping
upper and lower surfaces. These torques appear to be represented well not only in Lin's
formulation but in most (7 coordinate formulations. Though the arguments in (c) and (d) are
expressed using (7 coordinates they could be applied to any generalised vertical "s" coordinate
(Kasahara 1974 and Song 1998).

(c) Pressure gradient error in Lin's formulation for flat isopycnals

Figure 4, which is a copy of figure 1 from Lin (1997), illustrates the grid staggering he employs in
the x - Z plane. He stores p at the corner points 1-4 of the velocity cell, so the staggering is
equivalent to the C grid in the horizontal and the Modified Lorenz grid in the vertical. The force
in the x- direction on the cell illustrated is the projection of the pressure forces on each face along
the x - axis:

2:F, ~ - [!p dz + I P dz +J P dr + t p dz1 (74)

It is clear from this equation that if pressure is strictly a function of z each grid cell pressure force
will be identically zero. Thus "only" errors in the numerical approximation of the integrals of the
pressure give rise to errors in the net acceleration. Lin suggests calculating each integral as a
simple average of the pressures at each end of the domain of integration. When the density is
purely a function of z (flat isopycnals) the error in the first two integrals obtained using the
simple average formula advocated by Lin is:

2 2
M12 == L1J p d: = J p d: -1/2(p(zl) + p(z2»H/:-:,x =

I I

3 3

M23 == J p d: = J p d: -1/2 (P(Z2) + p(z3»H L1(7=
2 2

3 3i1x3
Pzz(7- Hx +h.o.t.

12

H3 L1(73
Pzz +h.o.t.

12

(75)

where i1.x: and L1(7 are the dimensions of the cell, P72 is evaluated at the central points of the line
integrals, h.o.t. stands for higher order terms, and following Mellor et al (1994), Z = (7H with
(7=-1 at z=-H and (7=0 at z=O. Expressing the sum of MI2 and M34 in terms of

derivatives at the centre of the cell, and combining M23 and M41 in a similar manner, one obtains

L1(7i1x3 3 2 3
L1112+ M34 = .~ Hx (3(7 P« + H (7 Pzzz) + h.o.t. ,

L1(73 i1xH2 H
M23 +M41 = .~ x (3(72pzz + H(73pZ72)+h.o.t. ,

(76)
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where Pzz and Pm are calculated at the centre of the cell. Finally, adding these two terms
together and re-arranging to aid comparison with Mellor et al. (1994) the total error in the sum of
forces is:

.6.LFx HHx «n 2 2H;.6.)c2-=--=--(Pzz +-pzzz)(.6.a -a 0 )+h.o.t.
H.6.af..x 4 3 H

(77)

H f..x.6.a is the volume of the cell, thus (77) is equivalent to an error in P,>

To explain the relationship of (77) to (7) of Mellor et al. (1994) it is necessary to note that Mellor
et al. discuss two expressions for the pressure gradient in a coordinates, namely

Pxlz = pJ,. - ~ HxP(J ,and (78)

f
a a

Pxl = Poxl +PoH b 'xl da ' ; bxl = b,1 --H)J(J
Z (J (J Z Z -(J H (79)

In (79) Po is the surface pressure, Po is a constant reference density and b = pg / Po is the
buoyancy. As Mellor et al. (1994) note, (78) and (79) are equivalent analytically but may differ
after approximation by finite difference algebra. Mellor et al.'s equation (7) is an expression for
the error in the second half of expression (79) when the isopycnals are flat. Their expression when
applied to (78) yields (77).

There are four further points relating to (77) - (79) that are worth making. Firstly the Arakawa &
Suarez (1983) formulation is based on (78), so it remains to be explained why Lin found his
formula more accurate than theirs for his flat isopycnal calculation. Secondly (79) is exact when
the density is a linear function of the chosen coordinates whereas (78) is only exact when the
pressure is a linear function of the coordinates. Song (1998) views this as a significant advantage
of formulation (79). As the vertical density gradients are nearly always smallest near the top and
bottom of the ocean quantitative calculations for realistic test cases are needed to establish
whether one formulation or other does have a significant practical advantage. Thirdly the
derivation of (77) for Lin's formulation seems to be more intuitive than that from (78). Starting
from (78) it seems that brute force algebra is needed to establish (77). Finally Mellor et al. (1994)
note that for the example quoted in subsection (b) above the maximum value of
I(a Hxf..x) / HI = 13/ 20. The square of this quantity appears as the 2nd half of the last term in (77).

Thus the resolution used in the example is the coarsest at which concepts like 2nd order accuracy
make any sense and the points made by Stelling & van Kester (1994) appear to be very relevant.

(d) Pressure torques on grid cells

Lin's construction should ensure that a property corresponding to curl grad P = 0 is satisfied for
a and s coordinates. The transformed pressure gradient in a coordinates does not satisfy this
property directly because the the depth of the grid cells, h , varies spatially. Applying Stokes'
theorem to a a coordinate grid cell (as illustrated in figure 4) and considering only the
acceleration due to the pressure gradient one obtains:
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~ hput·dl = f Y' 1\ (hpuJ.dn = - f Y' 1\ (hY'p ).dn = - f (Y'h 1\ Y'p ).dn . (80)

The latter expression can be related to the curl of the pressure forces on the top and bottom of
the sigma coordinate cell as follows. The (area weighted) normal to the surface z = h1 (x, y) is

given by (h1x' h1y' -1). So the vertical component of the curl of the pressure force on the surface

z = h1 is:

~·fcurl(p(h]x,h1y,-1))dxdy = f (ph1y)x -(ph1x\dxdy = f p)11y - Pxhlydxdy. (81)

In other words the depth integrated rate of change of circulation around the cell equals the
difference between the pressure torques on the top and bottom of the cell. The standard
transformed coordinate formulae (e.g. (78» give the same expressions. This is an advantage for s
co-ordinates as it implies that the pressure torque on the bottom of the ocean should be
represented faithfully in s coordinates. Song & Wright (1998) indeed confirm that this is the case
for Song's (1998) finite difference formulation. Use of the modified Lorenz grid which has the
pressure held at the upper and lower surfaces of the domain gives a clean representation of the
bottom pressure torque.

(e) Semi-implicit calculations

It is clear from Lin's formulation how to obtain more accurate calculations of the pressure
gradient term (assuming the grid resolution is sufficient). In ocean modelling the interaction of
the time mean flow and the bathymetry is very important. To avoid complicating solution of the
elliptic equation if semi-implicit methods are used, the more accurate calculations could be used
only on the central timestep and simpler formulations used to approximate the 2nd order time
derivative of the pressure gradient term (see Ritchie et al. 1995).

3.3 Generalised curvilinear orthogonal horizontal coordinates

There are two quite different ways in which these more general co-ordinates could be useful.

(a) Orientation of a coordinate along the shelf break

This idea has been widely used by workers with the Princeton Ocean Model (e.g. Ezer & Mellor
1994). It could enable the resolution perpendicular to the shelf break to be significantly enhanced
so as to reduce the errors in the calculation of the pressure gradients (see previous section).

A second possibility when a small region is the main focus of attention is to choose the grid
resolution to be finest in this region and to increase the grid spacing in both orthogonal directions
as the coordinate leaves the area of interest. Staniforth et al.(1999) discuss the application of this
idea to variable resolution NWP models.

For coastal modelling it is probably desirable also to enable the resolution on the shelf to be finer
in both x and y than in the deep water - because the Rossby radius is smaller on the shelf. This
cannot be achieved using an orthogonal grid - it would require an unstructured grid.
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(b) More uniform resolution global models

The timestep in our current global models is limited by a CFL type condition on the propagation
of internal gravity waves in the region of convergence of the grid longitudes. The longitude
spacing at 75°N (beyond which Fourier filtering is used) is 4 times smaller than at the equator.

Madec & Imbard (1996) and Bentsen et al. (1999) have proposed that the singularity in the
latitude-longitude grid at the North geographical pole be moved onto a continent (such as Asia)
using conformal mappings. These mappings (Kreyszig, 1979, chapter 13) preserve angles (and
hence provide orthogonal grids) and are locally isotropic (the grid stretching is uniform in all
directions at a given point). Moving the pole well away from sea points enables an ocean model
to be integrated without Fourier filtering. The ratio between the maximum and minimum
longitude spacing which can be achieved by this means appears to be not much smaller than 4.
An isotropic grid can be obtained if the "latitude" spacing is made proportional to the cosine of
latitude as in the standard Mercator grid.

Several authors including Coward et al. (1994) have proposed that the majority of the ocean be
represented using a standard latitude-longitude grid but that north of the equator the Atlantic
and Arctic Oceans be covered by a second grid with its north pole on the geographical equator at
900E. This gives very uniform coverage of the Atlantic and Arctic but the ratio of the minimum to
the maximum longitude spacing near the Antarctic is again not much smaller than 4. (Also the
grid-spacing perpendicular to the geographical equator in the 2 grids cannot match up exactly.)
Murray (1996) reviews the projections discussed above and suggests some others.

The Pacific ocean occupies almost an entire hemisphere. The stereographic projection is generally
recommended as the "best" conformal mapping of a hemisphere onto a plane. The ratio of the
maximum to minimum grid resolution of this projection is 2. Thus this value appears to be a
lower limit on the variation in the grid spacing of ocean points of any set of orthogonal
coordinates representing the Earth on a plane surface. More uniform mappings of the sphere can
only be achieved by projecting it onto other surfaces, like the surfaces of a cube centred at the
centre of the sphere (Purser 1999a, Ronchi et al, 1996).

Semi-implicit methods enable the model's timestep to be much less sensitive to the minimum
grid spacing than explicit methods. Thus the incentive to find uniform meshes is weakened if
semi-implicit methods are used. Different grid resolutions parallel and perpendicular to the
equator have been widely used in ocean models for seasonal forecasting, so uniform meshes have
not found universal favour even with explicit methods. Some incentive to control the uniformity
of the grid remains in that enhanced resolution in areas where the solution does not require it
degrades computational efficiency. A simple estimate of the number of gridpoints required by the
grids considered in the first paragraph relative to the number required by a uniform distribution
with the same gridspacing at the equator can be obtained as follows. For these grids with
displaced poles the latitude range where there are sea points is approximately ±5;r 112 (i.e. 75°S
to 75°N) and the density of gridpoints in a latitude-longitude interval is proportional to COS-II rjJ
where rjJ is the "latitude" and n = 0 for a uniform distribution, 11. = 1 for a standard lat-Iong
distribution and 11. = 2 for a lat-Iong grid with Mercator latitude spacing (and isotropic grid
spacing). Thus the relative number of gridpoints, G" , for these grids is:
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5" 112

G,,= f (cos¢r"cos¢d¢ and
-5,,112 (82)

Go= 2sin(5n 112) = 1·93 ; G1 = Sn /6 = 2·6 ; G2 = 21n tan(l1n / 24) = 4

About 25% fewer points are required by a truly uniform grid spacing than the normal lat/long
grid and the Mercator grid spacing requires 50% more points than a normal lat/long grid.

37 of 51



Semi-implict schemes, semi-Lagrangian schemes and various grids for ocean dynamics .-,
~~

~

4. Summary and Conclusions

4.1 Summary of new arguments and results

There appears to be very little discussion in the literature about the timestep which semi-implicit
or semi-implicit, semi-Lagrangian ocean models could use without significant loss of accuracy.
Explicit calculations of the expected range of eigenvalues of the elliptic operator for the internal
modes, though straightforward, also seem to be lacking. Thus much of sections 2.2 and 2.3 must
be viewed as uncorroborated.

The relationship between dissipation of available potential energy and diapycnal transports by
horizontal diffusion appears not to have been noted previously. The estimate of the ratio of
diapycnal transports by horizontal and vertical advection when semi-Lagrangian or upwind flux
transport schemes are used also appears to be a new result. The approximations used in these
derivations need to be assessed more carefully.

The points made in the discussion of non-hydrostatic and compressible motions are probably
implicit in Tanguay et al. (1990) or Marshall et al. (1997) but are stated more explicitly here.

No new points are made about horizontal grid staggering. The analogue for the quasi-
geostrophic form of the conservation of potential vorticity on the "modified" Lorenz grid does not
appear to have been noticed previously. The Charney-Phillips grid is likely to be superior to the
Lorenz grid in a non-hydrostatic model, but in a hydrostatic model its advantages appear to be
marginal. The calculation in section 3.3 (c) of the error in Lin's formula when applied to a fluid
with horizontal isopycnals is new. The discussion of the torque on the grid-cells used with
generalised vertical coordinates can hardly be described as new but may help to dispel some
misconceptions.

The onset of viscous "overstability" in the barotropic streamfunction was shown by Killworth
(1987) to be precipitated by steep bathymetric gradients. Appendix A gives reasons for thinking
that this problem was dependent on the details of the discretisation used. Appendix B gives a
more concise presentation than has previously appeared of the numerical discretisation used in
the Griffies et al. (1998) isopycnal diffusion.

4.2 Conclusions

The U.S. Navy National Research Laboratory (NRL) routinely use high resolution semi-implicit
ocean models in which the timestep is limited by the Courant number for advection by the ocean
currents (e.g. Hurlburt &. Metzger 1998). For global models of 1/30 or better horizontal
resolution, and limited area models of 10 km resolution or better, semi-implicit methods would
certainly enable timesteps at least 3-4 times longer than those employed in ocean models using
explicit schemes. Whether models of coarser resolution would benefit similarly is not quite clear
as other considerations might limit the timestep. Models with finer north-south than east-west
resolution near the equator would also benefit from semi-implicit techniques. A further factor of 3
increase in timestep could probably be gained for very high resolution forecasting of mesoscale
fronts (and eddies) by using SISL methods.

It appears to be relatively easy to pre-condition the solution of the internal modes to enable them
to be solved sufficiently cheaply. When semi-implicit methods are used it appears that non-
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hydrostatic and even compressible equations could be used for ocean modelling without
significant computational penalties.

Grid scale closure has been discussed in detail because it is relevant to the maintenance of the
thermocline in present climate integrations and also because for computational efficiency and
accuracy it is desirable to use 2 timestep integration schemes either with semi-Lagrangian or
upwind flux formulations of advection but the results of Pardaens and Gordon (private
communication) suggest that this might result in a diapycnal flux of heat from the surface into the
thermocline which would be unacceptable for climate simulations. The diapycnal transports by
vertical velocities and convective overturning and the vertical resolution required by climate
simulations all appear to be worth further study.

Although there is a shared body of knowledge relating to the choice of staggering of variables in
the horizontal, the weighting given to the evidence varies widely between modellers. For low
resolution models (e.g. 10 grid spacing) the B grid is to be preferred to the C grid, but for high
resolution models (e.g. 10 km resolution) the C grid appears to be marginally preferable. To
obtain the best solutions for a given computational cost the option of calculating at least some
terms to higher order accuracy should definitely be kept in mind.

The errors obtained using terrain-following vertical coordinates over steep bathymetry appear too
large for them to be competitive in simulations with horizontal grid spacing coarser than 20 km.
In climate simulations the smoothing of bathymetry required at this resolution would still be
undesirable because of its impact on the pathways by which tracers can be advected (Roberts &.
Wood 1997). Terrain-following coordinates are used very extensively for coastal modelling. For
models including the shelf-break it is desirable to concentrate the model resolution across the
break. Generalised orthogonal horizontal coordinates enable one to do this and are used for this
purpose in some applications of the Princeton Ocean Model (POM). They also enable one to
prevent the singularities (i.e. poles) of the coordinates from lying close to sea points in global
models.
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Appendices

Appendix A: Dependence of a viscous instability on the calculation of
reciprocal depth

Killworth (1987) will be referred to as K87 in this appendix.

K87 provides an explanation for an instability in the barotropic streamfunction which is driven by
viscous dissipation and arises only over steep bathymetry. He performs a partial stability analysis
for the special case when the bathymetry is of depth HI for all velocity points j < J and of depth

H2 for all points j 2 J . He considers a disturbance to the barotropic streamfunction, If/, which is
periodic in x and localised close to the bathymetric step in y and looks for growing mode
solutions of the form

If/::i = A" rpj exp(ikxi) r (Al )

where 11. is the timestep (K87 uses;; to denote the amplitude A).

The evolution of the streamfunction is taken to be determined by the depth averaged vorticity
equation driven solely by viscous dissipation:

8 [_1 8x8tlf/] +8 [J_8 8tlf/] = 8xGv -8
V
GlI=n YH Y -

(A2)

where 8x' 8y are the finite difference versions of the partial derivatives with respect to x and y

usual on a B grid, 8t , is calculated by the leapfrog scheme and G" and GV are the viscous
dissipation terms:

Gil = v(8; + 8:)u and GV = v(8; + 8:)v r (A3)

which are calculated on the backward timestep.

The main point of this appendix is that the averaging of 11H used in (A2) is crucial to the
instability. Midway between points with depths H, and H2, K87 uses

1IH=2(H1+H2r1
• (A4)

An alternative advocated in the MOM manual by Charles Goldberg (Pacanowski et al. 1999) to
increase consistency with the Coriolis terms, is to use

11H =Y2(1/ n, +11 H2) . (AS)

K87 assumes that rpj is zero except at the bathymetric step (i.e. rpj = 8j) ) and calculates (A2) for

j = J to obtain an approximate stability condition. For the 2nd term on the I.h.s. of (A.2) he
obtains
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s: 1 s: s; 1/ (AI-I) IH )I-s2 II

[u (-uyUtV/)] iJ = (1/ H) +1 2 -?-Ifi;
y H ' A 6y- , (A.6)

where

s == sin Y2klix (A.7)

The first term on the I.h.s. of (A.2) depends on whether (A.4) or (A.5) is used to calculate 11H
between points at differing depths. For both cases it may be expressed as:

[5(_155 )]" = (A
2
-1)(1/H)2s

2
v "

x H x llf 1,J A 1ix2 V- 1,J
(A.S)

where 1/H is given by (A.4) or (A.S) depending on which formulation is used. The term
on the r.h.s. of (A.2) for j = ] is given by:

[5 GV
_ 5 G" J" = V If::; {_I +_1 } {4S4 + S2 + (1- S2) ( 4s

4 +_3_)}. (A.9)
x y I,J A H) H2 1ix4 1ix26l 1ix26l 6/

The stability condition is obtained by substituing (A.6), (A.S) and (A.9) into (A.2). When
(A.S) is used in (A.S) all the terms in (A.2) are directly proportional to 11H) + 11H2 and it is

clear that the stability is independent of H) and H2• When (A.4) is used in (A.S) the

stability does depend on the ratio H7/H2 and as KS7 shows stability requires

V6t I 1ix2 < 2H) I H2 (A.l0)

which, when the ratio H) I H2 is very small, is much more restrictive than the usual

condition to avoid diffusive instability.

Appendix B: Discretisation of isopycnal diffusion used by Griffies et al. (1998)

In this appendix Griffies et al. (1998) will be referred to as G and (G.N) will refer to equation N in
that paper. The continuous functional used in the Griffies scheme for the isopycnal flux with the
small-slope approximation is given by (G.25) which is:

3 = -Y2f A/{ (Tx + S7J2 + (Ty +S7J2}dx . (B.l )

Here SX = =P, I Pz and SY = =P, I Pz denote the isopycnal slopes. To aid clarity of presentation,

this derivation will limit consideration to the x - Z plane and hence the first term in (B.1). G
introduce a discrete analogue of this functional in which each term T,+S7z is calculated using 3

points; namely a central point Y;,k , a point to its east or west Y;±),k and a point above or below it,
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T;,k±I' The discrete functional consists of the sum over all points in the domain of four terms at

each point, one for each of the four possible combinations. Denoting the term for the upper-right
quadrant with the subscript 1 - see figure B - the first of the four terms in the functional is:

L L T Ik -Tk t.. I-Tk 03= 3. =-\12 A.('+' I,+SX 1,+ 1'/6);:.& ..
1 . 1;I,k . 1;f,k 26x 1;I,k 26 I:I,k l;l,k

l,k l,k I;;,k ZI;;,k

(B.2)

Here 6xl;i,k and 6Zl;i,k are the dimensions of the upper-right quadrant'S cell whose edges bisect

the tracer points (see figure B), and A1;;,k and St;,k are calculated specifically for this cell (see G for

details).

The aim of this appendix is to express the derivative of S with respect to T;,k as the sum of a flux

F = (Fx' Fz) through the faces (indicated by dashed lines in figure B) of the T;,k tracer cell:

-as / tn; k = (F;+yz k - F;-yz k )&; k + (F; k+'Iz - F; k-'h)6x; k ,-, , ,', , "' -,
(B.3)

and to show that F is given by equations (G.30) and (G.33).

Consider first the contribution to as / aT;,k from Sl;;,k (i.e. the contribution to SI from the (i, k )th

box). From (B.2)

')a / ')T A T+I k - T k T - T & SX A v
U_' I" k U . k = '. ( " " + Sx I.,k+l I.,k )( l;;,k Li.kLU.h k

,f, I, l;f,k 26x.. l;;,k 2 --+' "')
1,I,k &1; k 2 2

(B.4)

Comparison of (B.3) and (B.4) suggests that the term proportional to 6z1;;,k be viewed as a

contribution to F;+%,k whilst the term proportional to St;,k6xl;;,k be viewed as a contribution to

F;,k+%' Comparison of (B.3) and (B.4) with (G.30) shows that the term proportional to &1;i,k is

one of the four to contribute to the eastern face flux F;+%,k' Similarly the term proportional to

St;,k6xl;;,k is one of the four contributions to F;,k+% given in (G.33).

The previous paragraph showed that aS1;;,k / aT;,k provides one of the four contributions to both

F;+%,k6z;,k and F;,k+%6x;,k' Similarly the contribution to S from the lower right quadrant (see

figure B.1) is given by

L L r.c-r, Tk1-Tk 23 = 3. =-\12 . ( l+, I, +SX I., - I,) 6x . 6 .
2 . 2;I,k . ~;I,k 26x 2;1.,k 26- h,k Z2;I,k

I.,k f,k 2;i,k <:'2;;,k

(B.5)

and aS2;;,k / aT;,k provides one of the contributions to each of F;+%,k&;,k and F;,k-Y26x;,k'

aS3;;,k / aT;,k and aS4;;,k / aT;,k each provide 2 further contributions so that in total we have now

accounted for 2 contributions to (B.3) for each of the 4 faces.
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(8.4) gives the contribution to aS1 / aT;,k from the (i, k )th box. There are two other contributions

to aS1 / aT;,k : one from the (i + 1,k) th box (i.e. from Sl;i+l,k) and one from the (i, k + 1) th box (i.e,

from Sl;i,k+1)' For each contribution to as / aT;,k from the (i, k )th box there is a second

contribution to the flux through the same face from an adjacent box. The four contributions to
the flux through a face are the ones indicated by figure 9 of G and the sign of each contribution is
in agreement with (G.30) and (G.33).

The flux through the west face of the (i + 1, k) th box includes a contribution from

aS
l

k / or. 1 = -A" (T;+1,k - T;,k + SX" T;,k+l - T;,k ) ,6"ZI;i,k
,I, 1+ ,k 1;1,k h k ---

2.6..:\:1" k ., 2,6"z, 2
,I, l;l,k

(8.6)

This is identical but opposite to the corresponding contribution to the flux through the east face
from the (i, k )th box. Thus the functional derivative does represent a true conservative flux.

For isopycnal diffusion, the choice of triads in the calculation of each term together with the fact
that all terms in the sum comprising the functional are positive ensures that grid scale noise will
not lie in the kernel of ("be invisible to") the functional, For the skew-flux formulation only terms

linearly proportional to S'~;i,k contribute (here 1:::;m :::;4). S,~;i,k is calculated using the same triad of

points as for the temperatures. If the potential density is taken to be a local linear function of e
and S and the model is stably stratified, all the terms contributing to the flux of density at any
given face will have the same sign. Thus the skew-flux formulation will also have an empty kernel,
at least for the potential density field.

Appendix C: Properties of the Lorenz and Charney-Phillips grids

This appendix provides algebra to support the assertions made in section 3.2.

(a) Continuity equation: advective and flux forms

On the Lorenz grids the flux form of the continuity equation and the incompressibility condition
are:

Pkl + V,(UkPk)+ Wk+y, (Pk+l + Pk) _ wk_y,(Pk + Pk 1) -
2& 2& -0 ,

V'Uk + (Wk+y, - Wk_y,) / & = 0 .

(Cl)

(C2)

Subtracting Pk times (C2) from (C.'l ) one finds the advective form of the continuity equation to

be:

Pkl + uk.V Pk + Wk+y, (Pk+l - Pk) + Wk_Y, (Pk - PH) - 0
.. 2& 2&-'

as anticipated in (72).

(C3)
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On the C-P grid, (C2) still holds but the natural form for the vertical component of the flux of p ,

FV

, and the desirable form for the vertical component of the advective flux of p , AV

, are:

F,V _ (Wk+312 + Wk+y,) (Pk+3/2 + Pk+Y') _ (wk+Y, + wk-y,)(Pk+h + Pk-Y,)
k+Y, - 46z 4& (C4)

AV _ wk+y,(Pk+3/2 - Pk-h)
k+Y, - 2& (CS)

Subtracting (CS) from (C4) and re-arranging one finds that:

F,V _ AV = (Wk+3/2 - Wk+h )(Pk+3/2 + Pk+Y') + (wk+y, - wk_y,)(Pk+Y, + Pk-Y,)
k+Y, k+h 46z 46z (C6)

Thus the simplest advective form for the continuity equation on the C-P grid consistent with the
flux formulation (C4) and (C2) appears to be:

P
, +~.v(Pk+Y' + Pk-Y,) + Uk+1 .V( Pk+312 + Pk+Y,) + wk+y, (Pk+3/2 - Pk+Y,) = 0 (C7)

k+Y,1 2 2 2 2 26z

This is the averaging used by Arakawa and Konor (1996) in their equation (3.6). It is to be
contrasted with the more desirable form that is usually assumed, namely

U +U W (p -p)
P

+ k k+1 Vp + k+Y, k+312 k+Y, - 0
k+hr 2' k+Y, 26z - (C8)

(b) Potential vorticity conservation on the Lorenz grid

AM show that the C-P grid has an analogue of the quasi-geostrophic form of "generalised"
potential vorticity conservation when (C8) is the advective form used for the continuity equation.
The principal approximations of quasi-geostrophic theory used in the derivation are:

that the vertical advection of potential density is approximated by vertical advection of a
"background" stratified state, Po (z) == D(z), which depends only on z and that horizontal

advection by the ageostrophic flow is neglected so that (u.V)<p = J(If/, <p) for any field <p where

p = D(O) folf/. (D has been introduced here simply to avoid confusion of subscripts.) The
conservation equation (on the C-P grid) is of the form:

qkl + V.(Ukqk) = 0 for k = 1,2, ...K (C9)

where K is the number of interior full levels and

q = V2IJf + f + f02 [If/k+1 -If/k - If/k -If/k-I] fa' r k = 2 3 K-1k h't' k 2 2 ? ., ,.. ,

&k Nk+Yz N;_Yz
(Cl0)
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NL'I2 = g (Ok-'12 - ITk+312) 1(20k+YzLlzk) . (Cll )

See AM equations (4.6) and (4.S) for expressions for ql and qK'

AM derive an expression for the potential vorticity equation
written in the form:

o, ('\72 I Dk+1 '\72 ) _ak - Vhlf/k + f)+ )k+l--( VhV/k+l + f -
Dt Dt

2j~ {Ck DkPk -Ck+1
Dk+1Pk+l} for k c:: 2, ..K-1

&k Dt Dt

on the Lorenz grid which can be

(C12)

where

Dk(jJ I Dt == (jJt + ] (If/k' (jJ)
IT - ITkk-l

ak = 0 - IT
k
+
1k-l

&k+l ITk+1 - Ok+2
hk+1 = 0 0Llzk k - k+2

&k
ck = IT - IT

k
+
1k-l

(C13)

(C14)

See AM equations (5.17) - (5.21) for expressions for the equations for levels 1,2, K-l and K.

The I.h.s. of (C12) involves a weighted vertical average over two layers of the horizontal
advection of the vertical component of the vorticity whereas (C9) and (Cl 0) involve advection of
the vorticity at a single level. This difference between the Lorenz and C-P grids derives from the
difference between the continuity equations (C.3) and (CS). The potential voticity equation is
derived from the vorticity equation,

~t (V~If/+f)- fw, =0 , (C15)

and these continuity equations. On the C-P grid the vertical velocities can be eliminated directly
whereas on the Lorenz grid the vertical velocities can only be eliminated by using a unique
combination (weighted average) of the vorticity equation at two levels and (C3). As AM remark,
the potential vorticity on the Lorenz grid should be considered to lie at half levels rather than full
levels. Recognising this point one easily appreciates the need for some form of vertical averaging
of the advection of vorticity in the potential vorticity equation. The form in (C.12) is not ideal (as
noted when discussing (C7» but is acceptable.

A more important issue is whether the r.h.s. of (C12), the vortex stretching term, can be re-
organised into an advective form. It is easiest to show this using the pressures of the Modified
Lorenz grid which lie at the model half levels and are related to If/, P and P on the full levels of
the Lorenz grid by:

Pk = IT (O)fOlf/k = Pk+'12+ Pk '12
2 g pJ1Zk = Pk-'12 - Pk+'12 (C16)

Using (C16)
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gJ ('11" p, )&, ~ J ('II"~ ~ \If, y, , PH - p,,~ )~ J ('IIh~'p,_") ~ gJ ('II,,~,p, )fI.z,. (C.17)

Similarly one can show that

J (lfIk+l' Pk+l) = J (lfIk+%' Pk+l) (C1S)

Thus the r.h.s. of (C14) can be re-expressed as:

2fo {c Dk+1Pk+l _ C DkPk}
6z

k
k+l Dt k Dt

= _ 2fo Dk+% {6Zk+1Pk+l _ &kPk }
6zk Dt ITk - ITk+2 ITH - ITk+1

=_ f02 Dk+Y2 {lfIk+3/2 - IfIk+Y2
6zk Dt NL1&k+l

IfIk+Y2- IfIk-% }
N;6zk

(C19)

in which

N; = g(ITk-1 -ITk+1)/(2ITo&k) (C20)

(c) The Computational Mode of the Lorenz grid

The vertical normal mode problem with rigid lid boundary conditions involves only the interior
vertical velocities. On both the C-P and Modified Lorenz grids these are stored at the half-levels.
So the number of non-zero vertical normal modes equals the number of internal half-levels on
both grids. On the C-P grid the density is also stored at the half-levels so one can expect any
density field, and hence any initial conditions for density, to be expressible in terms of the density
modes paired with the vertical velocity modes. On the Lorenz grids the densities are stored at full
levels so there is an additional level at which the density is stored. It is clear that none of the non-
zero vertical velocity modes has an accompanying density structure which varies rapidly enough
in the vertical to represent a density field which changes sign with grid level. Thus there must be
an additional normal mode with this density structure whose vertical velocity is zero at all levels.
From (64) it is clear that this mode is stationary. Some care is needed to determine the rest of the
vertical structure; for example if both (69) and (70) were applied one would conclude that the
mode had P» = Pk+Yz = O. Using (66) with suitable homogeneous boundary conditions for P» one

could conclude that the Pk are zero, but this cannot be established directly from (65). The usual

argument is that the mode has Pk = Uk = vk = 0 as this is clearly a solution. Any initial density field
should be expressible using this mode together with the standard normal modes.
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