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1. Introduction

Recent work by Chorin (1981, 1982) gsing a three dimensional vortex
method, suggests that, if incomprcésible, inviscid flow can be described by
Euler's equations, the vorticity becomes infinite in finite time for all
but special initial data. Work by Morf, Orszag and Frisch (1980) and
Brachet et al (1983) also indicates that there may be a singularity in
finite time. This has important implications for any models using the
inviscid, incompressible equations of motion with sub-grid scale
parametrizations as the problem may be ill-determined and the solution may
not necessarily converge as the mesh size is reduced, see Cullen (1983).
Results may be very dependent on the form of artificial viscosity that is
used. This is becomiﬁg increasingly important in meteorology as we seek to
resolve motions of ever decreasing scales.

A further result of Chorin's work is that the vorticity stretches
unevenly and that the highly stretched vorticity collects itself into a
body with shrinking volumne. He calculates that the Lz support of the
vorticity shrinks to an object of Hausdorff dimension of approximately 2.5
as predicted by Mandelbrot (1972, 1974). This is not discussed here but
will be the subject of future investigations, as the intermittency of the
turbulence implied by a Hausdorff dimension between 2 and 3 will again have
implications in atmospheric modelling, particularly in the form of closures
used for modelling three dimensional turbulence.

Tt is important, therefore, to verify the work of Chorin on the
inviscid problem and then, by adding viscosity, attempt to simulate three
dimensional turbulence in order to provide a means of checking turbulence
parametrizations currently used in finite difference methods. The high

resolution of vortex methods in the regions of fluid containing vorticity



allow smaller scales of motion to be resolved than equivalent conventional
grid point methods. The extension Lo viscous flow will be a subject of
future work.

In general, vortex methods approximate the vorticity of a fluid by
collections of ‘vortex elements' such as point vortices or sheets in 2
dimensions and by line vortices, tiles or line segments in 3 dimensions,
see the review by Leonard (1980), and then follow their movements in order
Lo study the behaviour of the flow. The high velocities induced in the
flow by these singular distributions of vorticity are suppressed by
considering the vortex elements to have a finite core, or associated
non-singular distribution of vorticity, allowing stable solutions of the
equations of motion by distorting the close interaction of the elements.
Mathematical proofs of the convergence of vortex methods, see Hald (1979)
and Beale and Majda (1982a), basically use the finite corxe of the elements
as a mean§ of providing stability and avoiding infinite induced velocities,
once sufficient resolution of the vorticity field has been obtained.
However it is also possible to consider the smoothed equations as exact
solutions for the vorticity field composed of elements with small support,
such that the vorticity vanishes outside the core. A further viewpoint is
Lo consider the vortex wmethod as a means of approximating a velocity field,
rather than the vorticity field, such that the distribution of vortex
elements is found such that the best approximation to the velocity is made
rather than the vorticity. Hence it may be possible to consider a general
flow containing widely distributed vorticity to be approximated by that due
Lo vortex elements concentrated oﬁly in the regions of high vorticity or
that simply the evolution of the general flow described by the initial

vortex elements is being studied.



wWhen the evolution of the flow associated with a region of vorticity

whose support is covered by single elements, in the plane perpendicular to
the direction of the vorticity, is considered it is not obvious what
situation is being modelled. Chorin (1982) follows the evolution of the
configuration of single vortex filaments with an associated core of
constant radius, thus it can be argued that he is either modelling the case
of single line vortices, vortex tubes with vanishingly small
cross—sections, where the core size jﬁst produceé stability and removes the
singularity, or that of a vorticity field composed of elements with small
support, given by the core size, or an approximation to a flow containing
more widepsread vorticity. Il is important to ensure that the initial data
is not singular when considering the finite time ‘blow-up’' of the Euler
equations and to consider the implications of the use of a given core size,
a matter of controversy in the fiecld of vortex methods. The work discussed
in this technical note attempts to address this problem and results
indicate that the core size represents the size .of the cross-section of a
vortex tube but further studies increasing the resolution in the
cross—section are required in order to verify that conclusion.

Our attempts to reproduce the evolution of a turbulent vortex,
described by Chorin (1982), found that the evolution was dependent on the
time integration scheme and the size of the time steés used. However all
runs eventually produced a rapid increase in 'Vorticity' as measured by the
Ly and Ly norms. To overcome this apparent lack of congistency in the
results and to use smoother initial data, particularly without the problem
of the initial representation of curved vortex filaments, Chorin's method
has been extended to consider the evolution of a periodic lattice of

straight vortex filaments. This has also enabled direct comparison with




the implementation of another three dimensional method déscribed by Beale
and Majda (1982 a) and b)) that they proved to be stable and convergent for
a smooth, initial velocity field with igitial vorticity of bounded support.

One important result of this work is the identification of the
possible role of the mechanism of pairing of opposite signed vorticity in
the rapid production of vorticity whilst conserving energy. This has been
noted in previous work, for example Chorin (1982) as a means of conserving
energy but not as a way of amplifying the increase in vorticity. It also
suggests a method of including viscosity in the method by removing portions
of filaments where pairing has occurred. This is supported by laboratory
experiments, see Leonard (1980) for references, where filament loops in
proximity may, depending on their relative orientation, attract each other
Lo the extent that their vorticity fields are cancelled significantly where
they overlap.

This technical note sets out the theory behind vortex methods, as well
as the details of Chorin's and Beale and Majda's methods, in section 2.
Section 3 deals with the numerical techniques employed and the diagnostics
produced for each of the methods in the case of a periodic lattice of
filaments. The results of the integrations are presented in section 4 and
the conclusions in section‘s.

2. Vortex Methods for Flow Simulation

2.1 Theorectical Background

The Euler Equations for three dimensional, incompressible,

inviscid flow are
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where WO is the vorticity, U< the velocity and Lthe

differentiation vector.

The combination of equations (2) and (3) gives the Poisson

Equation
Ky-z = e
w = -Vx W (4)
—»-—7\
IfF Wwin = 0 ie the normal components of velocity on the

50£b1uz
boundaries are zero the solution to (4) may be written as the

Biot—-Savart integral
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HHence the fluid velocity is uniquely determined kinematically from the
vorticity field. Since from the theorems of Helmholtz and Kelvin we
know that the inviscid motion of the vorticity is given by the local
fluid velocity we can consider inviscid fluid dynamics in terms of
parcels of vorticity which induce wmotion on each other as an
alternative to the pressure-velocity description. This is particularly
useful when the flow is characterized by regions of concentrated
vorticity in otherwise irrotational fluid, such as can occur in
incompressible flows at high Reynolds numbers. Then the computational

points will be concentrated in the regions of interest in the flow.
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Simple motions illustrating the mutual induction processes are a
vortex ring propelling itself along its axis and a pair of aircraft
trailing vortices inducing downward motion upon each other. Flows of
this type can be simulated by discretizing the vorticity containing
regions and tracking the discretization in a Lagrangian reference
frame.

2.2 Chorin's Mcthod

Chorin considers the solution of Euler's Equations in a unit cube
box with periodic boundary conditions. He supposes thal the initial
data can be approximated by M vortex tubes or filaments of small but

finite cross-section. The circulation of the ith tube is r: ”

-
T’.b = (S\ w - AR = constant of motion
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Then, if OC (t) is the position vector of a point moving with the
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fluid, the velocity oo .t} induced by the filaments at D¢ (L)

can be approximated by the Biot-Savart Law
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since the expression for the velocity «is singular when XK(t) lies on
a filament the velocity is then given approximately by
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The function ~\¥,(a) is introduced to take account of the finite
cross—section of the filaments to avoid the infinite velocity induced
by close—neighbour interaction on infinitely thin filaments.
The motion of points are given by
ATy o lae
o

The vortex filameyts are further approximated by rdl vortex segments
of length i Sdb ;\:\‘H)C):\)\\); and cizculat.ion Pb , see figurc
2.1 The motions of the centres of the end points of the segments are
followed, so that the vortex stretching is represented by the increasc
in separation of adjacent nodes, ie the increase in length of the
vortex segments.

i The velocity of the nodes (endpoints) is given by
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A S:) are limited to some value SL/.

The lengths of the segments

Once this value is exceeded the segments are split at their midpoints .

such that if
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Therefore the number of points followed increases as the length of the
filawments, and hence the vorticity, increases.

Since there are an infinite number of image vortex filaments to be
considered in a periodic domain, the number of images considered must
be limited. This is done by applying a maximum cut-off value, Rmax, to

o e N . ) ; g
l o\;) L so that segments of separation greater than Rmax from a
—_ n

given node OC 4 are not included in the velocity calculation. Hence

if Rmax < 0.5 only one ‘nearest' image needs to be considered.
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The motion of the nodes is given by
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Obviously the solutions may depend on the three parameters, Rmin,
Rmax and ,Q as well as the time integration scheme and the dependence on

these must be ascertained. Trial integrations in which these




parameters are varied are discussed in Section 4. The dependence on
Rmax and Q_is found to be weak, increasing Rmax and decreasing 1_both
increase the resolution in the method and improve the accuracy of the
solution. However the parameter Rmin and the function Aux&\affect the
form of the solution as the variable Rmin appears to represent the
radius of cross-section of a vortex, in the case of one filament per
vortex, and the function‘ﬁuiu is }inked to the vorticity distribution
within the core of the vortex.

2.3 Beale and Majda's Method

In the algorithms described in Beale and Majda (1982 a) and b))
the velocity is updated crudely similarly to Chorin's method. However

the vortex stretching is now incorporated via a Lagrangian update.

-
For position o (D)= (2, 5 202, 7(’5\
[, } -
fluid velocity w (2 W) = Ly, v ywa)
-2 = _—
and vorticity &R (21N = (W) Wy, Ww3)

=
the trajectory ’UCdAK\ of a fluid particle starting at time zero at

—_— e
the position X 4(0)= & = (&£, ydhy yda) is again determined
by the equation
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The expression for the velocity, the Biot-Savart law is used in the

form
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where K is the matrix value kernel
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The stretching of vorticity can be described by the vorticity equation
i - =5 S e
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This can be expressed in a Lagrangian formula
=
. —_ = =
iy i ;
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see Milne-Thomson (1968) or Holt (1982), involving the gradients of

-=>
velocity at time t with respect ot the initial positions of the points Stmffx

=
where Y7;~\X (Dcd\\%\\) is the 3 x 3 Jacobian matrix
« g =7 e
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and W (X )C;) = W OC (O0Y is the initial vorticity.

The initial vorticity fields are discretized onto a three dimensional
uniform grid of grid step h. Values of position, velocity and
vorticity are held on this grid, the grid data points moving with the
fluid but the velocity derivatives being calculated with respect to
their initial posilions, thus wminimizing errors due to errors in
evolving quantities. There are thus two coupled nonlinear ordinary

differential equations
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and since for (W g o) = O 5 a w () = O
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data need only be held on a set of points slightly larger than the set
of points falling in the support of the initial vorticity field.

The kernel K is replaced by a smoothed kernel K ¢ where

Kg @)= (W -V K ¢ @) A
and :)i_s Qi?'\) = E;-2> :ki (~%§1'\

S
‘X being a similar cut-off function satisfying SX Ax'!= | and
other stability and accuracy conditions, see Beale and Majda 1982a) and
1983, Thus W W) = < Kg(u;u\—océm\x Lo () h
d

Comparison of the Two Vortex Methods for Simple Initial Data

b e b Form of Initial Data

Chorin's (1982) data contained sharp discontinuities in the
gradient of the space curve describing the filameng, see fiqure 3.1,
this has aroused concern about the nature of the initial data since it
is not clear whether the vortex segments are an approximation to a
smooth vorticity distribution, such as a curved filament, or one

containing sharp corners. Also his time integration scheme, Euler's
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method, was very crude and started with a long initial time step. When
the same initial conditions were used with a variety of
time—-integration schemes the vérticity was stable for varying lengths
of time. However the evolution of the vorticily for all cases showed
the same general pattern, the Lp and NLp norms remaining nearly constant
for a period of time and then rapidly increasing.

Direct comparison of the Beale and Majda method and Chorin's
method, without the problem of the initial representation of curved
vortex filaments is possible by considering the evolution of a periodic
lattice of straight vortex filaments. Each unit cube contains two
filaments crossing at right angles, separated by 0.1 units, see figures
3.2, 4.1a) and G.ib). One filament has vorticity parallel to the x
axis and the other parallel to the y axis, cach having unit circulation
and an assumed radius of 0,025 units.

3.2 Implementation of Chorin's Method for Periodic Lattice

3.2 a) Numerical Teéhniquc

A maximum cut-off of Rmax = 0,495 was used for most of the
integrations and a limiting segment length of &. = 0.05.
A slightly different function fh) (a) was used to that described

earlier to allow direct comparison with the Beale and Majda method.

B b > Rema 2 VoA £ Rencoe
’-1-\) () = Q“"““g \EZ\ & Rﬂ\’\n
W= <0 \ R\ > Rmax

with Rmin = 0,05
A fourth-order Runge-Kutta time integration scheme was used for most
integrations with a time step of 0.001s. An arbitrary test for

stability was used as in Chorin (1982) comparing the product of the
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time step, dt, and umax, Lthe maximum velocity of a node calculated at

each time step, with a distance F = 0.03, chosen to be shorter than the
maximum segment length., The Limo step was reduced if dixumax was
larger than F.

However in most runs using Chorin's method this limit was not
exceeded and a constant time step of 0.001 s was used. It may be that
a more accurate stability criteria could be used but it is not known to
the author.

The final form of the program utilized the initial symmetry of the
data in order to limit the number of calculations per time step and to

preserve the symmetry at later times. Runs without this simplification

began to lose symmetry due to rounding errors and this was particularly

evident after about 300 time steps. Most calculations were performed
in single precision on an IBM 3081 and the positions and velocities of
the nodes stored in single precision. Double precision was used for
large sums such as involved in the velocity calculations and Ly and Lo
noxrms of vorticity.

The initial data contq;ys symqu;y since the initial position

vectors of the filaments, Xﬁ and X ® are

(" ;
Xh= (o.o) Oc.,_)—-o-o%\ ~0-6 & Xa1& 05
(o= 0 s L ) =
The flow is considered inside the unit cube
0.8 & ot L. 10,5 i = 1, 2, 3 with periodic boundary

conditions. At all times the flow at = < O can be obtained from

that calculated at z7> 0
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Since if

Thus the velocities and positions of only one filament need to be
calculated and they are then applied to the second filament.

The motions of the node points are given as the finite difference
solution to the equations

Ax ) = KX (eY
Ak
The lengths of Lhe segments dl are calculated after every time step and
the segments are split at their midpoints if dl >‘Q_ producing more
node points to be followed at subsequent time steps.

Initially integrations were run starting with the two filaments
each split into N equal length segments, typically of length dl =.Q ==
0.05. lowever, after running for sufficient time that the filaments
had stretched substantially, and Lrying different values of dl such as
JL/1 and\&Iq_ it was obvious that better resolution, with fewer
points, could be obtained by only decreasing the initial values of dl
in the xegions;where rapid stretching occurred. Hence initial segments
of unequal lengths were used varying from dl = l = 0,05 to dl =.£/128.

The standard integration, referred to in Section 4, Lthus has
unequal length initial segments, as described above, Rmin = Q.OS, Rax
= 0.495, | -~ 0.05, time step dt = 0.001 and 4th order Runge-Kutta time
integration scheme. Tests were carried out using equal length initial
segments, Rmax = 0.995, different time integration schemes and
different forms of the function‘wp (a). The effect of increasing Rmax,

in order to include more points in the velocity calculations had little

19



effect on the solution, as did the equal length initial segments. When

Rmax was increased, with the other variables unchanged from the
standard case, so that the accuracy of the calculations should
increase, the only effect on the results was to produce a slightly less
rapid increase in the Ly and Ly norms of vorticity. The effect of
cqual length initial segments, with lower resolution, and the other
variables unchanged was to produce a slightly more rapid increase in
the Ly and Ly norms. Changes to the time integration schemes and the
function-hqd)had far greater effects as discussed in section 4.

3.2 b) Diagnostics -~ Stretching

The amount of stretching is followed as in Chorin (1981, 1982)
using a tag Q where, initially, for N segments per unit length along a

filament and hence N+1 node points

CQ; . C = l) N
VolL
where Vol'b = volume of the ith segment
= TUc2 Al v
where [ = the initial radius of the filament = 0,025,

AX: = length of the ith segment
The volume, and hence tag of the initial segments, is constant but if a
segment is split at its midpoint the tag must be doubled, since the
volumes of the half segment are equal, and the same value assigned to
each half-segment, If one segmenet is split there will then be Ni2
node points, N+1 segments and N+2 tags Qi per filament. Hence the

value of the tag for a segment is a measure of the amount of stretching

it has undergone.
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3.2 c¢) Diagnostics — Scale Collapse .

As a segmenet stretches its radius must shrink in order to
conserve volume. Moore and Saffman (1972) suggest that the radius will
remain independent of position along the filament by arguing that
internal waves within the filament would act to smooth out any
variations along the length of the filament. However, if as in Chorin
(1981, 1982) the radius variation is not smoothed along the filament,
its minimum value at a given time may give an indication of the scale
collapse of the motion. This needs to be verified by use of fourier
analysis of the induced velocity field in a unit cube of the fluid.

r.t\%\ =

= radius of the ith segment

where (;\L = length of segment at time t
QL = value of tag for ith segment at time t.

3.2 4d) Diagnostics - Lj and Ly Norms of Vorticity

The L1 norm of vorticity is defined as the integral of the

vorticity norm over volume
-
L\ (W)= LS cl\/
However the circulation r‘ is given by

-
W Sw.ncm
M= | %
In this case - for each filament,since W is perpendicular to

the cross-section and parallel to the length of the segment
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and hence the L, norm ig s
1 M N

kitwy = <g \ FTrvafal - & (&&.15

L:\ 3:‘

That is the L) norm of vorticity is given by the total lengths of the
filaments in a unit cube. Similarly the Iy norm of vorticity is given

by

MmN N
=i 5:\

3.2 e) piagnostics — Enerqgy Ca{gg}ation

The total kinetic energy per unilt cube was calculated
approximately by using the velocities calculated ocn a 20 x 20 x 20 grid
in the unit cube such that.

Z (u‘l«\x;‘-\—u;\\hs

kinetic Energy =

3.3 Beale and Majda Method for Periodic Lattice

3.3 a) HNumerical Techniques

The two crosssed vortex filaments were discretized onto a grid of
grid length h. For initial calculations tﬁe cross—sections of the
filaments were limited to one grid point only and a value of vorticity
was assigned to these points so that the circulation was equal to one

for all the resolutions used, h = 0.05, 0.025, 0.0125 and 0.003125.
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The three lowest resolution were run with boundaries 0 and 1 and
ithe highest resolution with boundaries —~0.5 and 0.5. The reason for

ithe change was that some symmeltry was lost due to rounding errors in

the calculations.

For grid size h and a unit cube bounded by planes

= A and 1+A, A = -0.5 or O
3 5

o€
-
) - ,
initial vorticities ULO q(m) and b),g(m) were assigned Lo points xﬁ(my
-
on the first filament and ><e,(n{) on the second filament,
respeclively.
= .
wvhere Xﬂ(m\z (3(‘(m§ ) O 5 € vy} y O~5+R—ch(m\\
2 .
. .S +OC, (W
X, (M) = A+0.95 m:\,\l+l Q\W&:\ﬁ)—
9()_ 1,0 (m—’))x\’\'\'Q
Xy (MY = nh n= 0.05
h
and

w ( G v \
WOpRlm) = 0)“0,03 y w%(b")(})o)o) Dheae  Wo = —;‘—2

No other points were required as the initial vorticity was along the
filaments and hence only lengthwise derivatives of velocity werc
required. Again, the symmetry was used fully in the calculations,
vorticity increments, velocities and positional increments were
calculated for one filament and then used for the second filament as in
Chorin's method. The same cutoff Rmax was used as in Chorin's method
iﬁ order to limit the number of calculations required to find the

velocities in a periodic domain and the nearest image was used if
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rmax £ 0.5. There is a slight difference in that the distance tested
in Chorin's method is between a node point and the wmidpoint of &
segment
S . -
= LN = I = (L n
l.‘,(oc. -‘\‘OC-\"'DC-J&
& 3§ )
whereas in the Beale and Majda method the distance is between two grid

points containing vorticity

- =
eg I X(m\-XL\<\\
A A
This difference bécomes more important when the minimum cutoff or
filter function is applied as the distance is certain to be zero when
w=k in the Beale and Majda method but will only be zero in Chorin's
method in the exceptional case of the midpoint of a segment coinciding
with a node or the length of a segment becoming zero. This was the
reason for altering the cutoff in Chorin's method from Rmie O Lo ler‘\?’
Lo avoid testing for zero when using the same expression in the

filter function in the Beale and Majda method.
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4th order Runge-Kutta time integration was used, as in Chorin's method,
for both the position and vorticity updates, as it was found to be the
most stable integration scheme tried. A 2nd order centred difference
was used for the velocity derivatives.

e.q.

-
L,:)'L( X (o) ){:-B‘c\ = W (s tm) ,k\“*‘

!

W, (¢ (o) ,O\xAtXQ‘A'(U\'&(')( (ma)) ,»r\— w (xim-n5%) §
2h

vhere f is a factor depending on the tiwe integration scheme used.

3.3 Db) Diagnostics

The Ly norm of vorticity was calculated as
2 \wﬁkm\\\'\ e é_\wg(m\\\
m n
and the Ly norm as

f._ \ i)%(m\\l\ng ~ 5 | Bam TR

The method of assigning the initial values of vorticity to the grid

points meant that although the initial positions of some of the grid
points coincided with some of the nodes in Chorin's methods,
circulations were equivalent and initial L norms were equivalent the
Lz norms were not equivalent. IL is not clear as yet whether this has
any major significance in the evolution of the vortex filaments.

The kinetic energy was estimated using the same method as for

Chorin's schewe using the same 20 X 20 x 20 grid in a unit cube.
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4,

Results of Numerical Integrations

4,1 Chorin's method

a) Standard Integration

The standard integration, as described in section 3.2 a) used Rmin
= 0,05, Rmax = 0.495, i.r 0.05, time step = 0.001 and a 4th order
Runge-Kutta time integration scheme. The initial data had maximum
resolution in regions of maximum stretching as detexmined by previous
trial runs.

The initial configuration of the vortex filaments in @ unit cube
is shown in figure 4.1 a) and b) in a plan and side view, the symbols
marking the node points. The two filaments become increasingly
tangled, as each induces the other to move around it, and the evolution
is shown in figures 4.2 a) and b), 4.3, 4.4 a) and b), 4.5 and 4.6.

After a slow initial increase in vorticity, until about 0.2 secs,
there was then a rapid increase in both the I, and Ly norms of
vérticity such thét, although there had only been approximately a 50%
increase in vorticity by 0.2 secs, the Lj norm was over 30 times its
initial value when the integrations were stopped at 0.399 secs. The
integrations were stopped when each filament had 999 segments produced
from the 160 initial segments. The evolution of the I3 norm of
vorticity is shown in figure 4.7 and table 4.1 aﬁd that of the Lz norm
in table 4.3.

If the vorticity is to become singular in a finite time the rate
of increase of the Ly norm of vorticity must be greater than an

exponential increase,
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Hence by considering

oy e &) L fidye) e p [£1c)

-

—_— ™
wvhere L is constant

AL () - L, (w0,

]

A T
_ O\ht (W) b lwo,t S censtant
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If the ratio of the rate of change of the I,; norm to the L norm
increases with time the vorticity is increasing at a rate faster than
exponential., By considering table 4,2 it is seen that the ratio
increases until about 0.26 sec when it becomes roughly constant, until
approximately 0.36 secs when it begins increasing again. These results
are confirmed wheﬁ the resolution of the 0.001 timesteps is used.
Obviously further integrations are required if the trend is to be
established. The variation of the rate of increase of the Ij norm may
be linked to the intermittency observed by Chorin (1982) or may be due
to the decreasing accuracy of the solution due to rounding errors and
errors inherent in the method.

This obviously needs further study and although the results
suggest that the vorticity is tending to a singularity they are not
conclusive. V

Table 4.3 and figure 4.8 show the variation of the maximum and
wminimum segment radii with time. If the minimum radius is a measure of
ithe smallest scale of the motion there is a scale collapse of almost 3
orders of magnitude in the integration period. However since the
cutoff Rmin is constant and determines the velocity field it is felt
that the winimum radius may not be a very good measure of the scale of

motion but this needs to be checked by considering fourier analysis of
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the velocity field. The fourier analysis is not straight forward duc

Lo the nature of the velocity field induced by the vorticities since
the gradient contains a discontinuity at distance Rmin from a filament
and hence even the initial field contains an infinite number of modes.
This makes it difficult to distinguish signals due to small scale
vorticity, especially since, as seen in figure 4.9, the smallest scales
occupy only a small fraction of the total volume occupied by vorticity.
However the radius is a measure of the stretching that has occurred
since, as the radius decreases from r to xr the segment length

increases f{rom k Lo &

2¢ =
By the end of the integration period a very small fraction of the

filaments have stretched by a factor of more than 105 whereas other
parts have been compressed slightly. As shown in figure 4.9, the most
highly stretched segments with high enstrophy (L norm of vorticily)
occupy a very small fraction of the total volume, again an indication
of intermittency.

one test of the stability of the wmethod is the conservation of
kinetic energy. IL should be possible to calculate this from the
vorticity distribution directly using the equation

.- _S_S 5. W3 AVEAVE)
AR \ 3 - 320

However, I have not found a form consistenf with the cutoff applied to
the velocity field calculations, so the approximation of calculations
on a 203 grid has been used. As seen from table 4.4 a) the kinetic
energy is roughly conserved. The conservation of energy, despite
rapidly increasing vorticilty, is achieved as descridbed by Chorin (1982)

by pairing of opposite signed vorticity such that the velocity fields
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cancel. 1In this case it can be achieved either by two parts of the
same filament or the two separate filaments in a unit cube, lining up.
This is illustrated in figure 4.6 where the solid and dashed lines mark
the two separate vortex filaments in a unit cube and the arrow heads
mark the direction of the vorticity. Il is felt that wmaybe the vortex
pairing is in part responsible for the rapid increase in the Lj norm. A
pair of rectilinear line vortices will induce motion on each other such
that they will move in a direction normal to the line joining their
axes (see Batchelor pg 534) and hence sections of paired filaments
could move causing stretching at the end of the paired section. Thus
the detailed interactions of vortices may be important for correctl
modelling of vorticity, especially in the viscous case, where it may be
possible that paired sections merge removing vorticity from the fluid.

b) Constant length initial segments DLI = 0.05

Initially the integrations were run with all the same parameters as
in the standard case but with all the initial seguents of the same
length, 0.05. However after running tests with increased resolution it
was seen that the segment splitting could not reproduce the curxvature
of the filaments well when Q_= 0.05, see figure 4.10 a) as compared
with figure 4.2a). This was the reason for the variable length
segments used in the standard integration. Table 4.1 shows that the
evolution of the Lj norm agrees well with the standard case until about
0.3 secs when the constant case Ly norm begins Lo increase more
rapidly, probably due to increasing errors resulting from the lack of
resolution. Figure 4.10 b) shows that the configuration of the

filaments is also different from that of the standard integration,
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figure 4.4 a) by 0.35 secs. Table 4.4 a) also shows that the enexqgy is

greater than the standard case for most of the integration period,
however it is still roughly conserved.

¢) Increasing the maximum cutoff, Rmax = 0,995

In order to test the sensitivity of the results to the
approximation to periodicity the maximum separation of points included
in the calculation of velocity was increased to 0.995 from 0.495. This
means that more 'images' are included in the calculation and as Rmax
tends to infinity the solution will tend to the correct solution for
periodic data. The results are very similar to those from the standaraq
case, indicating that the smaller cutoff, used to reduce the number of
calculations required, is a good approximation to periodic boundary
conditions. The evolution of the Lj norm of vorticity, compare table
4.1 and 4.5 a), shows that the increase with time is slightly less in
the case of Rmax = 0.995 but the trends are the same. Table 4.5 b)
shows that the kinetic energy is again roughly conserved. The general
features of the filament configurations are the same, such as the
pairing of filaments, although the actual positions are slightly
different.

d) Simpler time integration schemes

In oxder to try to decrease the CPU time required for the
integrations simpler time integration schemes were tried, such as
centred difference and Euler forward difference. This also tested the
consistency of the solutions as trials with Chorin's turbulent vortex
data, see the introduction, section 3.1 and figure 3.1, showed that the
solution depended on the exact scheme and size of time steps used. All

schemes agreed well until approximately 0.2 secs, see table 4.6. Time
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splitting occurs in the centred diffexence scheme solution which
becomes evident as an oscillation in the maximum node point velocity by
0.274 secs and in the Iy norm of vorticity iy 0.312 secs, the amplitudoe
increasing until the calculations were stopped at 0.365 secs when 999
segments had been produced on each filament. By the time the
instability was evident the solution was diverging from that obtained
from the more accurate 4th order Runge-Kutta time integration scheme.
The instability is also shown by an increase.in the calculated kinetic
enerqgy, see table 4.4 a), supporting the use of the conservation of the
calculated value as a measurc of stability and correctness of a given
solution. The stability of the centred difference scheme is improved

by using a time filter such that

5(7;(“‘= (\-S\ (:D—C?n_‘ =¥ lm\xx a(in\\ = S[Q‘;ﬂ‘;“q\

where n indicates the time level and 5>is a weighting factor. This is

equivalent to a weighted average of the centred time difference

= A = 0 i S
solution and the solution such that X is the mean of OC and oS¢
Using i = O.1 , good agreement is found with the fourth order

Runge-Kutta solution and with no obvious signs of oscillation by 0.399
secs. There are signs of an increase of kinetic energy by the end of
the integration period, so the solution wmay not be reliable in further
integrations, see table 4.4a.

The Euler first order forward difference time ;ntegration scheme,
as used by Chorin (1982) diverges from the standard solution by the end
of the integration period, by which time the kinetic energy is also

increasing, indicating that the solution cannot be trusted.
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These tests show the reproducibility of the solution whilst
kinetic enexrgy is conserved.

e) Decreasing maximum segment length, L

Test runs to 0.3 secs show reproducibility of the solution when JL
is decreased. With all other parameters as in the standard solution,
the maximum segment length allowed was decreased to 0.025 and 0.0125
from 0.05. This should allow greater resolution of curvature and this
was in fact seen in the plots of the filament configurations, the
general shape being the same. The vorticity norms were slightly less
with the greater resolution, the Lj norm of vorticity being 13.2, 13.0
and 12.6 after 0.3 secs, decreasing with increasing resolution. For
the case with highest resolution the solution agreed with the standard
integration until about 0.16 secs and then the rate of increase of the
I3 norm was slightly lower.

f) Increasing time step dt

T'rial integrations with increased time steps also gave results
consistent with the standard integqration. Time steps of 0.005 and
0.0025 have been tried, the Lj norm of vorticity at a given time, after
about 0.34'secs, increasing only slightly with decreasing time
resolution,

g) Changing the form of the smoothing function ﬁh/ (a)

The various tests of Chorin's method déscribed above show that the
standard integration performed for the periodic lattice data produces a
solution, only weakly, dependent on the values of dt, Jl) Rmax, the
time integration scheme and the resolution of the initial data.
However, various runs with different forms of the smoothing function do

show marked differences as described below.
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In order to test the validity of the use of the filament radius as
a measure of the scale of motion a trial integration was run with the
value of Rmin allowed to vary Qith the radius of the segments, each
segment used in the velocity calculations having a radius determined
from the amount of stretching undergone, see section 3.2¢, at a given
time.

The function ]4’ (a) was then of the form

&0 ta) 7 (Leneac
\P‘) @ = \0\\3 Qm\n‘-) £ Vol & (Zmooc,
.2 .
(L 3 {ad & ﬂln\‘“ls

where Rminj = radius of jth segment.

Initially xaaius of all segments = Rminj = 0.05.

The reason for this change was that it was felt that when Rmin is
kept constant the vortex interactions are mistreated, reducing the
effect of vortex stretching on strain rates. The strain réte can only
increase due to the presence of more vorticity in the fluid since the
effect of increased velocities near filaments, due to the production by
stretching of intensified vorticity inside a smaller cross-section is
removed. Thus smaller scale structure, due to variable amounts of
stretching along the filament, may be lost, possibly introducing some
viscosity.

The results showed a far more rapid increase in vorticity, see
iable 4.5a), than for the standard integration. The integrations have
not been followed for a long period of time as yet because the far
higher induced velocities on the filament mean that the time step is
also rapidly reduced. The evolution is similar to the standard

integration until about 0.15 secs, then the maximum induced velocity of
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the filaments increases from a value of 1.6 ms-1 , approximately the
initial value, to 28 ms~1 by 0.197 secs and to 347 ms~1 by 0.224 secs
the end of the integration. ﬁﬁe standard integration does show an
increase in velocity after 0.15 secs and reaches 4 ms—l by 0.2 secs as
the two filaments approach each other, but the velocity only reaches a
maximum of 5,19 ms~l after 0.333 secs and has reduced to 4.7 ms~1 by
the end of the integration period, 0.399 secs, there being oscillations
of varying periods and amplitudes during the period. These velocities
can be understood by considering the induced velocity field of a
straight line vortex given by

P

> ,

l Lk(Cf\\ = = where a is the radial distance

Ao
fj is the circulation
which increases with decreasing a, see Batchelor pg 94. When the
3
cutoff @ﬁn}n is used the velocity field decreases with a inside the
'‘radius' Rmin to zero on the vortex. Thus the theoretical maximum
velocity, ignoring the effects of curvature, in this case will be - :
D\T\’ QM\!\

This is equal to 3.18 for Rmin = 0.05 and rises to 22 for the minimum
radius after 0.197 secs and 128 for the minimum radius by the end of
the integration. Obviously the approximations of the method will also
produce slightly different values for the velocities than theory
predicts. The increase in velocities and vorticity in the case when
Rmin is allowed to vary according to the stretching of individual
segments is apparently a result of 'pairing' of opposite signed
vorticity, as described earlier, producing stretching but this time

producing higher velocities, and hence more stretching than in the

standard integration, due to the closeness of the two sections of
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filaments. 7This suggested mechanism for the rapid produclion of
vorlicily requires further study, maybe a uniform value of Rmin should
be used for the whole {ilament if inlLernal waves smoolh oul varialions
along Lhe lenglh, Moore and Saffmian (1972). Chorin (1982) using
= RminZa stales thal when Rmin was allowed to vary, as in Lhis case,
the resulls were Lhe same as for Lthe case wilh constant. Rmin if Lhe
Limeslep, Q“and Rmax were adijusled. The olher paramelers have nol been
varied in this case and will be in future¢ studies since Lhe value ofjfl
in this case is larger than the reduced values of Rmin at Jater Limes,
which may be an unstable situation, also Lhe segments either side of a
node poinl do not conlribute Lo the velocily induced at. that poinl and
hence, if Lthe value of &_is larger Lhan Rmin, it may remove imporiant
conltributions Lo the velocity calculations.

Oone furiher observalion in this case is Lhal Lhe kinelic enerqgy,
see table 4.5 b), has increased by 0.197s so Lhe calculolions may be
becoming unreliable.

A final Lest inltegralion of Chorin's melhod used his form of Llhe

function 74, (a)

D L a2 R o>
WQ/(a\ = \0A3 ‘Zwﬂn.é;\a\éa‘zmnaac
( Remin Vva) lal 2 U

with Rmin = 0.05 = constanl as before.

Again the evolulion is similar Lo the standard inlegration until
about 0.15 secs when the TN, and Tip norxrms of vorlicily increase more
rapidly than in the standard integration, reaching 999 scgments per
filament and an IL,; norm similaf Lo that in the standard inlegration by

0.34 secs. Again vorlex pairing is observed, although the
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configuration is different from Lhe standard inltegration. The kinelic
enerqgy, see f{iqgure 4.5 b), is again increasing by Lhe end of Lthe
integration so Lhe resulls may not be reliable.

Obviously the resulls of Lhese inlLegrations show Lhal Lthe
evolution of Lhe flow is dependent on Lhe form of the funclion rky(u).
This funclion, certainly in the case where only one filament represenis
a vortex, conlains tLhe only informalion concerning the inlernal
structure of the vortex. Trials wilh a vortex ring configuration, with
non-periodic boundaries, indicale thal if the resolulion is
sufficiently high, thal is sufficienlly small segments lengths Lhe
resullanl velocilies of Lranslalion of the ring approximale Lthose of o
ring with uniform vorticily distribulion in a cross- seclion of radius
Rmin for a given ring radius. [lence the value of Rmin appears Lo
represenl Lhe value of the radius of Lthe voriex. 'The assumed value of.
0.025 hentioned in section 3.1 and table 4.3 doesn’'l affecl the
calculalions at all for the vortex latlice data wilh Rmin = 0.05, all
future radii just being scaled as the initial radius and Rmin. The
form of the function ﬁ\L (a) in the standard inlegralion does nol in

fact represent a uniform distribulion of vorticity bul one increasing

from zero at |a\ - Rmin Lo 3 at lal = zero
lal 2T R

The form of the distribulion is

whay) = -3 2 J(Zm'm"— \a\®
AT L min

Chorin's funclion '\¥ (a) in facl represenls a dislribulion increasing
from zero at. Rmin and becoming infinile on the line segmenis. It may
be possible that by keeping Rmin constani some diffusion is being added

Lo the problem, counlLeracling the rapid increase of vorticily.




4.2 Beale and Majda's Method

As the resolution along the filaments is increased the
configuration of the filaments appears to be converging to that
produced by Chorin's method as can be seen by comparing figures 4.11,
4,12, 4.13 and 4.14 with figure 4.2 a). However the resolution appears
to be unable to deal with the rapid increase in vorticity after about
0.2 gecs and the solutions diverge as can be seen in table 4.1, figure
4.7 and the comparison between fiéures 4,15 Eo 4,17 and figures 4.3 to
4.5, The solutions are able to follow the solution from the standard
integration of Chorin's method for longer periods into the integration
as the resolution is increased, the case with h = 0,003125 almost
matching the standard integration out to 0.25 secs. The Ly norms of
vorticity show a smaller increase by 0.4 secs than with Chorin's
method, although the increase in the Ly norm with resolution seems to
indicate that the solutions are converging to that obtained by Chorin's
method.

The variations of kinetic energy with time, shown in table 4.4 b),
do not provide conclusive evidence to support convergence. It was
hoped that as the resolution increased the kinetic energy would not
increase as rapidly with time. However there are no definite trends in
that sense, although all four cases do show an iﬁcrease in kinetic
energy with time indicating instability.

These results provide evidence to support the accuracy of the
solution obtained by Chorin's method but they do introduce a problem
concerning exactly what situation is being modelled. The solutions.of
{the Beale and Majda integrations may be converging to the singular

solutions for infinitely thin vortex filaments, since, as the
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resolution along the length of the filamenl is increased Llhe
cross—seclion is reduced, in order Lo have only one grid-poinl in Lthe
cross-secltion with a uniform grid. In the limil of infinile
resolution, Lthe cross-seclion will be infinilesimal and conlain
infinite vorticily, as the circulation is kept equal Lo one. However,
as discussed earlier Lhe value of Rmin and the funclions 14/(&) or
K(x) may override Lhe effeclive rgsolution ‘cross—section’' and provide
more important‘infoxmation on the radius of Lhe vortex and Lhe
distribution of vorticily. Alternalively the solution may only depend
on the circulation, set equal to one for all cases, when the
cross—seclion is small compared with Lhe periodic length scale of
separation of the filamentls.
B JCehclusions
The resulls from Lhe inlegralions using Chorin's Lhree dimensional
vortex produce a solulion only weakly dependent. on Lthe Lime jntegratiqn
scheme, Ltime slep, resolution of initlial dala, maximum segment lengih and
the maximum separation of segmenis from nodes. However Lhe value of Lhe
distance at which Lthe funclion f\¥ (a) changes form and the form of Lhe
function that is used close Lo the filamenls does appear importanl when one
filament represents a vorilex. The calculations need Lo be extended Lo
increase resolution in Lhe‘cross~section, core, of Lhe vorlices, so Lthal a
single vortex is represented, by a bundle of iilaments. This will aid
understanding of the situaltion being modelled by a single {ilament with a
given function 'LP (a) and value of Rmin. Initial trials with a bundle of
five or seven filamenls per vortex proQuce extra vorticily due Lo twisting
of the ouler filamenls around a cenlral one on the axis of Lhe vortex when

Rmin is of the order of the spacing of the f£ilaments eqg spacing and segment
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lenglth = 0.0125, Rmin = 0,0187. When Rmin was much larger than Lhe
spacing, Rmin = 0,05, spacing and initial segmenis lengths = 0.0125, the
twisting is suppressed bul the solgtion is not the same as for the standard
integration described here. Further study is required to investigate the
interactions between the searate filaments in a bundle Lo ensure lhat a
bundle does nol act as separale vortices.

The results from Lhe inlegralions using Beale and Majda's melhod
converge Lowards those obtained by Chorin's method as Lhe resolution is
increased, supporling Lthe accuracy of Chorin's melhod bul raising the
problem of whelher the intiial dalta being represented is in facl sinqular.

The evolution of the periodic latlice of vorlex filamenls shows a
rapid increase wilh Limc of the L} and Ty norms of vorlicily. This
indicales the presence of a singularity in finite Lime bul the results are
not conclusive as discussed in seclion 4.1 a). The laltice is conslrained
by periodicilty Lo keep its basic shape bul: as the vorlicity increases a
greater region of space contains some vorticity, although the actual volume
of fluid containing vorticity remains constant. These results support the
work of Chorin (1981, 1982) bul raise the aspecl that it is important Lo
consider their importance if, in fact, the initial data is singular.

An apparenl scale collapse of almosl three orders of magnilude is
obtained by the end of the integration period bul as discussed in seclion
4.1 a) the importance may nol be valid with the particular form of ~\¥ (a)
that hags been implemented,

Yossibly the most important producl of this study is that the
mechanism of 'vortex pairing', identified by Chorin (1982) as being

necessary in order Lo conserve energy, may in facl be responsible for the



rapid increase in vorticity. This thus identifies the need for detailed
consideration of vortex interactions in the implementation of three

dimensional vorlex methods.
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L1 Norm of Vorticity

TIME CHORIN
g Variable ! DLI=0.05 H=3,125x10"%
: %
R oL i
[ o 2.0 2.0 | 2.0
| 0.02 2.008 2.008 2.008
' 0.04 2.032 2,032 | 2.033

0.06 2.072 2.072 ; 2.073

0.08 2:12 2,12 | 2.12

0.10 | 2.18 2.19 | 2.19
[ 0.12 | 2.26 2.28 ; 2.26
| 0.14 2.36 | 2.39 | 2.35
[ 0.16 2.5 | 2.55 | 2.48
| 0.18 2.74 |  2.83 | 2.68
| 0.2 $.22 | 3.34 S |
. 0.22 4.14 L 4.17 1 3.94
| 0.24 5.38 ' 5.34 5.02
. 0.26 7.06 7.01 |  6.18
| 0.28 9.7 |  9.48 1 7.51
! 0.3 13.2 | 13.3 | 9.1

0.32 17.9 | 18.6 | 11.6

0.34 24.2 . 26.4 14.6

0.36 | 33.2 | 38.2 18.3

0.38 | 46.5 | 53,96 | 23,1

0.39 55.8 | 64.32 ?

0.392 | | 66.7€

0.395 | 61.2

0.399 66

0.4 28.4

fi=0.0125

2.0
2.008
2.032
2.071
2.12
2.18
2.25
2.34
2.44

NN
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o

w
W
N

w Ko
(SIS S« <]

DN W
oL oaw
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BEALE AND MAJDA

[=0.025

2.0

2.008
2.031
2.068
2,12
2.18
2.24
2.33
2.42
2.54
2511
2.92
3.16
3.42
R L
4.08
4.43
4.53
4.56
4.59

[=0.05

e

2.006
2.026
2.06
2.10
2.16
2.21
2.26
2.32
2.41
2:5
2.62
2.72
2.84
2,94
3.08
3.26
3.46
3.66
3.86

Table 4.1 Evolution of I,y Norm of Vorticity

All integrations used 4th order Runge-Kutta time integration scheme with

time step 0.001., Maximum cutoff Rmax = 0.495, Rmin = 0,05 and minimum

cutoff function \y (a) = Rmin3.
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Time t I dany '
dr.l1
norm of vorticity | Iy (t40.02) dth1
— I3 (L-0.02)
0.02 2.008 0.032 0.398
0.04 2.032 0.064 0.787
0.06 2.072 0.088 1.06
| 0.08 P.ag 0.108 1:2%
| 0.1 2.18 0.14 1.61
i 0.12 2.26 0.18 1.99
| 0.14 2.36 0.24 2.54
| 0.16 | 2.5 0.38 3.8
| 0.18 5 T 2,74 0.72 6.57
0.2 ‘ 3.22 | 1.4 10.8
0,22 4.14 | 2.16 13.0
0.24 5.38 i 2.92 13.6
0.26 7.06 i 4,32 15,3
0.28 9.7 : 6.14 15.8
0.3 13.2 ; 8.2 15.5
0.32 17.9 i 11.0 15.4
0.34 24,2 i 15.3 15.8
0.36 23.2 } 0 16.8
0.38 46.5 l 32.8* 18.1

* Ly (0.399) — Ly (0.36)

AL
Table 4.2 Evolution of T-é" / L to compare rate of increase of Lj norm

of vorticity with exponential rate.

If rate of increase of I norm of vorticity is exponential
L= L\o expP (t/t\

Al Lo
S
Al




4th order
Time Runge~Kutta
ivarying leng
s s
| |Rmax=0.495
0.0 0.351
0.1 0.341
0.2 0.330
0.3 0.335
0.35 0.330
0.36 0.332
0.37 0.334
0.38 0.337
0.3% 0.340
0.3%95 0.338
0.398 0.337
0.399

Centred

Difference

Rmax=0.495
0.351
0.341
0.330
0.337
0.549
0.823

Euler

Foxrward

Difference

Rmax=0.495
0.351
0.341
0.330
0.339
0.352

0.355
0.370
0.380

th initial segments, minimum DLL

Centred
Difference

with filtering

0.05/128
Rmax=0 . 495
0.351
0.34
0.330
0.334
0.340

0.343
0.342
0.350

|

i 4th oxder
{

i  Runge—-Kutta
‘ e

DLI=0.0%
WSS Pt
Rmax=0,995| Rmax=0.495
0.323 0.349
0.314 0.343
0.305 0.337
0.309 0.345
0.308 § 0.341
0.319 0.343
| 0.324 % 0.350
0.322 | 0.352
|
0.320 |

Table 4.4 a)

Kinetic energy as calculated on a 20 x 20 x 20

grid in a unit

cube for Chorin's Method.

4th order Runge-Kutta time integration

Time Rmax = 0,495
[ = H =
0.003125 oigizs il
0 0.351 0.351
0.05 0.340 0.342
0.1 0.339 0.341
0.15 0.334 0.336
0.2 0.326 0.330
0,25 0.329 0.339
0.3 0.373 0.402
0.35 0.617 0.479
0.4 1.70 0.540

H

B.ops <5l
0.351
0.342
0.340
0.335
0.330
0.333
0.339
0.368
0.384

0.05

I

31

0.354

0.341
0.339
0.339
0.338
0.342
0.362
0.420

Table 4.4 b) As table 4 a) but for Beale and Majda's Method

AN S ey 4oty
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L Norm of Vorticity

CHORIN

Time \y (a)=rmin3 | Y (a)=RminZa | \p (a)=Rmin3
Rmin=0.05 Rmin=0,05 Rmin=Radius
Rmax=0, 995 Rmax=0.495 Rmax=0.495
0 2.0 2 20 2.0
0.02 - 2.008 2.008 2.008
0.04 2.029 2.032 2.032
0.06 2.066 2.07 2,07
0.08 2.2 2.12 2.12
0.1 2.18 2.18 227
0.12 2.24 2.26 2.2%4
0.14 2.32 2.35 .33
0.16 2.46 2.50 2.41
0.18 2.66 2.82 2.60
0.2 3.08 3.69 3.26
0.22 3.92 5.2 8.3
0.24 5.14 72 12,5+
0.26 6.86 303
0.28 9.38 15.1
0.3 12.4 24,1
0.32 .16.7 38.8 +at 0.224
0.34 22.8 65.3 : (247 segments)
0.36 B T ,
0.38 43.0
0.39 51.4
0.395 56.4
0.399 60.8
Table 4.5 a) Evolution of Lj norm of vorticity for Chorin's method with

different Rmax and smoothing functions 11/ (a).




Table 4.5 b)

Evolution of kinetic enerqgy for cases in Table 4.5(a)

Time

O 0O
WWwN RO
» O

~

00 COO0O0O0
W W
N >

w W
O @

W (a) =

Rmax =

Rmin3

0.995

0.323
0.314

, 0.30%
! 0.309
|

0.308
0.319
0.324
0.322

‘-\V (a) = RminZa W4f(a) = Rmin3
Rmin = 0,058 ' Rmin = Radiusg
Rmax = 0,495 i Rmax = 0,495
Kinetic Energy
| 0.351 0.351
0.353 0.356
0.373
0.345
0.361
0.386

| !
4th order Runge-Kutta | Centred pDifference | Euler Forward

Time | Centred Difference with

Difference | Filtering = 0.1

Ly Lo Ly L1 ! Lo Ly L2
0 2.0 1.02x 103 2.0 !1.0 103 2.0 f 1.02x 103 | 2.0 ! 1.02x 103
.04 2,032 | 1.1 x 103 2.032 1.1 x 103 2,032 | 1.1 x 10312088 | 2.1 % 303
.08 2.12 1.3 x 103 2.12 (1.3 x 103 | 2.12 | 1.3 x 103 | ‘2,12 1.3 x 103
A2 2.26 1.6 x 103 2:26 11.6 x.103 . " '2,26 | 1.6 x 103 1 :2.26 1.6 x 103
.16 2.5 2.1 x 103 2.5. [2.0% 1085 "8 Ladind09 3.8 2.1 x 103
o2 3.22 5.2 x 103 3.22 !5.1 %103 | 3.18 | 4.6 x 103 | 3.22 5.1 x 103
.24 5.38 4.0 x 10% 5.4 4,0 x 10% | 5.24 3.6 x 10% | 5.38 4.0 x 104
.28 9.7 2.0 x 10% 9.7 2.0 %109 | 9.1 18 x 108 1 9,56 2.1 x 105
+32 17.9 1.0 x 106 19,1112 X108 1 17.6 | .1 %1105 13938 1.0 x 106
.36 33.2 5.8 x 106 51,0 1.5 x 107 | 36.4 | 9.5 x 306 133.2 6.1 x 106
.365 | 36.0 7.5 x 106 58,2 2.2 x 107 | 40.0 | 3.2 x 107 | 36,1 7.6 x 106
3291 |67, 3.1 %107 ; Sse.a i 8.1 % 107 |57 2.5 x 107
.399 | 66.0* | 5.3 x 107 i t t 65.9 . 3.6 x 107

j |

Table 4.6 Evolution of Lj and Ly norms of vorticity for Chorin's method

with different time integration schemes.
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