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SOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
RELEVANT TO METEOROLOGY AND IMPLICATIONS FOR NUMERICAL METHODS

M.J.P. Cullen
Meteorological Office
Bracknell, U.K.

Summary: Stable consistent numerical schemes are known to converge to the
solution of partial differential equations assuming that these are smooth,
Smooth solutions are not guaranteed for the inviscid equations commonly used in
numerical weather prediction. In such cases the choice of artificial viscosity
can change the limiting solution as the mesh is refined. Examples discussed
include the barotropic vorticity equation and the quasi geostrophic equations,
which usually have smooth solutions; and the one-dimensional shallow water
equations and the geostrophic momentum equations which can have discontinuous

solutions.

1. INTRODUCTION
It is well-known, e.g. Richtmyer and Morton (1967), that the conditions
- for a finite difference scheme to converge to the solution of a partial
differential equation are consistency and stability. However, this argument
2 inherently assumes that the equation has solutions with at least enough
derivatives to make the equation well defined. There are a number of examples
in computational fluid dynamics where systems of equations used to model
physical events have solutions which become discontinuous in a finite time, or
even become infinite. These examples usually arise when dissipative effects
are neglected, a common approximation in cases vhere gas flows are being modelled
on rather coarse grids. If this happens it is necessary to be careful to define.
the problem properly before attempting a numerical solution. For example,
the equations describing transonic flow of a perfect gas have solutions that
become discontinuous at shocks. The diff.rential equations then become meaning-
- less. However, the physical éonservation laws for mass, momentum and energy
8till apply, and can be solved to give a "generalised" solution which may contain
- Jump discontinuities. It can then be shown that such a solution is the limiting
solution as the viscosity tends to zero of solutions of the viscous equations.
When solving the problem numerically, it is necessary to ensure that the numerical
method solves the conservation laws, rather than the partial differential

equation derived from them.

In meteorology, this difficulty is usually viewed in Fourier space, as
a tendency for smaller and smaller scales to be generated, even though the
initial data hay only contain large scales. It is thus used as an explanation
for the loss of atmospheric predictability (Lorenz (1969)). However, generation




of small scales does not necessarily result in loss of predictability; as, for

instance, the motion of shock waves is completely determined by large-scale : T‘
information. An example of a solution exhibiting a rapid scale collapse is shown :
in Figs. 1, 2, and 3. The inviscid incompressible three dimensional equations
of flow:

VA u = ¢] in L ' ’ (1.1)
} ' SB.§<‘S= 0 on L
|
|
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are solved in a periodic unit cube L with boundary ¢l at X = 1'0.5', b 4
| Z= -+-O.5. The initial data contains vorticity along the lines Y = 0, 2
} and X =0, 2 = - 0.05 (Fig. 1).
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Fig. 2 . Solution at t = 0.2+ St

The solution at "t = .2 is shown in Fig. 2, a rapid scale collap‘afé has occurred
as the filaments tangle. A graph of the Li norm of vorticity, defined ‘




L, norm of vorticity
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The problem (1) may be a fairly accurate model of what goes on on the
smallest scales in the atmosphere. Such rapid generation of small scales is
typical of turbulent flows. However, the atmosphere also contains large scale
organised flows. It is known that these can be described quite accurately by
various approximate systems of equations, using assumptions of hydrostatic and
geostrophic balance. In the rest of this paper we consider the properties of
these approximate equations, and show that, in several cases, more organised
solutions are produced. It is important that the special features of the
approximate equations which allow organised solutions are respected by numerical
algorithms. If this is not done, the correct large scale organised flow msy not

be reproduced.
24 QUASI-~-GEOSTROPHIC EQUATIONS

2al The barotropic vorticity equation

One of the simplest approximate equations used to describe meteorological
flows is the barotropic vorticity equation. It is obtained by taking the vertical
average of the primitive equations, and neglecting the vertically meaned
divergence. It gives a reasonable description of the evolution of the 500 mb

flow over short periods. The equations are

43 + 3.7(54' £) = 0 (2.1)
dt
where u = u(x,y) withV,u = 0
§ = kx¥y
g is a unit vector in the vertical
f ie the Coriolis parameter.

If the domain {L in which (2.1) is solved is assumed doubly periodic, then
u(x,y) is completely determined by 5 (x,y) and the condition V.u = O.
Equation (2.1) states that (5+ f) is convected by the wind field u, but the
value of (5 + f) cannot be changed following any fluid element. This meeans that
the solution 5 (t) at any time t can be obtained by a rearrangement of the
initial data 5(0). All moments of the vorticitys

S 3" 4 (2.2)

are conserved, and the vorticity thus remains bounded indefinitely. It has been
proved, by using these facts, that given initial data 5(0) of a specified
.emoothness (i.e. a certain number of derivatives exist), the solution stays this
emooth for any arbitrary finite time. Thus discontinuities in 5 cannot be
formed in a finite time unless they are present in the initial data (Judovich '




(1964), Kato (1967)). This means that standard finite difference schemes will

remain consistent, and converge to the correct solution if they are stable.

This thecrem, of course, only holds for the approximate set of equations
{2:1], However, since these equations-are quite accurate for the large scale
vertically meaned flow, the theorem helps to explain why a smooth 500 mb flow
pattern persists. Any numerical solution of the primitive equations will contain
an implied numerical scheme for the barotropic vorticity equation. This scheme
should be designed to conserve the moments (2.2). If it does, then it can be -
proved to be a stable approximation to (2.1) and therefore will converge.
However, it is impracticable to conserve all of them in a finite difference
calculation on a fixed mesh. The best that can easily be done is to conserve
the enstrophy S B 2. Though that does not ensure that S(t) is bounded by its
initial values, it does mean that 5(t) will stay bounded for all time. This
argument was used by Arakawa (1966) andSadourny (1975) in constructing finite
difference schemes which conserve the enstrophy for advection by the non-
divergent part of the flow. An-advantage of Galerkin methods is that such

constraints can naturally be enforced, as in the current ECMWF spectral model.

2¢2 The guasi-geostrophic equations

The barotropic vorticity equation cannot describe synoptic developments
driven by baroclinic processes. The next set of equations to be considered is 3
the simplest set which does, the quasi-geostrophic equations. In the notation of
Pedlosky (1964), these are

BAgb + 97 pe )y = (2.3)
sy VEg,0=¢, (2.4)
S S in 2(x,y)X(0,k)

O, 3 MO ¥ o 0 Btze0 (2.5)

¢ = ?(z), e =c (5) are density and stability profiles of a given basic state.
y is the streamfunction, © the potential temperature and « the potential
vorticity. @ is the northward gradient of the Coriolis parameter.AH is. the
horizontal Laplacian operater (éz/Q§x2 + C)2/'c)yz). Initial conditions for (2.3.5)
can be specified as values of « everywhere, and values of © at 2 = 0 and h. The
boundary conditions require care. This is because equations (2.3.5) are derived
assuming the Rossby number Ro = U/fL is small, where U and L are typical velocity
a9 and length scales. The boundary conditions must be chosen so that they are
‘ consistent with a solution with small Ro everywhere.

The solutions of:(2.3.5) have been analysed by Bennett and Kloeden (1981a,
b). They are essentially determined by advection of the quasi-geosatrophic
potential vorticity us, eq. (2.4), and the calculation of © by solving the
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Poisson equation (2.3). The boundary conditions for the Poisson equation at

z = 0, h are the Neuman conditions %% = 0, with 6 determined by (2.5). The
simplest boundary conditions in x and y are periodic, rigid wall conditions can
be used if additional information is given. If O is conetant &t z = 0 and h,
then Bennett and Kloeden prove that, given smooth initial data, then smooth
solutions exist for arbitrary finite times, if ¢ = O, or for a finite time
proportional to @_1 otherwise. They also prove the consistency of the inviscid
problem with the inviscid limit of the viscous problem. Thus this case of
quasi-geostrophic motion has similar behaviour to the barotropic vorticity
equation. If, however, the temperature at z = O and h is allowed to evolve;
then discontinuities may form in @ in a finite time . This would mean that
smooth solutions might cease to exist in the interior also. If this happens,
the scaling used to derive (2.%.5) will be violated since Ro will be large. Thus

the results would not be expected to be physically meaningful.

The theorem proving the existence of smooth solutions depends on the
conservation of the quasi-geostrophic potential vorticity following the
horizontal non-divergent part of the motion. Thus .gup dfL is conserved for all
n. If this properly were true for a finite difference approximation it could
be proved to be stable and hence convergent. In practice it is mot conveniently
possible to inforce more than the conservation of potential enstrophy, as is
done by Arakawa and Lamb (1981).

2.5 Summary
Though schemes satisfying quadratic conservation requirements are favoured

by these arguments, and it is almost possible to prove that they converge to the
solutions of the simplified equations, all that is required for an approximation
to the full primitive equations is that the implied approximation to the
simplified equations will remain stable for as long as the scaling assumptions
remain valid. This weaker condition is probably satisfied by a much wider

range of schemes than just those which conserve enstrophy or potential snstrophy.

3. SHALLOW WATER AND ADVECTION EQUATIONS

3.1 The advection ecuation j
The resulte of the previous section are essentially based on the advection

of vorticity by a two-dimensional nondivergent velocity field. The vorticity
stays bounded by its initial values, which in turn implies that the velocity
field stays smooth. If the flow is divergent such results no longer hold. The
simplest example of this is the one dimensional nonlinear advection equation.

B ¢ w0 ‘ (.1)




The solution of this can easily be obtained, for initial data u = f(x), as
u = f(x-ut) (3.2

Equation (3.2) implicitly determines the solution. However, if f(x) is not
constant, the solution becomes multi-valued. Suppose £(0) = u1,f(1) = u
Then the solution (3.2) at x = 31~~_ y £ = l
W the 8ol

and therefore the differential equation (2.1) is no longer meaningful. It can

2.
- takes both the values v

2 : ¢
ution must become discontinuous,

and Uy For this to happen

be given meaning by either adding a dissipative term (:b éhf to the right-hand

side, or by considering instead of (3.1) the conservation law

+ 3 (B = 0 (3.3)

OX

(a2

<le

Consider the solution of (3.3) for the special initial data

= u1 x<0 (504)
= u2 x>0

This is known as the Riemann problem for this equation. Equation (3.3) implies 3

that the rate of change in u in any finite volume of fluid is equal to the net E
flux (%uz) into the volume. This integral statement of the problem can be 3
solved by a propagation of the discontinuity (3.4) with a speed s given by

' \
2 2
G s, o by (3.5) ‘
Bao e My

Thie construction allows a solution of (3.3) integrated over fluid volumes to be
found for all time. It can be sghown that it is equivalent to a solution of the
weak form of the equation.

j(¢.c..g Sl A e Gt
ot

X

where # is an arbitrary smooth functién. | g
In order to make the solution unique, it is necessary to apply further
. restrictions. If, in the Riemann problem (3.4),u1<pu2, the discontinuity can
still propagate with the speed (3.5). However such a solution is physically
unstable since there is divergence at the shock front which would convert it
into a smooth transition. A more reasonable solution in this case is
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u = u, x<u1t
u = u2 X >u2 o (3.7)
& (1_°g)u2 X = (dLu,l oR (1—&)112)’(: 0 << 1

i
It can be shown that this is the solution obtained as the limit as €0 of the
problem with G:&I“/éx* added to the right hand side. It cen also be shown
that (3.7) is the unique solution for which j u2 dx decreases. It can then

be proved that a unique solution of (3.3) is determined by the jump condition
(3.5) at discontinuities and the energy condition that the total energy does not

increase (Chorin and Marsden (1979)).

L, o The shallow water equations

Consider the shallow water equations, derived from the primitive
equations by vertical averaging, and assume that the variables are all

independent of y.

cu + Ju 4 _éﬁ -fv =0

ot ox dx

v +udy + fu = O (3.8)
ot X :

;‘}‘.g + 2 (Q,u) = 0

ot dx

The solution of this system was studied by Williams and Hori (1970). They
showed that, for Rossby numbers of order unity, discontinuities in the solution
tended to form in a finite time from smooth initial data. If the Rossby number
is small, then the formation of discontinuities is delayed. It is an open
question whether the version of (3.8) applied to a sphere with parameters
appropriate to the atmosphere has smooth solutions. Sadourny (1975) found an
‘energy catastrophe' in long time integrations of these equations using certain
types of finite differencing which may indicate either a breakdown of smooth

solutions or of those computational methods. The times involved, howev:r, are

. so long as not to be physically relevant; since three dimensional processes
lead to much faster breakdown. The formation of discontinuities in the one-
- dimensional system (3.8) may be relevant to certain mesoscale phenomena where

the Rossby number is of order unity.

Once a discontinuity has been formed, equations (3.6) become meaningless,
and must be replaced by the physical conservation laws from which they were
derived. The conservative form, expressing conservation of mass and the two

momentum components is:

3 (Fu) + 3 (F®+ 3% -1pv = 0 (3.9)
3t x ‘ 3




2 (gv) + | 3 (fuv) +Hffu = 0
ot dx

28 + 2 (o) =0
ot

ox

It can agaih be proved that discontinuous solutions of this system can be
constructed, where the speed of jump discontinuities is given by

S =Eu2+ 2]=E V]: L ] (3.10)
Cauj CI\:] L% |

where [ 1 indicates a difference across the jump. (3.10) implies certain
consistency conditions which have to be satisfied if a single jump is to
separate two states (¢1u1v1) and ¢2 u, v2). These are that

Co)lmd + 2] = [ o]l (5.1)
(Fuvlig]l = Ugullgv] ' s

which together imply that v cannot be discontinuous.
The general solution to (3.9) can be constructed by solving the Riemann
problem, which is to solve (3.9) for the data

S, u1v=v1.¢=¢1 x<0 ) :
B2 im .u2v=v2¢=¢2 x)O ) (3.12)

.o

It can be shown that the general solution for f and u looks like that shown in
Fig. 4, with an intermediate state Spius=u g = ﬂx being generated, with one
jump and one rarefaction wave separating it from S, and S . s
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Fig. 4 Solution of the Riemann problem with initial data
containing two states S:l and Sr.

Ine solution for v is a simple contact. discontinuity, which separates the
intermediate state S 4 into two parts with values (u, v, #,) and (v, v, B
The construction has to be carried out in such a way that characteristics
converge into jumps, and diverging characteristics give rarefaction waves. Ef
this is done, it can be proved that the total energy will decrease, and the
solution agree with that obtained by adding viscous terms e(ﬂu)n, e(ﬂv)n
a.ncl‘iil‘,at to (3.9).

- This solution can be obtained by standard centred finite differencins
vschemes, provided that the conservative form (3.9) is approximated, and that
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viscous terms Guxx, vax and Gﬁ;x added are shown in Fig. 7. The jump

| propagates with the wrong speed and has the wrong height. This is because the
finite difference scheme is not consistent with the consexrvation law (3.9) but
with a different conservation law. More details of the experiments are given il;l
Parrett and Cullen (1983).

. Profiles of u. vand h at Ut/L = 28

u.vandh

1
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Fig. 7 Solution of equation (3.8) using non-conservative differencing.
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33 Summary

This case is different from the incompressible equations discussed in
Section 2. The inviscid differential equations no longer have smooth solutions,
so the usuval consistency and stability arguments are inadequate to prove
convergence. We must first choose a conservation law form that expresses the
correct physics, and then use a finite difference scheme consistent with that
conservation law together with artificial viscosity that respects it. In
general, there will be many possible conservation lawz that lead to a given
differential equation. The physically correct one may have to be found by
experiment.

4. THE GEOSTROPEIC MOMENTUM EQUATIONS

7. Introduction

The scale analysis used to derive the quasi-geostrophic equations
discussed in Section 2 is known to break down when locally sharp gradients occur.
While vertically averaged fields, such as 500 mb contours, appear smooth, it
is known that vertical cross sections of the atmosphere show sharp changes in
temperature, humidity and wind. An example is the tephigram shown in Fig. 8,
. Which is the Shanwell ascent for 12Z on 1 June 1983. There are 5 N S
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Fig. 8 Shanwell tephigram for 12Z, 1 June 1983.

at least two layers of discontinuity in the troposphere, apart from the change
in temperature gradient at the tropopause. Though the scale of the transition
is very small in the vertical, it is large in the horizontal, because similar
Jumps are visible in the tephigrams from other radiosondes taken at the same
time. Quasi-geostrophic theory cannot be used to describe such a laye:r, but
thermal wind balance can still be used by stating that the slope of any such
surface is given by :

£9 € y_] (4.1)
g (el
where L -} represents the Jump and v is the horizontal wind parallel to the
surface,as was pointed out by Margules in 1892. the geostrophic momentum
equations are a generalisation of quasi-geostrophic theory designed to be valid
under such conditions.



4.2 Bagic equations ; ; :
.The geostrophic momentum approximation was introduced first by Eliassen

(1948) and extensively studied by Hoskins, who has reviewed the work in Hoskins
(1982). It is more general than the quasi-geostrophic equaticns in that .advection

by the ageostrophic wind is included. Scaling arguments show that this provides
a consistent approximation for motions where the length scale in one direction is
comparable to the Rossby radius of deformation NH/T, where N is a buoyancy
frequency and H a height scale; and much less than this in the cross direction.
The eéuations take their simplest form on an f-plane, with rigid upper and lower
boundaries (in pressure coordinates) and with the Boussinesq approximation made.
In terms of the vertical coordinate.

(4.2)

z --[1- (19;;)&;"( ] 'E(X:TH

where P, is a reference surface pressure and Ha the scale height pdﬂgog); the

equations are

: ot = .dx 0z Jx
Vg 4 UVg 4 Vg 4 W L 0f 4 tu = 0 (4.3)

tb;_«beiaaiM‘ in a reéioﬁ, 0 in the (x r
periodic boundary conditions i




whence

DN - f(M-fx) =0
Dt
M o+ f(N-fy) =0 (4.6)
Dt
D = 0
Dt
The continuity equation states that the volume, T, of fluid elements is
preserved, so that
Dr = O (4-7)
Dt
Define
Peg+ 3 +y°) (4.8)
so that the consistency conditions become
(e 92 2p) = (m, N, g% ) (4.9)

) Vol

ox, Jy, 0z *

The equations (4.6) thus determine the evolution of the gradients of the single
function P(x,y,z).

4.3 Two dimensional solutions

This system of equations was used by Hoskins and Bretherton (1972) to
show how a discontinuity in the temperature and long-front velocity field could K
be formed in finite time given a basic state deformation field u= (-.Lx, LYy O) |
The effect of the ageostrophic advection was to tilt the 9 and M surfaces oo A'.*
that they met at the boundary. The equations used are the following subset ef :
(4.6-9): - :
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Fig. 9 Typical potential isotherms of solutions to the
Hoskins-Bretherton deformation model.

The first two diagrams in Fig. 9 show the type of solutions obtained by Hoskins
and Bretherton. Contours of constant M and © are assumed to coincide in the
initial data, with slopes determined by (4.1). As time goes on the values of

M decrease while Q stays constant, so that the contours tilt over.
Simultaneously, the areas between contours shrink. The result is that contours
meet at the boundaries. After this happens, the Eulerian equations lose their
validity. BHowever, since we seek solutions with sharp interfaces between air-
masseg, with slopes governed by (4.1), it is reasonable to assume that the
Lagrangian equations are still valid. This essumption is merely stating that
the amount of fluid in a given air-mass is conserved, and its properties evolve
according to (4.10). Since most fluid particles never encounter the frontal

~ zone, it is plausible that (4.10) continues to hold almost everyvhere. Solntioﬁa
obtained this way can ’be chacked ‘for salf-vconaistency aftemrds by enauring' feal
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4.4 General solutions )
This section gives a brief description of the general soluticns of systen
(4.6-9). The details are given in Cullen and Purser (1983). At t = 0, assume
' that the volume of integration Ll is divided into n fluid elements on each of
which M, N, © and the volume T is given. It is clear that any piecewise
smooth meteorological field can be represented as accurately as desired iﬁ this

way, for sufficiently large n. Write these values as - ‘

EM;, N, e, tgy 1¢i¢ n (4.11)

At any future time, (4.5) states that

o, =0

5 =t§0) ' (4.12)

Furthermore, the equations for Mi and Ni can be completely solved given only

the positions of the elements. Thus, it is sufficient to ghow that, given a
set of values Mi’Ni’ 0 i'ti that there is a unigue arrangement of the fluid

ot

elements satisfying (4.9). Then x and y will be determined for each element,
| : and the equations for Mi and Ni integrated forward in time.

The problem of arranging the elements is purely geometric. A hyper—
surface P(x,y,z) has to be found, which is made up of hyperplanes on each of
vhich VP is constant and specified as (fMi, N, & 9'/30) end the volume is
specified as ‘x‘.i. In order to make the surface unique, further conditions have
to be specified.

It is easiest first to consider an equivalent one-dimensional probiem. f.sgi
, This is to find a curve P(x), made up of piecewise straight segments of »gj.ven .
- : lengths on each of which ¢P is constant and specified. The curve can be -
| _conatructed by Joming the aegments in any order. If we now add the req '

'?V"that the ;'esion in (x.s) Shace W SR B




In order to obtain a constraint like (4.13), reéall that the geostrophic
momentun approximation assumes that ageos}rophic accelerations are small compared
with the corresponding pressure gradient forces. If the fluid is subject to
convective, inertial or symmetric instability, this assumption will clearly be
invalid., Thus we must seek a solution stable to these types of perturbation.

In the case of continuous solutions, the necessary condition is that the
potential vorticity is non-negative. The potential vorticity q can be shown to

be given by the determinant of the matrix Q where

= % (4.14)
Qij dx.dx 3

(see Hoskins (1975), Hoskins and Draghici (1977)). Thus the potential
vorticity can be interpreted geometrically as the curvature of the hypersurface

P(x,y,z) and the condition q> 0 is equivalent to stating that the hyperspace of
4
R

s » P(x,y,z) (4.15)

is convex.

It has been shown by Cullen and Purser (1983) that there is a unique
arrangement of the fluid elements subject to condition (4.15). The mathematics
required is valid in any number of dimensions. In order to illustrate the proof
diagrammatically, we show it in two dimensions. The steps of the proof are shown
in Fig. 10. The aim is to construct a surface S = P(x,y) in (x,z,8)

v




space out of an intersection of planes LA with given slopes. The areas of the
intersection of P with each w, are also specified. In order to get the right

areas the planes w, are moved up and down in the s coordinate.

i
Fig. 10(a) shows the first step, which is to extend the domain L where

the solution is required into a cylinder V in an extra dimension, measured by the

coordinate 8. The surface Y = P(x,z) is then constructed as the intersection of

this cylinder with planes W of specified slope, as shown in Pig. 10(b). The

position of the planes is determined by their s coordinates, Bys at x =z = 0,

as shown in Fig. 10(c). TFig. 10(c) also shows how the areas of the intersection

of Y with w, and w, varies as the position of w, is changed. Fig, 10(d) shows

1 2 2
a cross section of the surface obtained by intersecting four planes with V.

In order to prove the existence of a unique surface with the correct areas
for the fluid elements, we have to show that any desired combination of areas can

be obtained by moving the planes w, up and down. It is clear from Fig. 10, that

as one plane is moved up and down,ithe area of its intersection with Y varies
from zero to the whole area of L within a finite range of B The actual
proof is by iteration, making an arbitrary first guess, and then moving the
plane whose area is furthest from the correct one until its area is correct,
apd then repeating. The convergence of this process is proved in Cullen and

Purser (1983), as is the uniqueness of the solution.

4.5 Numerical solutions

Now consider the problem of obtaining the solution whose existence has
been discussed in the previous section by conventional numerical techniques.
For simple data it is possible to implement the construction used in the existence
proof, but for practical purposes it is necessary to obtain the solution with
standard finite difference methods, using Eulerian equations. Since the inviscid
Eulerian equations break down at a front, artificial viscosity has to be added to
represent the effects of turbulent mixing. This then leaves the question open
as to whether to add viscosity to the geostrophic momentum equations or to the -

primitive equations. For the two dimensional case discussed in section 4.3, the

alternatives can be set out as follows: it
o -fv =0
ox

+ wly + v + wlv + f(u+u)=KL2v2
ox Jz ox

-
&l
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‘:seek solutions of (4.20) vith coutinuous 4{ m\"discontinuoua first derivativ

8 = &%,

oz
and:
du + uwlu + wlu + %Q - fv. = K& “(4.17)
ot ox oz x S;%

in place of the first eqﬁation of (4.16). The scale analysis of Hoskins and
Bretherton suggests that mixing becomes important for vorticities greater than
about 10f, while the terms neglecfed in the geostrophic momentum equations only
become important for vorticities of about 25f. This suggests the use of (4.16),
since the artificial viscosity will have to be chosen to prevent the vorticity
exceeding 10f. However, it is not at all clear how the solutions ghould be

Judged for physical relevance if they are different.

Numerical solution of (4.17) by standard centred difference methods is
straightforward. A semi-implicit scheme must be used because of the nature of
the upper and lower boundary conditions, which mean that the geopotential at

= 0 is determined implicitly by the requirement that

SH (%_xq+.k) dz = 0 . (4.18) ‘
o

Numerical solution of (4.16) is much harder because the cross- frontal circulation
is determined implicitly. Following Hoskins (1974) and others, set

u o= -.(x-_b_‘l_’
dz

e T ' (4.19)
dx |

where ¢- is a streamfunction for the cross-frontal flow.

Then : : : '
e Jz S - 2(1%3_)2 Yot HESAD o ml : (4.20)

vhere Q is a forcing term independent of ¢ « In the preaence of a front wef s




ds = =-«s8 _ : (4.22)

dt

Thus the effect of the cross-frontal circulation must be to rotate the constant
© lines according to (4.22). This means that C)'"P/c),( is specified, where

1l ie the direction along an isotherm, but ‘)4’/6,, ig arbitrary, where n is

the normal to an isotherm. The problem of finding P now reduces to that

illustrated in Fig. 11. The problem is well posed along each isotherm that

‘ ¢ =0 |

el

¢| =0

Fig. 11 Isotherms defining the solution procedure for
the cross-front streamfunction equatione

intersects both boundaries, since ‘)q'/ ol and the end values of \ll are given.

: Where isotherms intersect the front, as at A and B, values of 4’ have to be
calculated at A and B using an isotherm that does reach the boundaries; and
% then  calculated along AB.
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dut + 99 - v = K&ul
oT ox

v + udvy + w'dvy + fu' = O
0T J9x dz

(4.24)
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If this iteration converges to a state with u' = w' = 0, it will be the

desired solution of (4.16).

4.6 Results

Results for the simplest two dimensioﬁal problem described in section 4;3
are described here, with the exception that a free surface boundary condition
vas used. The results are therefore not exactly symmetric about z = #H. The
initial data are L :

NS =X

LYo £(X(x,2)-x)
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®Results are shown from three experiments at t = 5 x 10% sec with L= 1077 sec’1,

Fig. 12 Solution of equation (4.16) by explicit construction : =

potential temperature at t = 5 x 10 sec.

-
-
;

Fig. 12 shows that obtained by explicit consfruction of the solution by

geometric methods, with the initial data approximated by 100 segments on each of

which © and M are constant. Only the © field is shown. Fig. 13 shows the
© field obtained by solving equation 4.17. A 200 x 20 grid was used. The

'resulta were substantically unchanged when the resolution was increased to

200 x 40." The artificial viscosity was reduced to the lowest value (1.251104 :

mzaec°1)that would allow the computation to ;each this time. The discontinuity

is reluctant to propagate into the fluid, as it does in Fig. 12, and close

examination shows that -the slopgs of the isotherms disagree over a substantial
area above and below the frontal surface. The associated vertical component of
the cross-frontal circulation is shown in Fig. 14.v
the centre of the region.
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Fig. 13 Solution of equation (4.17) by Fig. 14 As Fig. 13 : vertical velocity.
by finite differences: potential '
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Fig. 16 As Fig. 15: vertical velocity.

The largest vertical velocities are concentrated nearer the boundaries than in
Fig. 14. This is in line with observations discussed by Blumen (1980) and
Ogura and Portis (1982).

Further details of these experiments are given in Cullen and Purser
(1983); and examination:of the differences between the solutions of (4.16) and
(4.17) is continuing. Some notes on these are as follows:

a) If (4.17) is solved with different coeff;ciénte for the diffusion
of u and v, the msolution changes considerably. The differences resulting
are as large as the difference between Figs. 13 and 15.

b) The maximum vorticities reached are 12f in Fig. 15 and 5f in Hg 1.
~ the minimum Richardson numbers are .08 and 2. Thns the solation 1n G
Fig. 13 should satisfy the scaline behind the geostxophiq fmment\m '

"
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7 A Summaxy.
This case is agein different from those discussed in sections ¢ and 3.

The inviscid equations do not have smooth soluticns. An inviscid solution of

the goostrophic momentum equations exists, but computational evidence suggests
that it is different from the inviscid limit of the primitive equatior=; at
least in two dimensions. The latter limit does not seem to be well defined,
since the solution depends on the ratio of the diffusion coefficients. The
physical significance of these results is not yet clear.
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