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Abstract This article describes a simple parameterization of the effects of rain on
longwave radiation.



1 Introduction

Most radiation parameterization schemes, including the unified model radiation
scheme (Ingrams 1993), ignore the effects of rain. Since rain drops are bigger than
cloud droplets, for the same water content, the total surface area of rain drops is less
than for cloud droplets. Therefore rain will not absorb longwave (LW) radiation as
strongly as clouds. However LW absorption by rain is likely to be important outside
cloudy areas (e below cloud base) since absorption by rain is of similiar or greater
magnitude than absorption by atmospheric gases.

2 Absorption by rain

Here I follow the approach given in section 3 of Stephens (1984) for the absorption of
LW radiation by cloud droplets. The absorption by rain of radiation with wavelength
A travelling through a path (z,2’) inclined at an angle §(= cos~! #) is given by;

Ax(z,2,p) =1 —exp [~8a(2, 2, )], (1)

where 6, is the absorption optical thickness

i

B = [ ma) & (2)
The above formulation is correct when horizontal variations can be neglected as is
assumed by the two stream approximation, which is used almost universally. &, is
the volume absorption coefficient for rain and is given by the following equation, ie
the absorption due to the rain at Z is given by the sum of the absorption by the
individual rain drops. Thus

£)(2) = WAOO a(r, 2)r’Qaps( A, 7) dr (3)

where » is the radius of a rain drop, and Qabe(A,7) is the absorption efficiency of
a drop with radius r for radiation with wavelength ). n(r, ) is the size spectra of
rain drops defined such that n(r,z)d is the number of rain drops per unit volume
in the radius interval (»,r + dr).



For spherical drops @, is obtained from Mie theory (Van de Hulst 1957, Liou
1980). However in the limit that » 3> A we can make use of the approximation
that Qup, = 1 (see figure 11 of Stephens 1984). This approximation is reasonable
since rain drops have radii much larger than 50 gm while the LW radiation of most
significance is in the ‘window’ region where A 2 10 pm. Note that for cloud droplets,
the droplet radius is much smaller than the wavelength and the absorption efficiency
is assumed to vary linearly with droplet size.

Sustituting Q. = 1 into (3) gives us the following equation for the volume
absorption coefficient due to rain

k(%) = 1rf0°° n(r, 2)r dr, (4)

Note that our approximation for Qs has removed the dependence of the volume
absorption coeflicient on wavelength, consequently the subscript A is dropped. It
is usual in radiation parameterization schemes to write & in terms of water content
(mass of water per unit volume) and effective radius (which will be definied shortly).
We can write the rain water content as

. 4 g -\ 3
w(z) = pwgfrfo n(r, Z)r’ dr (5)
where p,, is the density of water. Using (4) and (5) we then obtain
- 3 w(2)
_2 6

where 7, is the rain drop effective radius defined by
f n(r, 2)r’ &

f: T alr, B’ d ©

Te(Z) =

3 Effective rain drop radius

Most general circulation models or cloud models do not give us any information
about the rain drop size distribution from which an effective radius may be cal-
culated. We could just assume a fixed effective radius (as is often done for the
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scattering of short-wave radiation by cloud droplets), however better results may be
obtained by using the empirical relationship of Marshall and Palmer (Cotton and

Anthes 1989)
n(r,2) = Noexp [-A()] (5

For Kessler microphysics Ny has a fixed value of 8 x 106 m~—* and A is a function of

rain water confent;
AL
z) = 2 . 9
CHE ©)
Putting (8) and (9) into (7) and integrating by parts we find that

. 3
re(2) = Hﬁ—)’

(10)
thus we can now write x in terms of the rain water content only
2y 3/4
k(%) = 17.7 x (1"@) . (11)
Pu

The above equation is correct for mks units which are used throughout this article.

4 Diffuse broadband flux transmissivity

For the problem of radiative transfer, the quantity of interest is the diffuse broadband
flux transmissivity 7:{ - This contains the effect of the atmospheric gases, clouds and
rain. However it is possible to consider the effect of these components in isolation
since

7:_\J,elhotal = :T:\{gas x fI}\J:r_'loud X Q—S{rain (12)
where the subscript gas, cloud or rain indicates that only the effect of that element is
considered. '1;—\’: rain 18 Obtained by a suitiably weighted average of the transmissivity
exp[—6x(2, 2/, )] over a directional hemisphere and over a frequency (wavelength)
band. For rain & is independent of wavelength and consequently only the averaging
over a directional hemisphere needs to be performed. This is approximated by the
introduction of a diffusivity factor @ = 1.66. This then gives

T pnl ) = exp [_17_7 <8 [ (?) " ﬁ] - (13)
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Figure 1 shows a comparison of ’.'l}fm.n and Qz\fc,ou ; for a 300m wide slab, ie
z — z' = 300m. This value is typical for the vertical resoloution of our cloud model.
In this example the water content is kept constant within the slab. For clouds, the

result given by Stephens (1984) is used
T ctonal5%') = exp ["”“‘”dﬁ w(?) dz] : (14)

and as in the unified model LW radiation scheme kyoq = 130 m?2 kg~'. From fig-
ure 1 it is clear that absorption by cloud is significantly greater than absorption by
rain. Therefore it is inappropriate to treat rain water in the same manner as cloud
water. However, absorption by rain is still significant compared with absorption
by atmospheric gases. For water vapour line absorption through a 300m wide slab
with a water vapour concentration of 102 kg m~3, the transmissivity is greater than
0.95 in the window region. Preliminary results from a tropical squall line simulation
show that including the effects of rain on the LW radiation spreads the cloud base
warming down into the rain and reduces the magnitude of the warming.



5 Figure captions

Figure 1. Comparison of transmissivity of a 300m wide slab for absorption by rain
(solid curve) and cloud (broken curve) as a function of water content.
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