MET 0 11 TECITWICAL NOTE 11O €2 \

CAT AYD %? Ri

by R Dixon

1. Intrcduction

This Note is a continuation of Note No 56. It establishes some fairly precise
expressions for the rate of change of the Richardson number following an isentropic
quasi-zzostrophic flows Tt shows the role played by the deformation field and also
the twisting term and also that there aro some special effects if the Richardson
nunber is either very high or very low.

e A summary of results is provided in Section 8.
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% Notation

—r

s gy Ny p,d),é, T.C, & o{ and R have their usual meanings.

K = €p/Cv the ratic of the specific heats

) 2
e ¢ is the Richardson number Ri = - X ?_6 /(M)
: = 6 9p P
A is minus the inverse of Ri, ie e { {

Y = + ?. 6 /‘2
b $ : ¢ :a-‘- 7VH
e - 4 1is the inverse Richardson vector A = o¢ D9 =

E , £

Note that /6 ” 404 = + -—é.
€ -

oL
O et =
6 ("J
, v is the 3-d wind vector V= UL + UJ + Wé,
Vu is the 2-d wind vector Vu= e + ’vj
* Note that this differs from Tecih Note No 56 slightly as there V was used
for the 2-d Yworizontal wind as the %-d wind vector did not enter into the
discussion. '
: B, 12 + &2
is the ?-d d o tor (7_.__1.,__-4-3_)___ g g o
v ?-d grad operato % DJ S
V is the ¢-d isobaric grad operator VU = C 0 J + J __2
P " - - @ P B Dx P i 9\‘/ P
L, is the 2~d Idemfactor L& + J J
e indicates the scalar product
X indicates the vector product
25 Js k are cartesian unit vectors, i in the x-direction, _Q_ in the y-direction
e and x in the z direction
V'V s the dyadic
@i Pwik
. Ix .- S 2x
‘ VV = W i wg e Qwyk
Dg 'ay 5 ?J
Wk vkj dwkk
i 09z Pz e oz
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Vi )'.s' the dyadic
Vi Vise

G =




is the deformation dyadic

A =
F =

B =
(&)
_where A is the stretching deformation == — 211!
9x ?\\[
and B is the shearing deformation Ezlf - Eﬁg .

ox oA
Note that although (A2 + Ba) is invariant with respect to a rotation cf the
axes A and B are not individually invariant. The dyadics ‘? Vie end £y
are related by the identity

G = 4 [A» (8, W~ G Toxk |

A and B arc related to divergence and veorticity by Hamel's identity
2 - 2 2
A+B= S +(<éwl,yg)-43“@)v)

where J v)  isithe usual Jacobian s s e e < e
U(u' ) 1S usua 3\7 ?I'

C is the dyadic
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[6 + (ea)it —(A+ bap )i

i.e.

c'= Fum ($p T, — G(Txk) - 25(Taxk)




Take note that in a product like A- Cr'fé' the contributions from the
itisymmetric elements of C will exactly cancel out. Thus

5o Cog = 2-Furz - (B 15"

In intrinsic coordinates the t, n, k, system of unit vectors is used where

t specifies the direction of the wind, and in the text it is the geostrophic
wind:t is tangential to the contours.

n specifies the direction orthogonal to the wind

k is the vertical unit vector, counted positive upwards. It is a right-handed
system so that t x n = k

E;g is differentiation along the streamlines (contours;

o) - . 3 : .

3n 1S differentiation along the curves orthogonal to the streamlines (contours)

is the angle between the direction of the geostrophic wind and the x-axis
and is counted positive going anticlockwise from the x-axis.

In this system

%o=ut o, W W g3
‘ P ¢

ol oY

¥ o

The deformation components are different in this system, and are given by

wpich follows because

Ay =2+ Gk (= 2% k)

/
83 =?..‘./Q + Vg’(s
on




where l<s is the streamline (contour) curvature ( = Fe )
_ o Ug
and K5 is the orthogonal curvature (= = '_5;' )

Note that Kn is positive in a confluent region.

The formulae required for computing Ks and Kn are

R oh 2 2%
- 3 5 +(":/ gf B 2——53-;5;..23
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and in terms of the nine grid point values

¢ 2 s
s 3 o 1
2 4 8

- they have the finite difference an'alogues

_ é 2(6 A)(b,+k4-2/»o>+2(k oy (A aha - ohe )}
: “("7 "73>(11:-/‘14>(/‘>5 l‘:(.-f-l“:-—qu)
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where Q. is the North Pole grid length.

and /j) is the map factor.
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e The Problem

.

scanty and possibly erroneous data and

rendered difficult by a lack of resolution in observed
in Meteorology the CAT phenomenon is outstanding in this resvect.
s this aspect of it which has caused pror
of it in 1952.
are of great importance.

to systematize our knowledge
well-documented cases of CAT
the evidence provided by these cases.

CAT occurs in
Figure 1.

Figure 1.

Figure 1 does not represent any actual
particular level. Although CAT mainly
any level. An example of the Fipure 1
250 mb occurred on 15 April 1962, over
at 750 mb occurred in the same general

a variety of synoptic situations.

Meteorologists are accustomed to dealing with problems on which there is only

for which the verification of theories is
and forecrst fields.
It is probably
ress to be so slow since Bannon first began
For this reason the relatively few
Any theory must account for

T
mLven

A typical one is depectecd in

et C]pvvtbarrs

- -IﬁoTHEQns

N. 8.

A typical CAT situation

situation and it does not refer to any
occurs at jet-stream levels it can occur at
situation with modernte and severe CaT at
the Eastern USA. Another example with CAT
area on 19 February 197C.
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When the Richardson Number (Ri) at a locality falls below a critical value
and turbulence occurs it seems intuitively likely that the turbulence relieves the
condition which causes it and that the turbulence is therefore very trensient
locally. On the other hand the painstaking work of several authors has placed it
beyond reasonable doubt that areas of roughly meso-scale size come into existence
within which transient local CAT occurs and that these areas persist over severzal
hours, moving with the associated synoptic system. It is natural therefore to
seck some effect, measurable on the small synoptic scale, which will account for
the persistent lowering of Ri over an area despite the tendency of transient local
turbulence to relieve the condition.

Thus it seems to me that a theoretical basis for CAT occurrences must meet the
following requirements at least -

a. It must provide a mechanism to account for the Jowering of Ri over an area,
and for practical purposes the mechanism must be in terms of parameters which
can be measured on a synoptic map or computed from numerically forecast grid
pcint fields.

b. It must provide some reasonable grounds for believing that hz7ing become
small Ri can stay small, for the indirect evidence is that, when small, Ri is
a quasi-conservative quantity. '

C.o It nmust be free from ambiguities as to the sign of dRi, and especirlly

it must be proof against counter examples in the matter gf sign. Thus Oard, in
a recent J.A.M. paper, cormments '"For instance in strong confluent zones aloft,
vhich in many cases are observed to contzin widespread CAT the stretching
deformstion gives a positive Richardson number tendericy. This i~ oprosite to
what one would expect." The principle of only having tc see one ‘iger to know
that you are in a jungle operates strongly here. It requires only a2 small
proportion of well suthenticated cases of an index having a significant value
but the wrong sign to undermine faith in the theory. And this has been the
fate of d Ri indices so far.

dt

d. It must account for the turning of the wind with height “eing as importent
as the chanpge of wind speed with height. Thus Reiter commenting on the 135 April
1962 event says "The CAT observations are concentrated in a layer which is
characterized by strong turning of the wind with height."

€. Tt must do all this within the context of a flow which on the small
synoptic scale does not depart too sensibly from the geostrophic state because
although ageostrophic effects doubtless have a role there is abundant evidence
to suggest that the atmosphere does not need ageostrophic effects to create the
conditions necessary for CAT to occur. The role of ageostrophic effects mey
well be mainly to provide a local triggering perturbation energy once the
geostrophic flow structure is favourable.

The following treatment appears to resolve some of the current theoretical
difficulties. Its practical utility depends on the-proof-of-the-pudding and it may
have to wazit upon technological developments.
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4.- Ertel's Conservation Theorem and the Richardson Number

In thren—u"f‘mloxal flow in x, y, 2z, coordinates if Q is the absolute vortn"ﬁ‘/,
ctor and §/ is the J=d grad operator then

JQ _ @-VY + (bay)q = - VxxUp S

There is also the purely kinematical relationship

dvA _ vg_/j - TUV- T\ - 2
i — (2)

where >\ is any sc: zlar point Lunction. Taking the scalar preduct operation e V/\
post=factorially throug (1) and the operation Qe pre-factorially through (2) the
term =+ VVe can be Lli:ninzztcd. between the two equaticns to give

"‘ —

olQ oA + @ c/V/\ +(%0v)@- UM - <7a’/\ = - O x Up = V)

which by virtue of the continuity equation
KooV 2 ol '
o P . ()

reduces to
o @ V) —dQ‘VC(/\:.-—o(Vo(XVfrV/\ .
o e g B (5)
and if >\ = 8 the potent.i.l temperature, and the motion is isentropic

FLIT b e

which is Hans Brtel's celebrated conservation theorem,




Although Ertel's theorem is rightly described in the literature as a central
result: in fluid dynamical theory it has found remarkably little use, In the
toorological context this is probably because the corresponding result in x,° 1 D
vocrdinates is not so simple., However, it may be shown that the isobaric coordinaie
analogue of (0) is

% 9/)(5%5:) + bm;w.ve =o | (1)

and that this expression is closely connected with the Richardson Number, First make
the geostrophic asswsption in the fornm

2% - X pgxk @)
9/, 5@

which brings (7) to the form

d %ﬁ(ﬁ;-rf)? i g):)_] (9)

2
The Inverse Richardson Number & as defined in Met O 11, Tech, Note No 56 is taen

,d'zszz — < 9/9

and the connection is cbvious. The first term in (9) is the denominator of (10) muit-
iplied “» (S 7 §)wnd the sccond term in (9) is the nezative of the numerator of (10)
multiplied by f.‘. nere follows

f;iz = ?8 ‘D/o >

-~ "o

» e
(G +5) (< +§’>-91f—,

subtracting 1 from both sides

p e ‘FG(";Vs
(G+5) (5791- 0




_whg_znce
£e /IV,\
(§’+§> = C+§>+—"—j:
l(ffw) J e SE +)

and now, since the expression on the R.I.S5. is the same as in (9) we have

(q 1 /o =0 (11)

pared with (g‘t ""‘F>";'z~.cn

2
and from (11) if ~ iz small comy

@
(< *’53>?5/"0 o (12)

df{ m’)

It then follouws from (9) that also

4[202)] -

Invertin: (10) and following the same sequence of algebraical manipulations as used to

obtain (1 ) one obtzins

&§(§P+g> ¥e( >} o

and from (14) if /J i3 larce compared with ( t )mvx (12) and (13) azain follow,

Thus we nave establisned tne result -

Ir Q-. < 5/(S'+‘f)np if RL >> f/(qcfS) cn the quantities ($° +‘§>

and :f& (9\/ sre ooth approximately conserved,

To the extent that the motion is isentropic and
itions

(See the ’bocnhx at this point),
the V'ClI‘l"'L ioniof £ nc{-hmble it also follows that under the stated cond

(?_\_/ > is approzimately conserved,



5. The rate of charge of Ri following a guasi-geostrophic flow

From (10) we have

’-(_),-6/32 = - -Q(E:Vf’ -
’(D‘b oL op

~
|
Differentiating by'd , multiplying both sides by f, and adding = é‘-{(z.:e> Af
dt
to both sides there follows

B 22190 _ x5 - — o [F6/% Y
ﬁozzz‘ff“w,;“a 5/ & %[&*(‘5}5)]

! 2
But if.4~ is large (Ri small) in the os2nse of the previous Section then from (13) the
R.H.S is zero. In this case, dividiag through by ZQ we obtain, using (10) again
- 9,

fo® (s)

But it may Lo shown that for isentropic motion

108 s okl (&)
o drop

r
and it may also be shown that the relationship between the T, 0 ) divergerce and th
(x.¥,p) divergence is given by

- e : 7
VAR (7

<z§vqg S{b = Sé;Ay,k? — =
a8

SR

If the motion is geostrophic it follows from (8) that the last term in (17) is zero.
Consequently in the isentropic geostrophic case (15) reduces to

: {%/z%z‘ + _Azg Lo (‘ém;, _%) L2 69) .;‘




Chopy, = -~ V- vFf &,

and since both ‘zif andéuEZf are zero they may be added to the R.H.S. of (19)

oC %
to get "

Fhe, Vy = 'g/}f z2)

whence (18) reduces to

¢

C{A52 ek /
= = o | (1)

Thus in the case 'of isentropic geostrophic motion if QL << (g f)

o o
or equally if Ri >> (Zf' §:> it is a conserved quantity. following
&

the flow. This is important for it means that once the Richardson Number has become lcw
it will have a tendency to stay low.

We now evamine the more general case, when Ri is neither very low nor very high to
see what factors can act to bring it low so that (21) applies. From (11)

f ?[fa2- (S’ff_]}

-
whence

[‘JC/J’ - (Q?,—r&?]g%; ‘;;Z[:ﬁd (S’ +:f> =a

and thus, using (16) and (17) with the isentropic geostrophic assumption we have
%‘FAZ* (i}ﬁ") :-%":‘)/"%Z}A?ﬂ(g; +f?] @2

To rid (22) of the unwanted tefm in d (%ff) the isobaric vorticity equatlon
dt

_.%(ﬁb 5) = (%o 6 (G e5) - (%‘//;s Q)b @)



"~ subtracted from it to give

A (f) = = (o )5 + (%%x G-co)-k @)

It is apparent that (24) is simply (18) plus the twistingterm. It appears that the
twisting term is a primary cause in_changing Ri following the flow. It also accounts for
the observational evidence that Ve w ig important. From (24) it is seen that

the effect of the twisting term is such that s increases (Ri decreases) following the
flow if (. becomes relatively more positive towards the cold air. Evpanding the
L.H.S., taking note of (20) and dividing through by f gives

hl

‘ ..0_./£2 = 4 ’CJ:.% % Y—/I-oC*-J)' .é (("5)
0ol ¥ 2P | '

It may then be shown directly that the twistingterm becomes zero if 52 is large in
isentropic geostrophic flow. Multiply through the vorticity equation (25) by Eﬁé and
change the L.H.S. a little to get - - 7

| -5 352G} +(G )G = (R )G e)-F TinGeok

But under the stated conditions, from (12) the first term on the L.H.S i3 zero, whilst
from{16) and (17) the next two terms cancel out leaving only the twisting term . Thus
for geostrophic isentropic motion with small Ri

W xw-k =0 @6
o
and thus in thiscase (25) reduces to (21).
It seems then that points (a) and (b) of section 3 have been partifally met.
However, the twisting term is not readily measurable. so some alternative expressi:

. must be sought. This can be provided by eqn (16) of Met O 11 Tech. Note No. 56,
repeated here for convenience

" %{ & /52;2_;/[-&0* adeCiy o ,?R,_g_-q;'l’ (27)

————

pie

6~ and (: are defined in Section 2. In (27) it may be shown that if the flow is
isentropic

d foo = =2 + %o, Uy - 5576 2 @)
kp op G
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-+80 the antisymmetric components of _d e (j‘/d' will make no contribution since they
Cancel each other out and in fact

A (:‘o‘cg = g fi-“‘:é oy (T;§4;7°‘2}t>/d'2 (??$i>

where F_ is the deformation dyadic.
Putt1ng (28) and (29) in (27), invoking the geostrophic condition and using (17) and (8
then brings (27) to

ols® - © e 2 By Go)

tkag 42
Ve need to show that if the sign of the R.H.S. of (20) is sucg/ds is positive aré<beccme.

large (ie, Ri small) following the flow then in this case the R.H.l. tends to vanish.
For this tuke: equation (10) of Met O 11 Tech. Note No 56, repeated here

d Vi L 1o Ry NED)
CaT N
Take ?222{ o . through and invoke tne gvostrophic condition to get

2P
a_..@)ﬁ Wa, .28 — o (2

-
~

The antisymmetric components‘of (32) again play no part and (32) becomes, (see Section 2

RS SR RS A

Multiplying through by {?é; and expressing the first term differently

5‘@ Dva)] ayg J(f@) " i_’_e %_@,%_(M ) Fe( > o (34

But in the case that the flow is isentropic and Ri is small the first term is zero
by (13) and using (20) the equation peduces to

8. £, _ ) :
;? i, 5 s A,p sl (?fi)




where -_L ol = 9§1&/1{ = ¢ (in the isentropic case) has been used.
oL AU 5 /Q//o
Dividing through (3f) by ?fzj we have

%

L-Feg ~ O s =0c €D,

Thus, although it is far from obvious, in the geostrophic isentropic case once s

has become large (Ri small) the R.H.S. of (30) becomes zero and it reduces to (21)

again, just as it did in the twisting term representation, If Ri is neither
particularly large nor particulerly small then (30) holds as it is and the R.H.5. can

be estimated. When Ri is well away from its extremes then tae deformation term probatly
doninates. As Ri becomes smaller this obviously no longer holds, but in any case
nunerical forecasting routines can supply values for both the R.H.S. terms of (20). DMore
will be written on the use of (%)) in the next section. Points(a) & (b) of Section 3 have
now been met. However theredis one loose end to tieup. Eguations (25) and (30) are voth:
expressions for ¢ 4% . It has been shown that they bothreduce to ol * =

if Ri is emall (and also if Ri large). They must also be equivalent 1n the general
case. That is, (25) and (30)imply that

A RV ek 2 £
5('5/33)(‘7/0&)-}‘:“&77:/6“4.@4 (3’7)

if the flow is geostrophic and isentropic. This is not obviously true, but may be provéf
as follows -
Kinematically we have

Inieval - Ghgul Gl Bige

Since 8 is the potential temperature the first term on “he R.H.S. is zero. If we
teke -er through (36) postfactorially the term involvihgg‘z disappears and we have
%

8 (39)

o f. 0.9, 0.9 ~ 28 -
_;a}(qaey G- V. V- 0.8 %ﬂ.x‘;w

Then using the identity
Vol = 1[6+ hipVIT - STrk] @9
we bring (37) to the form

2 | % 2
£+ 4@GO% -1v¢:6 g0 - (o DYGIESRRE Bt



the antisymmetric term S:;J; K_&’ having cancelled out. Now introducing the
geostrophic assumption, using (8) and (24) the terms in (41) can be expressed in turn

':Zci{»( 6y m Dv>¢r() (FG) ?’“V'FDV “(’{* >(f")(t:z, &

~4%6- 570 =-4(L) (k%) G ’**'f”’) H(EVGE55) @
’%}3 G- .G = —gﬁ £8 e - ke 2; G
Ak )G - L XL €

Noting that in (42). :

”9 93/3) ) (Fé’) ( Vg>[ "‘éf;*h‘iﬂ G<)

%
on substituting (42), (43), (44) and (45) into (41) there results

FG(D% = B8 Y, . LY, .28 zygxqc@ k
"’/o o alb 737/9 a/o '>‘b

and then taking account of the deflnltlon of s and 52 this is exactly (37) which is
thus verified.

6. Comments

b 9 g X ¢

Equation (30) may be computed directly as it stands from numerically analysed and
initialized fields, and from numerical forecast fields. If this is done then it is
advisable to compute it in its entirety. There has been an inclination to single
out the stretching deformation component of F_ as being of special importance, but
in a cartesian coordinate system this results™ in a basic ambiguity. From

Agic  Byej
2 ?Uf}c-f-?—w and . e £ (47)
% - -

where 23 Js and k are the unit vectors in the cartesian system we havé~eiplicitly

,?L/s.‘fr.v.va'..[ 2,y vve] 60
.:970 J 5} P (:;/o ) “‘2["?‘7??5};’ (43)_

ey
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but there is the cemplication that in F_ the components A and B are not individually
invariant with respect to a rotation of® axes. The quaitity &

2 2 2
A3+63 2%{ - GE9

is invariant, but not A or B individually. £As the carteslan axes are rotatcd the
values of A_ and B_ in F Bwill vary over the range -Jﬁ through zero to +u .

Provided th& wholePof @2)€ is computed this does not ‘matter because the ©
corresponding changes in ol I//.ande)/qF throughout the expression exactly compensate
for the changes in A and the axes are rotated. This is not true if

one of the terms in (48 ) is g dlscarded. If the term involving B is discarded as
unrsmportant then the value aac sign of the term icvolving A depends”upon the choice
of cortesian axes. Now it does so happen that,over the UK = Atlantic - Eastern USA
from which area most of the evidence on CAT wh1ch is not too obviously linked to
topographical influences has been culled,the direction of the x axis (the 3 vector)

is such that it is broadly the same as the direction of the axis ol most Jct streams
and in the case of a confluent jet A_will then have the right sign. However the
orientation of confluent jets is sufficiently varied tbat a steady percentage can
be expected to turn up having A_ the '".rong" sign. This, and another point concerning
the relative importance of Schanreb of speed with height and changes of direction
with height, is more clearly brought out by con51der1ns (4S ) in intrinsic ccordinates.
We choose a right-handed system of unit veciors i, n, k and we thea have in place

of (4N) /
A tL ByLr

CICPCI gwsn S )
) / {
DIO K 5 B3”Qf % /')31’7.7

See Section 2 for notation. We now have explicitly

/

D\/ 2/, o
%6 %[ S - e @

From (S| ) we may draw certain couclusions =

(a) At around the jet-core level it is likely that either or both of :HG and E&ﬁ
will be very emall and therefore it may be reasonable to neglect the =l 5?’

ternm in B’., But this is only so in the unique t, n, k systems It does not
necessari®ly carry over to the i, j, k system.

‘
(b) In the event the B8 term can be neglected then since

/ : | :
Ag=2 + le (2% 6D (52)
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A{ itself is unambiguously positive in a confluent region, because both of the
tfrms in (52) are then positive. However the sign of the contribution of the
first term in ( 51 ) involving A’ will depend on the relative sizes of ( SVs
and b@”(Qﬁﬁ « Any conputatlgns based upon algebra or phy51cal reason- ~1"7
ing o which leads to the neglect of the term L% C “~J) are liable
to give a wrong answer in a situation such as depicted in Figure 1.

It is clear from ( S ) that it is dangerous to argue too much from special cases.

If neither 2¥%9  nor ;%gf are particularly small it is quite possible that the term
in B’ in op (51) cduld make a substantial or even dominant contribution. Since

we have

/ o
By = 2% + Vsks (532
on .

there is then the additional complication that it matters whether the flcw is cyclonic
(k8 + ve) or anticyclonic (Ks ~ ve) and whether the horizontal shear is positive or
negative.

e Practical suggestions

From (30) we have

da’. o ¢6 oY W, B W -
db @B H/o("/’> -~ 5}9.% o .

Because of the various uncertainties introduced by data and resolution difficulties
I suggest a systematic check of the individual intrinsic contributicasinveolved in
(S1) against CAT occurrences. Intrinsic formulae required are given in Section 2.
Hopefully the whole formula ( 349-) should give the best result, but this may not be
the case in view of the practical difficulties. Alternatively initial and forecast
estimates of the twisting term can be used if the quality of the numerical output is
good enough.
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8.

Sumnary of Results

In isentropic qua31—geoetrophlc flow
ds*_ L
ol 4 2
(2) = A — AL 3.4

ﬁff’
:-é-(")vf’xVuDI’ - 4-Fy-a

)o
(4) If Bi is very large or very small compared with fVQfg;,f§>then

d 20 | d [£/3v,V |- b
E'&‘(gl,’hc)‘a} ey ;QL?(“Q:,)J‘O ) i/g P

- 2
(5) It is shown in Section 6 that in the evaluation of %% from (2)
the turning of the geostrophic wind with height is just as
important as the increase of speed with height.
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APPENDIX
LA AR

At first sight this is a curious result; from experience it is the sort of oddity
wnat misht well arise from an ill=judged use of the reostropaic approximation, buf I

B

do not think that this is the case here, Given quantities A, B, C, D and that 5= - =~
then if

é%; (79(: -+~LI?E3:> o | r o (1)

it follows that if "OJ[[-(C/:}> = O  4{nen zalso %(D8> = o and vice verse,

Also from
s=-B Q
A

we have

ol
)
i
Sk

wvaence

(D5 Dege = ipa ey
<

(3)

and thus using (1) yields

%((%*')Cﬁ]=o ()

from vhich if S << £ e have o (CH)‘O and consequentlyii (D6>= o

Then: starting again from

a0 W |
S B 3‘”‘?" T 5)




A
2 ae w

9 an. g

i - .
g(fs-:)ps - m

and now if S > C/:D e B, 2 (D@) = and consequently %_(Cﬁ)‘—‘ O the

same two results as before,

Taus the result is purely a matter of algebra since the qua.nt;tles A,3,C, D
can be anything at all. y




