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Summary

A previous paper by the author discussed solutions to the deformation model

of Hoskins and Bretherton between rigid boundaries with zero potential vorticity.
In this paper the explicit construction method used there is extended to the

free surface case, the difference between the solutions obtained, and finite
difference solutions of the primitive equations;is similar to that with rigid
boundaries. A finite difference method for the semigeostrophic equations is
described and shown to converge to the solution given by the explicit construction.
This method is then used to compare solutions of the semi-geostrophic and
primitive equations using data with non-zero potential vérticity, including a

representation of the stratosphere.

3 [ Introduction

A previous paper by the author, Cullen (1982), referred to henceforward as C,
discussed solutions to the deformation model of frontogenesis introduced by
Hoskins and Bretherton (1972), referred to as HB. It was shown that solutions
could be obtained beyond the formation of a discontinuity by assuming the

validity of t?e Lagrangian conservation laws for potential temperature and absolute
momentum, incémpressibility of the flow, and the geostrophic jump conditions
introduced originally by Margules. Solutions obtained by adding artificial
viscosity to the primitivé equations and refining the mesh to convergence appeared
to differ from the Lagrangian solution in the vertical structure of the front.

The scale analysis described in HB and set in a ﬁore general context in a reviey
paper by Hoskins (1982) suggests that the semigeostrophic approximation remains
'valid for longer than the no mixing approximation made by omitting dissipation
from the equations. This means.that the solution obtained as the inviscid

limit of the semigeostrophic equations may be more physically relevant than the
inviscid limit of the primitive equations. Whether this is true can only be

determined by experiment. Mathematically it can only be shown that the two limits



are different.

In this paper the work described in C is extended in several ways, in order to
solve more of the cases described in HB after discontinuities have formed.

The firet extension is to include the correct lower boundary conditions which
allows the effect of surface pressure variations to be included. The scale
analysis of HB suggests that this only has a small effect. However, since
including it adds another small parameter to the system, there is a danger that
singular effects may occur.. The explicit construction used in C is extended by
iteration to include this case and the differences between it and a finite
difference solution to the primitive equations are shown to be no greater than

before.

The logic in the explicit construction method is very complicated and it proved

impracticable to use it to study problems with non-zero potential vorticity.

Recently, however, the construction has been generalised by Purser and Cullen

(1983). It is possible to show by qualitative arguments what the likely effects
are. The more general construction has not yet been'implemented, however.

The finite difference primitive equations model was therefore modified to solve
the semigeostrophic equations instead. This is difficult because the ageostrophic
circulation is described by a parabolic equation once the discgntinuity has formed.
The problém with zero potential vorticity is solved by this method to check that-r
it agrees with the explicit construction. Tﬂe correct solution is obtained

but the rate of convergence is very slow.

The two finite difference models are then used to compare solutions obtained with
non-zero potential vorticity, iﬁcluding aone with a discontinuity in potentiél : .
vorticity to represent the tropopause. In HB it was found that folding of the
tropopause prevents formation of a discontinuity there. This is confirmed.
Differences between the semi-geostrophic and primitive equation solutions are

similar to those observed in the test case in C. The errors close to the frontal

surface appear to be dominated by the resolution. There are also differences in
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the slopes of the isotherms above and below the frontal surface. These are

insensitive to further increases in resolution and thus indicate that the
solutions are genuinely different. It is possible to obtain sharper fronts
from the semi-geostrophic model because the artificial viscosity can be reduced
to lower values than in the primitive equation model. This is because of the
separation of the calculation of geostrophic and ageostrophic winds. Care has
thus to be taken not to allow the Richardson numbers to become unrealistically

low.

2. Implementation of correct lower boundary conditions

Following HB and C we use the following set of two-dimensional equations:
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where the vertical coordinate 3 is defined by

pe D= ()5 10 (2)

_The "rigid wall" boundary conditions are that w = O on z = 0, H where B ylil/(x-l)
. a a . S

The f plane and Boussinesq approximations have been made. The equations are solved

in <L $% ¢ L . The lateral boundary conditions are as in C. The system (1)

implies the following Lagrangian conservation laws.
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where M is the absolute momentum (v+fx) and A is the area of a fluid element
in the (x,z) plane. It was shown in C that a solution of (3) with ze¢ro
potential vorticity could be constructed after a front has form.ed by assuming

M and © to be constant. on fluid elements and using the jump condition

S = __2_ (el (4)
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for theslope S in the (x,z) plane of the line separating elements with values of

® differing by /©_/ and values of M differing by / M /.

The boundary condition at z = Ha corresponds to a condition atp = O. That at
z=0 corresponds to a condition at p = P,- Variation in surface pressure, By

requires the lower boundary condition
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and the geostrophic balance condition requires
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where *a. is the geopotential of the surface z = O. We then approximate the

condition (5) by
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The implementation of condition (7) in the semi-implicit primitive equation
scheme used in C is straightforward. The time derivatives in (7) and the full

x momentum equations are represented by:
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These equations are reduced to alelmholz equation for 4; in the usual way.

The boundary conditions in x are that
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and the solution is then obtained by standard methods.
[

Implementation of the condition (7) in the explicit construction used in C
requires the prior knowledge that the solution will be close to the rigid wall
solution. The scale analysis of HB supports this. The'logic of the construction
becomes too difficult if the solution is not symmetrical, as happens once (7)

is used. Therefore we first obtain the rigid wall solution and modify it,

assuming that there is no change in the topology of the segments of constant M

.and 8. This is done as follows:

i. Assume that ¢% is given by (6) at t = O.

ii. Evaluate v(z = 0) from the rigid wall solution at t =4 t.

iii. Calculate the implied ¢, from (6) at t = 4t.

iv. Calculate the change in 4% over the interval At.

ve Modify the gréas gf the segments to be consistent with mass flow across

z = O given by step (iv), allowing for the horizontal advection of 4%.
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vi. Go back to step (ii) and repeat till convergence.

In practice one pass through this logic is sufficient where [t is the interval
between output times (3 hours in C). The initial condition (6) for 4% is also

used for the finite difference integration. "

3 Solution of the semi-geostrophic equations ) s
When solving the system (3).in all but the simplest cases the direct geometrical
construction used in C appears impracticable. This is because of the essential
nonlinearity, that the slopes of the boundaries between Segments depend on which
segments adjoin; and that cannot be determined in advance. It should, however,

be possible to use the general consfruction of Purser and Cullen (1983). In HB

and the subsequent work reviewed by Hoskins (1982) the solutions were obtained by

a coordinate transformation which made the problem linear in geostrophic coordinates.
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The solution becomes discontinuous in physical space in finite time, but at this
time it is still continuous in (X,Y) space. Therefore the solution using the
coordinate transformation will apparently continue to exist, ugtil the
reverse tfansform to physical space is attempted. It is clear that the reverse
transform will yield multi-valued results, wh&ch can be regularised by ihposing
a frontal surface in physical space and making a correct choice ;f values on either
side qf it. However, this procedure will violgte the conservation of mass of
fluid.elements since the areas of some elemengs will be reduced in the
regularisation. Thus this procedure wili not give the solution obtained by the
explicit construction which took mass conservation into acéount. It is Aot clear B

how to modify it without losing the simplicity of the equations in (X,Y)

coordinates.




We therefore use a more direct approach in this paper. The equations are

split as follows:

V. v

; _—2 - dIC _3 & AV = 0
_ ol 3% d ()
:)_6 - dX ‘.).._e. 0
. ol Ox

which includes the geostrophic advection, and, iteratively,
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The step (12) is repeated to convergence with U being an iteration time scale.
After each timestep of length At of the calculations (11), it is found that (12)
must be integrated for a "time' much greater than At to obtain convergence.
The adjustmént is carried out by linear waves which are damped b& the use of a
large'coefficient K| in the gquation for uag' .The articifieal viscosity K2
Which captures the discontinuity in vg and 6 éhould be very small. The need for

a long adjustment time suggests that information has to be transmitted much

= faster than the speeds of the internal gravity waves used to carry out tﬁe

adjustment in (12).



The behaviour of this iteration and its differ@nce from a direct solution

of the primitive equations are best discussed by analysing the equation for the
(x,z) ageostrophic circulation. Consider the semi-geostrophic equations (1).
The continuity equation implies that u and w can be represented in terms of a

streamfunctiontP by

d - '
Wz =dX = Tg | (ls)

Then the equations for gi ~and %% y together with the condition for

geostrophic balance and the hydrostatic equation, determine 41 implicitly
by the equation
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It is well known that this equation changes type according to the sign of the

potential vorticity
JoMde . dge (15)
és dx Ox é}
being elliptic, parabolic or hyperbolic according as to whether q is positive,
zero or negative. The discriminant of equation (14) is, in fact,
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where S is the slope of the front. Substituting these ratios into (16)

gives zero. This suggests that the (x,z) circulation may exhibit parabolic
behaviour in the presence of a discontinuity, though equation. (14) is ro
longer meaningful in this limit. This question requires further, more rigorous,

study.

. The rate at which information can be transferred by the (x,z) circulation
depends on the eigenvalues of (14). When (14) be;omes parabolic, information
can ﬁe transmitted instantaneously. Thus, in the case of zero potential
vorticity, it is known that information can be transmitted irmmediately between
the boundaries of the probiem. Similarly at a front, it may be necessary to

transmit information infinitely fast along the frontal surface.

By using the iteration scheme (11), (12) to solve the semi-geostrophic
equations we are imitating the édjustmént carried out by the primitive equations,
but by repeating to convergence we allow information to be transmitted an
arbitrary distance. In practice, this is difficult to achieve. The use of (11)
and (12) means that information will be transferred at the gravity wave speeds
of the model. Typical speeds (Temperton and Williamson (1981)) show only the
external mode and the first five internal modes trévelling at more than 1Oms_1.
In order to solve the deformation problem in C correctly it is necessary to
transfer information across half the width of the frontal zone at each time step,
in order to maintain the correct frontal structu;e. In the problem solved in C,
this distance is about 2x105'm at 14 hours which is the time at which the fesults
were presented. Equations (11) and (12) must be iterated for an effective time
1

Y ; 5
of 2x10 " sec at each timestep in order to achieve the transfer at 10ms™ .

Since the timestep limit faor the iteration is determined by the first internal

= : : _ ; s
mode speed of 100ms ', about 200 iterations will be required using the low




resolution grid of C with Ax = 10um. Clearly these figures are only rough
estimates, since it is not clear how many modes are required to represent the
solution described in C accurately. The integrations discussed in section 4
used 75 iterations, after which further iterations had little effect. One of
the reasons for the failure of the primitive equation solution to converge thus
appears to be the inability to transfef information fast enough when
discontinuities have formed. In the atmosphere, information can be transferred
faster by sound waves, and also it is possible that waves may be trapped in

the frontal zone and transmit information very fast during it. In view of this
argiment, the zero potential vorticity problem solved in C would appear to be
the severest possible test, and it is of interest to see how far the differences
between the solutions obtained in that case persist with non zero potential

vorticity. Several such cases are examined in the next section.

This discussion also shows how diffiEult it is to devise a successful procedure
for solving the semi—geéstrophic system. A direct method would have to move
some fluid elements a large distance, and the nonlinearity inherent in the
dependence of |the slope of an inter-element boundary on the values of M and ©
in the element is likely to prevent this being achieved except in very simple
cases like that solved in C. The iteration (1), (12) could bevspeeded up by

successively eliminating internal gravity modes from and increasing

w
Ok
the time step. (This is essentially a multigrid technique). Alternatively
(11) and (12) could be replaced by nonhydrostatic equations, and integrated
explicitly. It is not clear whether the faster transfer rate would compensate

~for the greatly reduced iteration timestep, and limited experiments did not

show any improvement in the results.

The results discussed in section 4 use the lower boundary condition (6). In

the iteration scheme (12) the boundary conditions on the continuity equations

are replaced by



Woy 2 O &k 2=M

C17)
p—— * —
e 0%

where ¢' is the geopotential at z = 0, satisfying the condition
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This results in a scheme for predicting surface pressure similar to that

proposed by Browning and Kreiss (1982) using multiple time-scale arguments.

4, Results
In this section we show results from three experiments. The first solves
equations (1) using the same data as in C with
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The first series of experiments compares the finite difference primitive

equation (PE) model using the boundary condition (6) with the explicit

construction method modified to use the same boundary condition as described

in section 2; and with the finite difference semi-geostrophic (8G) model described

in section 3. The results for potential temperature, the V component of

velocity, and the vertical velocity w, are shown in Figs. 1 to 8. The : .
differences between the PE solution and the explicit construction are similar .
to those in C with the rigid wall conditions. The potential temperature
comparison (Figs. 1 and 3) show that the slopes of the lines disagree above and
below the frontal surface as well as in the region of strong contrast near

z = %Hf The SG model (Fig 6) agreeé with the explicit construction except

near z = 3H. Convergence is very slow there because the discrete grid cannot
define the slope accurately. The differences between the predictions of v
velocity (Figs. 2, 4 and 7) are less obvious. The contours of large v in Figs 2
and 7 (SG) are more sharply peaked than in Fig 4 (PE), and the minimum value

of lv’ on the boundary on the outside of the frontallregion is about ’1ms-1 -
in the semi-geostrophic integrations and Ems_1 in the primitive equation

integration. The vertical velocities (Figs 5 and 8) are greater in the PE
integration. In the 5G model, most of the large values are coﬁcentrated

near the intersection of the front with the boundaries.

In Eig 9 some further diagnostics are shown. The first is the slope of the 6@?0
isotherm. In the exact solution this is much éreater in the middle

tropoﬁause than where it is embedded in the frontal surface. The two finite

difference models (using the saﬁe resolution) fall short of the maximum sloﬁe : -
by the same amount, but the SG model gives a greater variation in slope with

height. The second graph shows the position of maximum temperature gradient.

The PE model is closer to the explicit construction. This position is

considerably influenced by the effect of the artificial viscosity, and so is

not a very reliable guide to accuracy. The third graph shows the implied
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surface pressure. In this case the SG model is closer to the exact

construction.

These results indicate that the 5G finite difference model is converging to
the solution given by exact construction as the mesh is refined. Convergence
is very slow near the frontal surface. Using a 100 x 10 grid the maximum
slope is 41, with 100 x 20 it is k6. fhe slopes of the isotherme above the
below thefrontal surface are essentially correct on the 200 x 20 grid. The PE
model gives similar results in the frontal zone itself, but inaccurate slopes
above and below the frontal surface. The strsngest gradients are concentrated

closer to the boundary.

In Figs 10 to 13 we show the results using uniform non-zero potential

vorticity. The same resolution is used for both finite difference models.

The differences between the © fields are similar to those with zero potential
vorticity. The stronge§t gradients are concentrated near the onndary in the PE
model and the variation of slope with height is greater in the SG model. The

v fields (Figs. 11, 13) show that the long-front winds are less near the
boundaries awéy from the front, but greater in the jet maximum close to the
front. The latter difference may reflect only the reduced viscosity in the SG

solution.

In Figs. 14 to 17 the initial data has zero potential vorticity except in the
top quarter of the domain where it is large'and positive. This is intended as

a comparison with the results of HB on upper tropospheric fronts. In agreement

~with HB, no discontinuity is formed at the tropopause. There are differences

in the slopes of the isotherms .in the lower half of the fields. Both models
produce statically unstable solutions just below the tropopause. This is
likely to be caused by vertical truncation errors near the sharp discontinuity

of temperature gradient. The problem is worse in the SG integration.




The velocity fields (Figs. 15 and 17) show a well developed jet just below the
tropopause with another maximum at the upper boundary. The maximum values of
the jet core and of velocity gradients are greater in the S5G model, probably
because of reduced diffusion. There are again disagreements between the
solutions near the upper and lower boundaries away from the frontal regions.

The area enclosed by the 2ms~1 isotach is greater in the PE model. : i

e Discussion

The results in this note show that the exact L agrangian solution of the
inviscid semi-geostrophic equations introduced in C can be obtained as a limit
of a standafd finite difference approximation to the SG equations as the mesh
is refined and the artifieial viscosity reduced. The solutions obtained using
the primitive equations with artificial viscosity are slightly different away
from the frontal surface. The errors in the jets and in the frontal surface

appear to be dominated by finite difference truncation errors.

It is interesting to note that the primitive equatioﬁ model appears unable to
propagate a discontinuity into the fluid interior. A theorem proved by HB

from the Eulerian equations assuming smooth solutions states that discontinuities
can only form at the beundary. Purser and Cullen (1983) show'that,-after a.
discontinﬁity has formed, and the equivalence of the Eulerian and Langrangian
forms of the eqﬁationé may have been lost, th;t discontinuities can propégate

in from the.boundary and the potential circulation round a conto&r crossing the
froht_is no longer conserved. It thus appears that the PE model may be trying

fo conserve potential circulation round all c;ntours, and thus not allow the
discontinuity to propagate into ﬁhe domain. This can only be done by violating
one of the lagrangian conservation laws and thus obtaining a different sélution s

from the explicit construction.
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Another way of looking at the differences between the models is in terms of the

effective rate of transfer of information by internal waves. The SG model
requires information to be transmitted faster than the phase speed of linear

internal gravity waves.

This note thus strengthens the impression that the PE and SG solutions are
different, and that experiments should be carried out to test their physical &
validity. It is possible that the differences in the solutions might be

!
greater in three dimensional models, where there is much greater freedom. ]
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Potential temperature after 13.9hr, explicit. construction with free
i ‘
surface.
y-velocity after 13%.%hr, explicit construction.
Potential temperature after 13.%hr, finite difference primitive equation,
200 x 40 grid, K = 1.25 x 10" ms .
y velocity after 13.%9hr, model as Fig. 3.
Vertical velocity after 13.%hr, model as Fig. 3.
Potential temperature after 13.9hr, finite difference semi-geostrophic
model, 200 x 20 grid, K = 600 L
y velocity after 13.%hr, model as Fig. 6.
Vertical velocity after 13.9hr, model as Fig. 6.
Further diagnostics from solution after 13.9hr. In each case:
A Explicit construction.
B Finite difference (primitive equation).
C. Pinite differeénce (semi'geostrOphic).
a. Slope of © = 60 isotherm.
b. Position of maximum %%‘ for given z.
Ce Surface pressure.
Potential temperature after 13.9hr, model as Fig. 3 (except 200 x 20 grid),
data set with uniform nonzero ﬁotential.vorticity.
Yy velocity after 13.%hr, model and data as Fig. 10.
Potential temperature after 13.9hr, model as Fig. 6, data as Fig. 10.
y velocity after 13.%hr, ﬁodel'as Fig. 6, data as Fig. 10.
Potential temperature after 13.9hr, model as Fig. 10, data set with
discontinuity in potential vorticity.
Yy velocity after 13.9hr, mo@el and data as Fig. 14.
Potential temperature after 13.9hr. model as Fig. 6, data as Fig. 14.

y velocity after 13.%hr, model as Fig. 6, data as Fig. 1k4.
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