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Abstract

Short-duration concentration fluctuations are important in assessing hazards from
harmful substances released into the atmosphere. For example, a risk assessment
model might include the effect of fluctuations when investigating toxicity or assessing
the design of detection strategies for hazardous airborne materials. The driving force
behind the current project is a requirement by DSTL for a methodology to model
realistic concentration fluctuations with prescribed energy spectrum and probability
density function by simulating realisations of concentration time-series. We do not
aim to predict the detailed fluctuations as the concentration changes from one instant
to the next, but rather to describe the correct ‘climatology’ of these fluctuations.

In our initial approach to this problem, we developed an iterative scheme for the
simulation of fluctuating time-series based on a note by M. Nielsen at Rise. This
technique is moderately successful at recreating realistic fluctuations but has its
limitations. Thus an alternative approach has been sought.

The current report presents a second scheme for simulating realisations of
fluctuating concentration time-series. An ensemble approach is adopted: the input
data now prescribes the probability distribution and spectral structure describing an
underlying ensemble of realisations although individual time-series in the ensemble
do not satisfy identically the target data. The technique uses a correlation-distortion
method. This generates time-series by transforming Gaussian time-series into series
with the desired probability distribution. Here the transformation of the pdf distorts
the auto-correlation function and spectrum, and so the spectrum of the initial Gaussian
time-series is pre-calculated in order to match the target spectrum after this distortion.

This ensemble approach has several advantages over our earlier iterative scheme.
It does not create statistical clones that all have an identical probability distribution, it
produces less ‘spiky’ time-series and is better at representing the long interludes of
zero concentration between individual ‘bursts’. Finally, it is computationally efficient,
having the capacity to rapidly generate a large ensemble of realisations.
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1 Introduction

Concentration fluctuations in dispersing plumes have been studied experimentally
in many field dispersion trials over the years. For instance, the time-series data set that
we are using in this simulation research was collected in short-range tracer dispersion
experiments conducted by C. Jones at MRU Cardington in the summer of 1998.
However, specialised dispersion studies of this type are often costly and time-
consuming; in particular, this approach would not be especially practical for routinely
providing the large quantities of time-series data that might be required by risk
assessment models. Thus an alternative strategy is needed — there is a requirement to
model the fluctuations mathematically by generating realisations of concentration
time-series using numerical simulation techniques. The interested reader is referred to
Gurley et. al. [1] for an overview of some time-series simulation tools. In our work
(see also [2, 3]), we aim to recreate realistic fluctuations given information on the
expected amplitudes of the concentration values and their temporal structure.

The two principal characteristics describing a fluctuating concentration time-series
are its probability distribution and energy spectrum. The basic concept underlying our
numerical simulation scheme will be to use input information on these characteristic
features to simulate realistic fluctuations with the prescribed structure. As such, the
approach must actively involve both the probability distribution and spectrum in its
scheme, such that it is able to accurately represent both features in any simulated
realisations.

An example concentration time-series from the Cardington field trials data set is
shown in Figure 1 below, along with its probability density function (pdf) and energy
spectrum, see Figure 2. These observed concentration fluctuations were recorded
during the J14 trial on data channel 3 (the propylene concentration measured by the
second dual UVIC detector in the receptor array). The experiment was performed at
13:50 BST on 24™ June 1998. See the previous note [2] for details of the experimental
technique and further information on these field experiments. We will adopt this
realisation as the test case for our simulation schemes later in this report.

Concentration fluctuations observed in a field dispersion experiment

Ue=0.179, ©.=0.643, pc0o=0.805, Cuax=5992
6 -
€
jo%
&
g I
bS]
=
=
8
3
@] 2 1 -
0 A i L A u " J a l. |
0 200 400 600

Time (seconds)

Figure 1: an example concentration time-series for the short-range dispersion of
propylene gas in a Cardington field trial conducted by C.D. Jones in June 1998.

2g



Turbulence and Diffusion Note 283, GMR, March 2002

A probability density function and spectrum for concentration fluctuations
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Figure 2: the probability density function and energy spectrum of the
concentration fluctuations in the Cardington experiment displayed in Figure 1.

2 A summary of the iterative simulation scheme

A first scheme for simulating realisations of fluctuating time-series was developed
during the summer of 1999. The approach adopts an iterative simulation technique,
discussed in a note by M. Nielsen [4], to gradually evolve a time-series with the
prescribed statistical and temporal structure. This method is discussed at some length
in a previous report [2] on our simulation work. The discussion includes full details of
the iterative algorithm, its implementation and its limitations. Here in the current note,
we shall confine ourselves to a brief outline of the method, shown diagrammatically

in Figure 3, and its ability to generate realistic fluctuations.
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Figure 3: an overview of the iterative simulation scheme.
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The scheme uses an iteration process to evolve a time-series realisation matching
the given input pdf and energy spectrum. The main features of the algorithm are
summarised below:

= JInitialisation

The algorithm is initialised with a Gaussian time-series having the prescribed
spectrum. This time-series is constructed via its Fourier transform: the Fourier
components are assigned with amplitudes matching the energy spectrum using
randomly generated phase angles.

= Jteration

The following procedure is repeated until a ‘stable’ realisation emerges. Note that
Fast Fourier Transform (FFT) techniques are employed to transform between any
time-series in the time domain and its Fourier representation in the frequency
domain.

1) The first step transforms the time-series so that it has the required probability
distribution, i.e. the amplitudes of the concentration values are monotonically
adjusted to agree with the input pdf.

2) The complementary step adjusts the amplitude of each Fourier mode to restore
the prescribed energy spectrum. The phase angles are preserved in this step.

Thus each iteration is effectively nudging the initially random phases of the
Fourier components towards a preferred solution.

= Termination

The iterative procedure described above is repeated until it generates a time-series
realisation displaying sufficient convergence to the required spectral structure. By
exiting the algorithm routine after the first of the two steps, we ensure that the
simulated realisation has the correct probability distribution. For instance, if we
terminated the algorithm immediately after restoring the energy spectrum, it could
potentially give negative values for the concentration!

The convergence behaviour of this algorithm has not been investigated in any
detail. A reasonable fit to the input spectrum is usually obtained after just a few
iterative loops, although the scheme is not convergent in the strict mathematical sense,
L.e. it is not possible to reduce the spectral error below an arbitrary threshold simply
by performing a greater number of iterations. Instead, after a sufficient time, the
method will frequently find a ‘fixed-point’ time-series where the two iteration steps
become reciprocal. The iteration effectively ceases at this stage, and there is no
mechanism to further reduce any spectral error.

The final realisation is highly sensitive to the initialisation process where the
random phases are selected for the initial time-series. A different selection of initial
phases will give a different succession of time-series in the simulation sequence.
Some initial states may produce fixed-point realisations with smaller spectral errors
than those provided by other initialisations, although the output time-series tend to be
remarkably similar in their general appearance. We found that it is very difficult to
precisely match the target spectrum using this approach (clearly it must be possible if
a consistent pdf and spectrum are supplied), but that any spectral errors are generally
quite small.
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An example time-series realisation generated by the iterative scheme is shown in
Figure 4. On this occasion, the simulation engine was driven using the probability
distribution and spectrum displayed in Figure 2 for the concentration fluctuations
observed in the Cardington field trial. The realisation below should be compared with
the experimental fluctuations plotted in Figure 1.

An example time-series realisation generated by the iterative scheme
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Figure 4: this realisation is an example of a concentration time-series produced
by the iterative simulation engine driven using the field trial data shown in Fig 1.

This method for simulating concentration time-series generates realisations that
capture the basic structure and appearance of the fluctuations reasonably well.
However, the simulation is far from ideal with several limitations inherent in this
approach. Firstly, examining the realisations in detail, the simulated time-series are
rather ‘spiky’ in appearance and the long interludes of zero concentration between
individual events are poorly represented. These quiet periods are difficult to reproduce
because any perturbations in the Fourier amplitudes or phases will disrupt any such
sequence of zero values.

Another drawback with this scheme is that each simulated realisation is a
statistical clone of the input time-series data set; by forcing an exact match to the
prescribed probability distribution, it gives no opportunity for any variability between
separate realisations in statistical parameters such as mean, variance and
intermittency. On a computational note, the iteration procedure can become rather
expensive for simulations of long time-series because of the need to repeat FFT and
sorting routines. Furthermore the scheme is only capable of generating one realisation
at a time, and needs to be run successively if multiple time-series are required.
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3 The second simulation method: an ensemble approach

In an effort to improve our simulation capability and overcome the limitations
associated with the iterative scheme, a second technique has been developed for
simulating realisations of concentration time-series. The method adopts an ensemble
approach by generating a family of time-series realisations where the spectral
properties and probability distribution are prescribed for an underlying ensemble
rather than the individual realisations themselves. It uses a variation of the
correlation-distortion method discussed by Gurley et. al. [1, 5].

This section presents the main details of the ensemble technique and discusses its
implementation in a computational scheme. We assess the performance of the scheme
at generating realistic concentration time-series in an efficient manner. Further details
of the concepts used in this approach can be found in appendices after the main report.

3.1 An overview of the ensemble scheme

The approach aims to calculate the effect on the energy spectrum of a change in
the probability distribution, so that each member of a simulated ensemble can be
derived from a Gaussian time-series generated using the modified spectrum. The
process is summarised below in Figure 5.

Prescrl.b.ed Probability Standard G.a‘ussmn
probability mapping > probability
/ distribution distribution
Inputs:
o / Modification of energy spectrum
probability P I e = e L e e T T = -
density function 1 : A :
1 Required Correlation Gaussian :
energy spectrum ! auto-correlation | adjustment auto-correlation "
[
I
| ? FET FFT ¢ I
1
: Required Gaussian !
! energy spectrum energy spectrum :
J i
Generate random Gaussian time-series
Fourier components realisation
pdfitransformation
Output:
simulated realisation|
in ensemble

Figure 5: an overview of the ensemble simulation scheme.

At the heart of this technique lies the modification of the energy spectrum; this
first step is a pre-requisite to the main simulation routine. Each output time-series is
obtained by monotonically transforming a Gaussian time-series into a series with the
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target probability distribution. The spectrum of the Gaussian process is first calculated
such that the transformed time-series will have the desired spectrum. This is actually
achieved by applying a mathematical transformation to the associated auto-correlation
function; more details of this ‘correlation adjustment’ are given later in Section 3.2.

Once the adjusted spectrum has been computed, then the simulation engine can
efficiently generate a large ensemble of time-series realisations. There are two steps in
the simulation of each realisation:

1) Generate a Gaussian time-series by selecting its Fourier components as
independent Gaussian random variables with variances given by the modified
energy spectrum.

2) The output realisation is produced by monotonically transforming the Gaussian
time-series so that it has the prescribed probability distribution.

Further details of the construction process are provided in Section 3.3.

3.2 The modification of the energy spectrum

As a first step in the simulation scheme, it is necessary to compute the appropriate
spectrum for the Gaussian process. Here the spectrum is constructed such that any
Gaussian time-series with this modified spectrum transforms to a time-series with the
original target spectrum when the prescribed probability distribution is restored. In
fact, the problem can be translated into a more natural setting of auto-correlation
functions by considering Fourier transforms instead. In this framework, the spectral
modification procedure is described via an expression for the distortion in the auto-
correlation function of the fluctuations. The correlation-distortion method involves
calculating a certain double integral evaluated over a (two-dimensional) joint
Gaussian probability distribution; the details of this calculation are presented below.

Let us begin by introducing some notation. Let R(7) denote the auto-correlation
function for the required concentration fluctuations (that is, the inverse Fourier
transform of the input energy spectrum). Here, the parameter T denotes the time-lag
and may be positive or negative; although the symmetry of the auto-correlation
function ensures that R(7) = R(-7) for all 7 and hence it is sufficient to consider only
positive lag times 7> 0. Similarly, let Rg(7) be the auto-correlation function associated
with the modified spectrum (for generating the Gaussian-distributed time-series); it is
this function R, which needs to be calculated.

R(7) Re(v)

auto-correlation

adjustment




Turbulence and Diffusion Note 283, GMR, March 2002

In our discretised case, the auto-correlation functions R, R, are defined at discrete
lag times t; = iAt (i = 0,...,N-1). Here it is convenient to define auto-correlation

without subtraction of the mean, so that R(t,) = c(¢t) c(t + 7,;) where the over-bar denotes

an ensemble average. To simplify the notation, for any fixed value of the index i, put
p = R(%) and py = Ry(7;). The correlation distortion relating the values p and p, will
be presented shortly, but its description requires additional notation to be introduced.

Let F denote the cumulative distribution function (cdf) of the target probability
distribution for the concentration fluctuations; that is, F(c) = prob(conc < c) for each
concentration threshold value c. Similarly, let F, be the cdf of the standard Gaussian
distribution with zero mean and unit variance. These functions may typically have the
following form.

F(c)

C C

Finally, denote the probability density function (pdf) of the two-dimensional joint
standard Gaussian distribution by gy(*; x, y). This is the probability distribution
satisfied by two jointly Gaussian random variables X, Y (each with mean zero and
variance one) having a cross-correlation value —1 < r < +1; see Appendix A for more
details. As a useful note to the reader, any pdf appearing in this report is written using
lowercase notation, whereas any cdf appears with UPPERCASE notation.

Returning now to the main discussion on the calculation of the correlation
distortion p — pg, the adjustment of the auto-correlation function satisfies the relation

G.1) = [ [ FE@)E-F0)ep,x%) dr dy.

To explain this formula, note that p is the value of the auto-correlation function R at
some fixed lag time 7,. By definition, this is the expected value ¢(f)c(f +7;) evaluated
over the ensemble of time-series. However the right hand side of (3.1) is precisely this
expected value when c(f) and c(f +1;) are obtained by transforming random variables
from a joint Gaussian probability distribution with suitable correlation p,. To utilise
the relation (3.1), it is necessary to invert it; that is, to compute the required value of

pg for each given value of p. The reader may find the illustration in Figure 6 useful in
understanding the principle.
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A non-Gaussian concentration time-series A standard Gaussian time-series
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Figure 6: This diagram illustrates the basic principles for simulating a
concentration time-series ¢(f) via a standard Gaussian time-series ¢(¢r) that has

an adjusted auto-correlation function. The transformation in the probability
distribution distorts the correlation structure according to the formula (3.1). By
pre-calculating this correlation-distortion, it is possible to generate non-Gaussian
time-series with a prescribed auto-correlation function.

From a mathematical viewpoint, the natural transformation for the distortion of the
auto-correlation function is the ‘forward” mapping p; — p described in (3.1) as a
double integration over a pair of correlated Gaussian random variables. In practice,
this will be calculated by a numerical integration scheme, see Appendix B. The
ensemble simulation approach actually requires the ‘inverse’ transformation p — py;
this is calculated indirectly using a numerical inversion scheme, see Appendix C.

3.3 The simulation of an ensemble of realisations

Once the modified energy spectrum has been calculated, it is a reasonably straight-
forward process to generate time-series realisations for the simulated ensemble. There
are two steps in the simulation of each concentration time-series: firstly, a Gaussian
series is generated using the adjusted spectrum; then, this Gaussian realisation is
transformed to obtain the prescribed probability distribution for the concentration
fluctuations. A detailed description of the two stages in this procedure is now given.

Let us begin by describing our approach for simulating Gaussian time-series in an
ensemble framework. Let the modified energy spectrum for the Gaussian simulation
be written explicitly as Sy(f;). This is a discrete spectrum defined at the individual
frequencies f; = i/T (i=0,...,N-1) where T = NAt is the total time of the time-series
record (the fundamental period). The two-sided spectrum is defined here in such a
way that the sum (from 1 to N-1) of its components equals the variance of the
fluctuations; see [2] for further detail of the spectrum’s definition. Note that the energy
spectrum exhibits symmetry in its structure: Sg(f;) = Sg(fn-;) for each i=1,...,(N/2)-1.

-10 -
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Recall that each component in the energy spectrum of a time-series describes the
(square of the) amplitude of a particular Fourier mode in its spectral decomposition.
Thus, a time-series can be constructed with any given spectrum by simply adding
together Fourier modes of the required form. If the individual phases of these Fourier
components are randomly chosen then the resulting time-series generated in this
manner will approach a Gaussian distribution.

However, this technique will always generate a realisation having a spectrum that
precisely coincides with the prescribed energy spectrum — there is no variability in the
spectral structure between the individual members of the ensemble. This is an obvious
limitation of the simple approach outlined above but one that is easily remedied by
allowing greater freedom in the specification of the Fourier components. The aim is to
match the prescribed spectrum in an ensemble-average sense while allowing some
flexibility in the spectral structure of any individual realisation. This is achieved by
the following construction for each member of an ensemble via its Fourier transform.

As a first step towards creating each ensemble member, generate N-1 independent
random values ry,...,ry.; from a Gaussian distribution with zero mean and unit
variance. Then define the Fourier transform X{f;) of a time-series realisation x(¢;) by

X(0)=0;

2 =7 /S )/2+1r,, /Sg /2
L) g p(y: )/ i i )/ foreachi=1,.,(N/2)-1;
X(fN—i)':riw,Sg(‘fi)/z_er-i—\’Sg(,fi)/z

X(fyn)= rN/zJSg(fN/z)~

Here the symbol I denotes the imaginary number./—1. The Fourier transform of a

real sequence is an Hermitian sequence with complex-valued components, except for
the zero-th and N/2-th components which are purely real. Note that the spectral energy
Is, on average, split equally between the real and imaginary parts of each Fourier
component; this property ensures that there is no bias in the phase angles of the
individual Fourier modes — the phases will be completely random with a uniform

distribution. The scaling factor 1/ V2 is introduced so that the total contribution to the
energy in the Fourier mode from both the real and imaginary parts conforms to the
desired spectral characteristic.

It can be easily shown that, in the ensemble-average sense, this description for the
Fourier transforms of the time-series realisations provides the required energy

spectrum Sg(f;). In fact, ensemble-averaging gives rl.2 =1 for each index i, and it then
follows immediately that

| X(f)|" =8,(f;) foreach i=1,.,N-1.

As a final step, each Gaussian time-series in the ensemble is then computed as the
inverse discrete Fourier transform of such a sequence. Over a large ensemble, these
simulated realisations approach a Gaussian distribution with zero mean and unit
variance. Furthermore, their spectral structure will average to the prescribed spectrum
Sg(fi) over a large ensemble of realisations, as required.

==
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The second stage in the simulation procedure involves generating a non-Gaussian
concentration time-series from each Gaussian realisation in the above ensemble. This
1s achieved by transforming the Gaussian series to obtain the required probability
distribution. Specifically, each entry in the Gaussian time-series ¢ (¢) is individually
transformed to its matching value c¢(¢f) in the prescribed cumulative distribution

function F; that is,
c(t)=F'F,(¢@))

for each discrete time ¢. Identifying the two probability distributions in this manner
ensures that the time-series transformation is monotonic and so preserves the ordered
structure of the fluctuations in the realisation: if ¢(¢,) <¢(¢,) for the Gaussian series

at two times ¢, £, then ¢(¢,) < c(¢,) for the output realisation.

_________ | R g B
Fe(c) F(c)
p
cdf transformation
c 4 c
10 O ()

Further details that aim to cover some computational aspects of the cumulative
distribution functions F' and F,, including the calculation of the inverse cdf, are given
in Appendices D and E respectively.

The family of concentration time-series realisations generated by this simulation
scheme will have, in the ensemble-average sense, the desired energy spectrum and
(single-time) probability distribution; this follows directly from the construction of the
modified spectrum (via the auto-correlation distortion) that adopted an ensemble-
average viewpoint. Of course, individual realisations within this family may not
precisely match the given probability distribution and spectrum.

3.4 The performance of the ensemble simulation scheme

This final section presents an assessment of the performance of the ensemble
simulation scheme, and compares it with the earlier iterative method for simulating
concentration time-series. An example concentration time-series generated by the
ensemble approach is shown in Figure 7. Here the simulation has been driven using
the time-series realisation observed in the Cardington field trial (see Figure 1) to
provide the input probability distribution and energy spectrum. One member of the
simulated ensemble has been selected.

17 -
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An example concentration time-series generated by the ensemble approach
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Figure 7: An example time-series realisation generated by the ensemble scheme.

The simulation engine adopts the concentration time-series recorded in the

Cardington field trial to prescribe the probability distribution and spectrum of

the concentration fluctuations. The simulated realisation shown is just one
member of a family of time-series realisations produced by this approach.

The concentration fluctuations modelled in the above realisation should be
compared with the observed fluctuations shown in Figure 1 and against our earlier
simulation, displayed in Figure 4, using the iterative method. The overall appearance
of the simulated time-series created by the ensemble scheme is encouraging: the
technique models the main features of the concentration fluctuations reasonably well
on a broad scale. In particular, this second approach to the simulation of fluctuating
time-series generally appears to be an improvement on the earlier iterative method.
Enlarged sections of these three time-series are shown together in Figure 8. Here the
simulations compare very favourably against the observed fluctuations, although it is
apparent that the iterative scheme does produce time-series with a noisier appearance.

The iterative scheme produces rather spiky realisations, as previously noted in
Section 2, and as a consequence does not properly capture the long sequences of zero
concentration experienced when the plume drifts away from the detector’s position. In
contrast, the ensemble approach generates more realistic time-series that provide a
better match to observed fluctuations experienced in atmospheric dispersion. There is
an improvement in the representation of the quiet interludes with zero concentration,
although the simulated realisations are still not perfect. This improvement over the
iterative scheme does occur systematically for a range of cases.

Despite this improvement, we generally found that the ensemble scheme does not
recreate the full extent of the quiet interludes; instead, they are interrupted by sporadic
blips in concentration activity giving the time-series a slightly noisy appearance. This
shortcoming in the ensemble scheme is perhaps a consequence of not being able to
directly model phase structure in our approach. Although the discussion here has been
centred on a single case study, it should be noted that the example case shown is fairly
typical of the relative merits of the two simulation methods. Further examples using
experimental time-series data support the above assessment; in each instance, the
realisations have a similar appearance exhibiting these strengths and weaknesses of
the two schemes.

s B
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a) Observed Fluctuations b) Iterative Simulation ¢) Ensemble Simulation
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Figure 8: an enlarged section of each time-series realisation illustrating the
detailed structure of the concentration fluctuations over short time-scales.

As a final note, it is appropriate here to comment on some potential difficulties
with the correlation-distortion method that should be borne in mind for any practical
implementation of the scheme. These problems concern the provision of a target
energy spectrum and auto-correlation function that are physically meaningful and give
a practical Gaussian spectrum Sg.

The first difficulty that can arise here is the appearance of negative components in
the computed spectrum S, since there is no guarantee that all components of the
Gaussian spectrum will be positive (or zero). As a corrective measure, we propose
that the modified spectrum S, should be truncated so that any negative spectral
components are clipped to zero. This procedure removes negative energy and so
increases the total energy (variance) of the fluctuations. Therefore a scaling of the
physical spectrum is necessary to preserve the total spectral energy. This correction
procedure overcomes any problems created by the existence of negative components
in the energy spectrum. However it can have a dramatic impact on the structure of the
concentration fluctuations if there are a large proportion of truncated components.

It is therefore prudent to use an input spectrum that does not produce a large
occurrence of negative values in the distorted spectrum S,. We found that an
important factor contributing to the amount of truncation is the smoothness of the
target spectrum. The truncation issue can become a significant problem if the input
spectrum is not sufficiently smooth, but does not appear to give any real difficulties
for smooth spectra. Note that the raw spectrum of a single time-series realisation is
usually very noisy in appearance because spectral amplitudes at different frequencies
are uncorrelated, and so there is a need to smooth any such spectra. We found that the
extent of spectral truncation becomes less as greater smoothing is applied to the input
spectrum.

Unfortunately, smoothing a raw spectrum obtained from a single realisation can
create a second potential difficulty, so that some care needs to be taken in applying a
suitable smoothing technique. Any smoothed spectrum should be physically realistic
in the sense that its inverse discrete Fourier transform gives a sensible auto-correlation
function. Here we are considering the auto-correlation function R(7) as defined
previously without subtraction of the mean value.

=% =
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The auto-correlation must always be positive; in fact, it is bounded below by a
minimum (positive) value p,.;» (see Appendix C). From a mathematical viewpoint, of
course, it is quite possible that the Fourier transform calculation could generate some
unrealistic correlation values below this p,;, threshold from an apparently innocuous
smoothed spectrum. If this problem occurs, a suggested solution is to truncate the
auto-correlation function at the lower bound, clipping any lesser values to P, in a
similar manner to our earlier treatment of the modified spectrum. Fortunately, this
correction step is not usually necessary for any sensible smoothing scheme. The issue
has been raised largely as a precautionary tale to the reader of the potential problems
encountered by the ensemble simulation approach.

4 Summary

This note reports on the simulation of fluctuating concentration time-series from
an ensemble viewpoint using a correlation-distortion technique.

Concentration fluctuations are created in a dispersing plume by the processes of
turbulent diffusion acting in the atmospheric boundary layer. These fluctuations are
especially pronounced at short ranges downwind from a source where they can have a
significant impact on the severity of a hazard (toxicity, flammability, etc.). Therefore
it is often essential to include the effects of fluctuations in risk assessment models.

Concentration fluctuations have been extensively studied in many field trials over
the years; however, such dispersion experiments are a costly and time-consuming
means of providing information on fluctuations to risk models. There is a requirement
to model fluctuations by simulating realisations of concentration time-series using
analytical methods. The aim is to generate realistic time-series given some basic
information on the structure of the concentration fluctuations, such as their probability
distribution and spectrum, that could be estimated for any particular circumstance.

In a previous report [2], an iterative method was given to generate a concentration
time-series with prescribed characteristics. Although reasonably successful at
recreating realistic fluctuations, the iterative scheme has some clear deficiencies and
limitations. The simulated realisations are rather ‘spiky’ in appearance with a poor
representation of the quiet interludes of zero concentration between individual
concentration bursts. Furthermore, the scheme creates statistical clones of the input
probability distribution and spectrum in the sense that these are matched by each
realisation individually rather than just by the ensemble as a whole. Finally, on a
computational note, it can be expensive for simulations involving long time-series.

An alternative simulation scheme for creating single concentration time-series 1s
proposed here. This adopts an ensemble approach to the problem, where input data
prescribes the probability distribution and energy spectrum in an ensemble-average
sense — describing a family of time-series realisations rather than the individual time-
series themselves. The ensemble approach uses a correlation-distortion technique to
modify the input spectrum. Each time-series realisation in the ensemble is created by
transforming a Gaussian time-series into one with the desired probability distribution.
The transformation of the pdf distorts the correlation function and spectrum of the
process, so that the spectrum of the initial Gaussian series needs to be pre-calculated
to produce the target spectrum after distortion.

e
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The ensemble scheme overcomes some of the limitations inherent in the earlier
iterative approach, and is capable of generating a large ensemble of time-series
realisations in an efficient manner. The new approach still has some difficulties in
modelling the long interludes of zero concentration that occur when the plume
meanders away from the detector, although it does capture this phenomenon better
than the previous scheme. It is possible to generalise the ensemble approach to allow
the simulation of multiple correlated time-series representing spatially-separated
detectors. This extension of the ensemble method is the subject of the third TDN in
this series [3].

On a final note, any application of the ensemble scheme will require input data to
drive the simulation engine (either a sample concentration time-series or a prescribed
probability distribution and spectrum). This information might be supplied from
actual realisations observed in dispersion experiments, or ultimately by idealised
functions based on relevant parameters. This ‘parametrisation’ problem would need to
be addressed before an operational time-series simulation scheme can be fully
established, perhaps, for example, by using concepts such as those in the ADMS
fluctuations scheme [6, 7].
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Appendix A: The joint Gaussian distribution on two variables

Let x, y be two Gaussian random variables, each with mean zero and variance one,
having a correlation value —1 < » < 1 such that their joint probability density function
is given by

lxz —2r)cy+y2
1 20-r2
1 e (=)

rx,y) = ————
g( ¥) 27“/-1_—”2

This describes a two-dimensional joint Gaussian distribution on the pair (x, y). As an
example, Figure 9 illustrates the typical form of the joint probability density function
— in this case when r = 0.4. Note that the formula becomes undefined at » = 1, where
the distribution collapses to a one-dimensional form. As the correlation r approaches
one (where the variables x and y become perfectly correlated), the probability density
accumulates along the line y = x. Similarly as r decreases towards minus one (perfect
anti-correlation), the density collects along the line y = -x. For uncorrelated variables,
where r = 0, the density function is axially symmetric with a circular set of contours.
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Figure 9: A graphical representation of the probability density function g:(r; x,p)
for the two-dimensional joint Gaussian distribution with correlation r = 0.40.
The lower part of the figure depicts the 2-d surface plotted above the (x, y) plane;
the upper part overlays a contour plot of the values of the density function.
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Appendix B: A dynamic numerical integration scheme

The correlation-distortion process requires us to evaluate the double integral

[T EE,)E-E0)gatrs5 ) dedy

—00—00

for many different values of the joint Gaussian correlation 7 in the interval (-1 , +1). It
is probably not possible to give an exact analytic expression for this double integral,
and so it has not been attempted here. Instead, an approximate value for the integral is
calculated using a numerical integration method.

There are two requirements for the numerical integration. Firstly, it is necessary to
have computational routines for the functions F™', F, ¢ and g; involved in the integrand;
these procedures are dealt with separately in Appendices A, D and E. Secondly, a
numerical integration scheme is required using some appropriate discretisation of the
(x, y)-plane. A uniform square grid was initially considered for the discretisation but it
became apparent that an improved dynamic approach could be adopted. The proposed
scheme adapts the discretisation grid to the particular value of the correlation r giving
a more effective integration process.

In this study, we only consider a discretisation using uniform grid spacing in each
direction. It is possible that a more elaborate non-uniform scheme, allowing variable
size grid cells, may offer a more robust numerical scheme with better accuracy.
However, for the current purposes, a uniform grid approach appears to be sufficient —
giving reasonable accuracy in a scheme that is straightforward to implement. Here it
is important to ensure that the finite grid over which the numerical integration is
performed covers a sufficient proportion of the joint Gaussian distribution (typically
to 4 standard deviations in practice) and that it has the necessary resolution to yield a
good approximation for the integral (in practice, a 64 x 64 grid provides sufficient
resolution).

Dynamic numerical integration

An integration scheme is developed that utilises a dynamic discretisation grid
dependent on the correlation » between the two Gaussian distributions. This technique
adopts a rectangular grid aligned with the principal axes of the joint Gaussian
probability density function. The length and width of the integration area required to
cover a given fraction of the total distribution are easily described in terms of the
correlation value 7.

The principal axes of the joint Gaussian pdf g2(r; x, y) are y = + x. Consider the
transformation to these natural co-ordinates (x’, y'):

y
¥ <
y) \\ // x}
s R O IR €
,/// \\\\ X y' B 2 .—.1 1 y
y=x |y =-x

-19-



Turbulence and Diffusion Note 283, GMR, March 2002

When 7 is zero, the joint Gaussian distribution is axially symmetric. As r — 1, the
joint distribution collapses onto the x’ axis (that is, y = x); whereas, as » — —1, the
distribution converges along the y’ axis where y = -x.

Let us calculate the spread of the Gaussian distribution in the (x’, y’) frame of
reference. Recall that both the x and y co-ordinates of the joint Gaussian profile are
distributed with mean zero and variance one. In the (x’, y”) co-ordinate system, their
mean values are again zero, and the variances are given by

2 1 2 2 1 2
=l+xf; =102
2 )
where the over-bar denotes the expectation (mean) value. Now expanding the terms in
parentheses gives

(x+y) =X+ 2+ 2xy
=1+1%2r
=2(12p).

That is,

X2=l+r, y2=1-r.

Hence the standard deviations of the distribution along the principal axes are /1% 7 .

Thus consider discretising with a rectangular grid in the (x’, y ) co-ordinate system
and then immediately converting back to the regular (x, y) co-ordinates for calculation
of the joint Gaussian pdf values, etc. Note that the grid is no longer square (except for
the special case when » = 0). We use numerical values evaluated at the mid-point of
each grid cell. A large proportion of the joint Gaussian distribution will be considered
by selecting the grid to cover the region up to £4 standard deviations along the
principal axes. If we have (n,, n,) intervals in the discretisation then the required grid

cell lengths (Ax, Ay) are given by
Ax=n§1/1+r , Ay=ni I-r.
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Appendix C: The distortion of the auto-correlation function

This appendix discusses the calculation of the correlation-distortion at the heart of
the ensemble simulation technique. Here the aim is to compute the auto-correlation
function (or equivalently, energy spectrum) of a Gaussian process which will give the
desired auto-correlation function after transforming the time-series to the target pdf.

R(7v) Rg(T)

correlation

distortion

T %
Objective: compute the correlation p, for each given value p.

Recall that we consider an unnormalised auto-correlation function R without
subtraction of the mean value; that is, R(t) = c(¢) c(t + T) . Suppose that the value of the
input auto-correlation function R at some fixed lag time 7 is p = R(7). Then the
required value p; = R,(7) for the adjusted correlation at this lag time will satisfy the
condition in (3.1), viz.

p = {i(F"Fg(x))(F“Fg(y))gz(pg;x,y)dxdy-

So the problem is to determine the particular value of the correlation p, in the joint
Gaussian distribution needed to produce the observed correlation p. On a theoretical
note, the integral given above for the correlation p is a monotonic increasing function
in pg. A proof of this intuitive result will be outlined below. The fact that the mapping
1s monotonic implies that if a solution for p, exists then it will be unique.

The mapping F "' F, describes the transformation of the probability distribution
(from a Gaussian distribution to the target one). This is a monotonic increasing (non-
negative) function that can be approximated by a piecewise step function to arbitrary
resolution. In fact, if we prescribe a target distribution based on a finite-length
(discrete time) concentration time-series, it will directly have this stepped nature.

F'Fy(g) -

5
Then the integral for p can be regarded as the limiting value of a summation

Zki,/ J:v Jj gz(PgQX, y)dxdy,
i J
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where the coefficients k; > 0 are the heights of steps in the resulting two-dimensional
step function. Each component integral

J:J:gz(pg;x, y) dxdy

is evaluated over the upper-right quadrant from the point (x;, ;). Tong [8, Pg 191]
states that this integral is an increasing function of the Gaussian correlation p,.
Therefore it follows that the correlation p is a monotonic increasing function in py.

Computational routines are required for the correlation transformations p <> p,.
Here the natural transformation, from a mathematical viewpoint, is the ‘forward’
mapping p, —> p described in the above formula by a double integration over the joint
Gaussian distribution. In practice, this integral can be approximately calculated by a
numerical integration scheme, see Appendix B for details. However, it is the ‘inverse’
transformation p — p, that is actually needed in the correlation-distortion process.
The inverse mapping is calculated indirectly using a numerical inversion scheme.

Although it is fairly straightforward to compute the approximate correlation p for
any given value of the Gaussian correlation —1 < p; < +1, it is still necessary to have
an effective strategy for addressing the inverse problem. One possible approach would
be an iterative scheme that gradually homes-in on the required solution p,. However,
since a large collection of correlation values need to be inverted, it was decided that a
global approach to the problem would be more appropriate. Thus an inversion method
based on linear interpolation between sampling points has been developed.

The inversion scheme first calculates the forward transformation p;, — p at a
collection of sample values for the Gaussian correlation ~1 < p, < +1 and stores the
results in a ‘look-up’ table in preparation for the inversion process. The sampling
points have been chosen at equally-spaced values of p, extending from +1 to —1 such
that the total number of bands is an integer power of two. The selection of 2 bands is
not absolutely essential here, but it does allow us to implement an efficient bisection
search routine for isolating the band containing a given correlation value p.

P = p P
1.00 Prmax
- pmin
1.00 Py
A ‘look-up’ table of correlation The inversion step uses linear
values for the inversion process interpolation within each band

The numerical inversion uses the stored array of sample points for the correlation
mapping to evaluate an approximate solution of the equation (3.1) for any given value
of the correlation p. Firstly, it searches through the look-up table to locate the band
containing p (using the bisection search routine). If the value p appears as an entry in
the array then we take the corresponding value for the Gaussian correlation p,.

=D
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Otherwise, let us apply linear interpolation across the relevant band to calculate the
approximate Gaussian correlation p,. The interpolated estimate for p; based on the
two sample points at the boundaries of this band is

= w_ - i (o= p)
P~ Pé +(pg —pg)(pu__pl)
where (pgl, p’) and (pg", p“) denote the co-ordinates of the lower and upper sampling
points for the band respectively.

pll
pl----—=—=—----------=
1
1
i
i) — E
|
.1 X u
Pe Pz Pg
< A fo) »

Note that this numerical inversion technique should yield a reasonably accurate
approximation for the Gaussian correlation p, provided that the correlation look-up
table has a sufficiently fine resolution (that is, that there are an adequate number of
sampling points for the forward correlation mapping). In practice, reasonable results
are obtained using 2° = 64 interpolation bands for the numerical inversion.

Next we consider several important issues concerning the correlation-distortion
and subsequent calculation of the Gaussian spectrum. It is by no means obvious that
equation (3.1) can always be solved for p,; i.e. there may not exist a value -1 < p, <1
that gives an observed correlation value p. However, we show below that a solution is
always possible whenever the auto-correlation function and probability distribution
are consistent (in the sense that they are jointly realisable in a time-series).

Let pmax and pp;, be the images of +1 and —1, respectively, under the correlation
mapping p, —> p in (3.1). Similarly, let 5, and g, denote the theoretical maximum
and minimum correlation values, respectively, consistent with the input probability
distribution. We prove that these theoretical bounds are attainable by our distortion
approach. In particular, we will establish the equalities p,,,, = B,.., a0d £, = Pras -

correlation
Pe -
mapping
S Prmax l’j
~~~~~~ 5o max
) . range of correlation
range O.f invertible values consistent with
correlation values  |oonability distribution
= J> ________________ a>pmin ﬁn:in

= AL
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For example, let us consider the lower limit j,,, . The lowest value of ¢.c, that is

possible for two random variables c;, ¢, with given marginal probability distributions
occurs when ¢ is a monotonically decreasing (deterministic) function of ¢;. This can
be achieved by making ¢, and ¢; monotonically increasing functions of two perfectly
anti-correlated Gaussian random variables g; and g, (that is, g, = —g;). Hence the

lowest value of a consistent with the probability distributions of ¢; and c¢; is
achievable by our transform approach.

A similar argument can be applied to the upper limit p,, where ¢, and ¢, should

now be monotonically increasing functions of two perfectly correlated Gaussian
random variables g; and g, (that is, g = g2). A formal proof of these results is now
presented.

Let us write ¢(f) and ¢(t+7) as ¢; and ¢, respectively. For the random variables c;,
¢, with cumulative distribution function F(c), the maximum correlation value p, .

(that is, the maximum value of ¢c, ) occurs when ¢; = c;. Then
ﬁmax = E sz(C) dC *

Similarly, the minimum value p,,, (that is, the minimum value of ¢,c, ) occurs when

g =1F '1(1 — F(cy)); that is, ¢; is a monotonic decreasing function of ¢,. Then
Buin = [ c(F 1= F(@))f(c) de.
On the other hand, since the mapping p, — p is monotonic increasing, the range

of invertible correlation values can be obtained by directly evaluating the integral in
(3.1) for the extreme values of Gaussian correlation p, = +1. Then

= [ [ (FFe))F'F,(@)f,(8)6 (8 - 2 dey de,
= [ (FF () fie) de,
= [ (F @) ax
= [ de=p,.
and

Pun= [ [ FF@INF " F(22))f,(8)5 (8 + £2) dedg,
- [ (F'E )P -2)) (e d
= [ (FF)NF - F2))fy(e) da
= [(FNFa-x)ax
= [[e(F0-F©)f @ de= Py
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The above result shows that the correlation-distortion process is always possible
provided that the target probability distribution and spectrum are consistent. In fact,
this will be the case if a raw time-series realisation is used to prescribe these input
functions. However, a raw spectrum is typically rather noisy in appearance and this
can create its own problems, such as the spectral truncation issue mentioned in
Section 3.4. Therefore smoothed or idealised spectra are frequently adopted, but then
there is no guarantee that each value p of the auto-correlation function will lie in the
invertible range [ Pyin, Pmax] such that (3.1) will always be solvable for p,. There is no
problem with the upper limit p,,, provided that the input probability distribution and
spectrum imply the same mean and variance (because Ppax = 22). However, there is a
potential problem with the lower limit p,,;,. The auto-correlation function will have to
be truncated if necessary so that each value p occupies the invertible range [ Pmin, Pmax]-

We have shown that it is always possible to solve equation (3.1) for p, whenever
the target probability distribution and energy spectrum are consistent. Unfortunately,
even in this case, we cannot guarantee that all components in the associated Gaussian
spectrum S, will be non-negative. This is illustrated by the following counterexample.
In practice, any negative spectral components in Sg can be clipped to zero. The overall
effect on the simulation process is generally small provided that the truncation is not
too severe.

Consider an ensemble of periodic time-series cq(f) of the form

; H ______ ﬁ H t

where /, L are fixed parameters such that L > 3/, and « is a random displacement for
each realisation in the ensemble. Here each time-series has two states (that is, it
alternates between the values zero and one), and the probability distribution of the

ensemble is described by
ple=0)=1-}7, ple=1=1.

The auto-correlation function R(r) = ¢, (¢)c, (¢ +7) (here the over-bar denotes ensemble
average, or equivalently, average over ) has a saw-tooth form.

A

L AR

L/

Let us assume that the concentration time-series c,(f) can be constructed via a
monotonic transformation of a Gaussian process g4(¢). Then

L, if g ()>X;
c ()=

24

0, otherwise;
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where F(X) =1- % Note that X > 0. For the prescribed probability distribution, the

relation (3.1) becomes
p= J: J:gz(pg;x,y) dxdy.

It is clear that a correlation value p = 0 implies that p, = -1 (otherwise the right hand
side above would be a non-zero integral). In particular, this gives

R(@)=-1 forte[l,L-1]

Now consider the Gaussian time-series at the three points g4(0), go(/) and g.(20).
By construction, L > 3/ so that Rg(/) = Rg(2]) = —1. Therefore these three points are
mutually anti-correlated. This is a logical contradiction. Since the Gaussian
correlation function is not valid, we conclude that it is not possible to generate cq(f)
by transforming a Gaussian time-series monotonically. Furthermore a standard result
indicates that possible correlation functions are precisely those functions with non-
negative Fourier transforms (i.e. spectra). The fact that our correlation function is not
valid establishes that the Gaussian spectrum has negative components.

=96
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Appendix D: An approximation for the Gaussian cumulative
distribution function F,

The standard Gaussian distribution appears in a quite natural way in the time-series
simulation process. In particular, a description of its cumulative distribution function
Fg 1s required for the transformation of a Gaussian series to the prescribed probability
distribution. This appendix presents some established approximations for the Gaussian
cumulative distribution function F, taken from Abramowitz and Stegun [9, Pg 932].
Two formulae are considered in the present report to provide approximations with
different levels of accuracy.

Our operational scheme adopts the first formula (the product of a degree three
polynomial with an exponential term) and combines good accuracy with computational
efficiency. The second formula is a higher degree approximation that would give
greater accuracy but at the expense of a slower calculation. It is presented here in the
case that greater accuracy is required for the computational scheme. Two further
approximations are available in [9] using rational expressions (no exponential terms).

Consider a (standardised) Gaussian random variable X with zero mean and unit
variance. The probability density function f¢(x) is defined by

j;(x)zJ;—ne-7, —~00 < X < 0

and the cumulative distribution function F(x) is given by

F,(x) = prob(X < x)

S| .[Xe‘yzdy, — 00 < x <00,

Vo S

These two functions have the following graphical form.
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probability density function cumulative distribution function
The Gaussian pdf fy(x) has an explicit form that can be easily calculated for any
particular value of x. Each cumulative probability can be calculated by evaluating the

appropriate definite integral. Numerical tables can be found in many reference books
that tabulate approximate values for the Gaussian cdf.
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Analytic approximations to the function F,
Our simulation program adopts the following approximation for F, given in [9]:
1-P(x), x=0;
F® =
P(-x), x<0.

Here the function P(x) is defined by

Pl 1 e'x% (a,t +a,t’ + a3t3)

Ton

where ¢ = 1+1px , (x 2 0) with numerical coefficients p = 0.33267 and a, = 0.4361836,

a; =—0.1201676, a3 = 0.9372980. The error in the approximation is less than 1.0 x 10>

Greater accuracy could be obtained using the higher order formula

P)= le_n &7 (Bt + b2 + b0+ btt +bt)

wheret = 1+1px, (x > 0) with the coefficients p = 0.2316419 and b, = 0.319381530,

b, = -0.356563782, by = 1.781477937, by = —1.821255978, bs = 1.330274429. Here
the error is reduced to less than 7.5 x 107,

LR e
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Appendix E: Computational procedures for the cumulative
distribution function F

E1) Fitting a continuous cdf to a discrete probability distribution
from field data

The ensemble simulation scheme requires a continuous probability distribution as
one of its prescribed inputs. This section describes a methodology for obtaining a
continuous cumulative distribution function F from a discrete time-series data set.

It is worth mentioning that the concentration time-series data recorded in our field
experiments exhibits discrete quantisation levels produced by the 12-bit analogue-to-
digital conversion used in the logging procedure. That is, the actual concentration
recorded by the detector (represented as an analogue voltage signal) is approximated
by the nearest quantisation level in the digital output. However, this rounding error is
typically very small (at the level of detector noise) and has no significant implications
for the quality of the output data.

The discretisation of the data at 12-bit resolution admits 4096 possible values for
the recorded concentration at each time step. However, in practice, the technical need
to maintain a positive offset voltage during the data-logging reduces this theoretical
number of quantisation levels. Consequently the observed concentration time-series,
rather than having a continuous distribution, actually has this discrete probability
distribution with a large number of possible states.

p

! HITHIRTY

By regarding each state as representing values distributed within its quantisation
band, this discrete distribution approximates the actual probability distribution of the
concentration fluctuations. Now the aim is to fit a cumulative distribution function F
to this discrete probability distribution. One simple approach would be to adopt a
step-wise function that increases in discrete steps at each quantisation level.

)3

conc

However, this gives the target data a slightly artificial appearance with sudden
jumps occuring between quantisation levels, although the effect of quantisation of
concentration values is not especially significant here. Using this discrete distribution
in the simulation process would recreate the quantisation of concentration values in
the simulated time-series. This constraint can be easily avoided by constructing a
continuous function F interpolating linearly across each band. Since the concentration
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values should have a near uniform distribution within each quantisation interval then
it is the mid-point probability that is the most appropriate choice for the mid-point
concentration (the quantisation value).

Note that the compatibility between the probability distribution and energy
spectrum may be affected whenever either characteristic is prescribed by processed
(that is, smoothed) experimental data or an idealised description. The averaging and
interpolation of data in the probability distribution here, like smoothing of the energy
spectrum, could produce inconsistent target functions with its consequences for the
simulation process (this is potentially another reason why the auto-correlation

function p may need truncating; see Appendix C).

The above procedure is reasonable, in principle, but the large number of values in
the discrete distribution (the quantisation levels) is rather restrictive in practice. Firstly
the data is rather noisy at this scale and some averaging would have a beneficial effect
in obtaining a representative probability distribution. Secondly, a large number of
discrete levels puts a high demand on the computational resources, so that a reduction
in the resolution will improve the efficiency of the various computational routines.
The following revised method provides an efficient mechanism for constructing a
continuous cumulative distribution function F based on the input time-series from a
dispersion experiment.

Our CDF scheme

As a first step, let us construct a discrete probability distribution with a prescribed
resolution by dividing the non-zero concentration range into contiguous bands and
then counting the number of data points occurring in each interval. SupEose that there
are m bands in this discretisation; for later convenience, we take m = 2" where k is an
integer. Meanwhile the number of zero values, describing the intermittency of the
time-series, is stored separately.

We only considered discretising the experimental data using equal-width intervals
on a logarithmic scale, although clearly other options are possible here. Specifically,
the approach in our implementation of the scheme constructs the required number of
discretisation points over the observed range of concentration values [Cmins Cmaxl,
where ¢pin and ¢pq denote the minimum and maximum values, respectively, of the
non-zero concentration data. Here the data points are considered on a logarithmic
scale with the mid-points of equal-width bands chosen as the discretisation points.

We found that 2° = 64 bands in this construction gave a reasonable description of
the cumulative distribution function F. The above resolution offers a good compromise
between an appropriate level of smoothing of the input values and preserving some of
the detailed structure of the probability distribution. Furthermore, the computational
routine for evaluating the inverse function F ' based on this description has good
efficiency, supporting its frequent application in the simulation scheme.

Further discretisation techniques could be considered; for instance, adopting some
variable-width bins to count the time-series data points provides an alternative scheme
that might give better results. In particular, the bin sizes could then be adjusted to
match the input data set. However, such an approach has not been considered here. In
all cases, we should ensure that the discretisation bands have sufficient extent to cover
the full range of observed concentration values.

-30-
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The number of data points occupying each bin is counted and the proportion of
data occurring in each band is then calculated by dividing this value by the total
number of data points in the sample. As in the earlier approach, we adopt the mid-
point value of the probability associated with each band in the description of the
cumulative distribution function F. The values of the function F at the sample
concentration points in our discretisation are held in a real array (Fo, Fi, ..., Fn),
where F; denotes the intermittency of the distribution (that is, the proportion of zeros)
and F; (i =1, ..., m) are the calculated values of F at the discretisation mid-points.
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Finally, use linear interpolation between these discrete values to give a continuous
cumulative distribution function F defined from zero to the mid-point of the upper
discretisation band. If F,, = 1 then this provides a complete description of the cdf
since the distribution is bounded above by the upper band so that greater values for
the concentration are not possible. However, to avoid this rather unnatural restriction
on the concentration values, it is desirable to consider a discretisation for which F,,, # 1
(since the mid-point probability of the upper band will be marginally less than one).
This allows a probability distribution with an upper tail.

To construct the upper tail, we assume that the exceedence of any particular
concentration threshold in the upper tail is governed by an exponential decay law.
This simple approach appears to agree reasonably well with the upper tails observed
in many of the Cardington experiments. Using the intermittency and peak value of the
distribution, an inverse exponential tail can then be extrapolated by the formula

F(c)=1-ae? forc>c,, (E1.1)

where the constants a, b are chosen to fit the profile to the two reference points (0, Fo)
and (cinax, Fm). Recall that F,, = F(cmqy) for our discretisation. It can be shown that

1 1-F,
a=1-F, b=—7Io0 o,
: ge(l—F)

m

nax

E2) Calculating the inverse cdf using a numerical inversion scheme

The first part of this appendix presented a method for producing a (continuous)
cumulative distribution function F from any given (discrete) time-series data set.
However, in our simulation scheme, we are actually interested in calculating the
inverse function F'; that is, given any probability 0 < p < 1, what is the concentration
threshold ¢ such that p = F(¢)? In other words, we require a routine for calculating the
value ¢ = F'(p).

e
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The inverse function is evaluated by a numerical scheme that uses interpolation
based on the stored array (Fy, F), ..., F,y) of cdf values at the discretisation points. The
method is essentially the same as the one outlined in Appendix C for the numerical
inversion of the correlation-distortion transformation. One noticeable difference,
however, is that the interpolation regime is now restricted to probabilities F, < p < F, .

Values of probability p outside this interval are also possible so that, as a prerequisite
step, a given value 0 < p < 1 should be inspected to determine the appropriate regime.

F
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a) For any value of probability less than the intermittency (that is, p < Fp) then the
routine should return the value zero.
b) For any probability F, < p < F, occupying the interpolation range, a numerical

inversion technique provides a good approximation for the inverse value F ().
Here the same approach can be applied as that used in Appendix C for inverting
the correlation mapping p; — p.

¢) For any probability p > F,, in the upper tail of the probability distribution, an
analytic inversion of the extrapolation formula (E1.1) gives an expression for the
concentration threshold ¢ = F™'(p):

_ 1 a
c. = b loge(——l_p)

1-F, =3
@ loge(l_p)/loge(l_a) TOR 3 s
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