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Abstract 
 
Two methods are widely used to assess the impact of observations in global numerical 
weather prediction (NWP): data denial experiments (DDEs) and the forecast sensitivity-
based observation impact (FSOI) method.  A DDE measures the impact on forecast 
accuracy of removing an observation type from the system, whereas FSOI measures the 
amount by which an observation type reduces the short-range forecast error within a 
system containing all observation types.  This paper describes the second part of a two-
part study.  In the first part, the theory behind DDE and FSOI metrics was presented and 
then applied to a simple model with two state variables, all in the context of optimal data 
assimilation (DA), for which the error covariances used in the DA system match reality.  
In this second part, we extend the theory to suboptimal systems and then apply it to a 
very simple model, in this case with one state variable.  As expected, DDE impacts are 
reduced when the system is suboptimal.  By contrast, FSOI impacts increase for an 
observation type for which the errors are underestimated.  This gives the erroneous 
impression that the change in assumed errors has led to an improvement, whereas the 
opposite is the case.  These results provide some insights into the interpretation of FSOI 
results from a suboptimal DA system.    
 
 
1. Introduction 
 
This paper describes the second part of a two-part study.  In the first part, Eyre (2021) 
hereafter referred to as “Part I”, we considered the role of observation impact metrics for 
assessing the value of observations used in numerical weather prediction (NWP).  We 
presented the theory underlying two commonly used metrics: those derived from 
observing system experiments (OSEs), particularly in a mode known as data denial 
experiments (DDEs), and those obtained using the forecast sensitivity-based 
observation impact (FSOI) method.  We noted that, although those observing systems 
that provided the most impact as measured by DDE also tended to have high impact as 
measured by FSOI, the absolute magnitudes of impacts given by the two methods were 
very different.  We attempted to shed some light on why this might be: on what these two 
approaches really measure and how they are related.  We explored this problem using a 
very simple assimilation and forecast system, in which the forecast model has only two 
variables.  We also restricted attention to optimal data assimilation (DA) systems, in 
which the values assumed for the error covariances of the observations and of the 
background equated to their true values.  For optimal systems we found that, in order to 
explain the commonly found result of FSOI impact greater than DDE impact, the 
following system properties were important: mixing of information (and error) by the 
forecast model between state variables, the rate of forecast error growth, the presence 
of forecast model error, the way in which observational information is distributed 
between state variables and denied from them, and the presence of error in the data 
used for forecast verification.   
 

In this paper we extend the study to suboptimal DA systems and we explore, again with 
a very simple model, how the DDE and FSOI metrics respond to suboptimality, and 
specifically to suboptimal assumptions concerning observation errors.  One of the 
motivations for this work was the finding in other studies, e.g. Lupu et al. (2015), that 
underestimation of observation errors used in the DA can show increased impact of the 
these observations as measured by FSOI but lead to degraded forecasts as measured 
by DDEs. 
 
In section 2 we present the theoretical basis of the study, and we prepare the ground for 
applying it to a very simple assimilation and forecast system – in this case to a forecast 
model with only one variable.  Appendix A presents the theory for the general, multi-
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variate case.  In section 3 we present the experimental design, and in section 4 the 
results of the experiments.  In section 5 we summarise and discuss these results, and in 
section 6 present some conclusions. 
 
 
2. Theory 
 
2.1 NWP error analysis for suboptimal data assimilation 
 
The basic equation for analysis error has the same form as Part I, eq.(2.1.3): 
 

 𝛆𝑎 = 𝛆𝑏 + 𝐊𝒔. (𝛆𝑜 − 𝐇𝛆𝑏) ,       (2.1.1) 
 
where 𝛆𝑎 is the error in the analysis, 

 𝛆𝑏 is the error in the background, with covariance 𝐁, 
 𝛆𝑜 is the error in the observations, with covariance 𝐑, 
 𝐊𝒔 is the analysis operator (Kalman gain matrix), which maps observation 

increments (“innovations”) into analysis increments, 
and 𝐇 is the Jacobian of the observation operator, 𝐻[… ], i.e. the gradient of the 

observation operator with respect to the state space variables.   
 
We retain here the assumption of unbiased observation and background errors, and the 
assumption (at least for the purposes of error analysis) that the system can be treated as 
quasi-linear, but we now depart from Part I: we remove the assumption that the DA 
system is optimal.  Therefore, 𝐊𝒔 is the observation weight matrix assumed by the DA 
system and, in general, will not take its optimal value.  (We will use symbols with 
subscript s to refer to the generally suboptimal values assumed within the DA system 
and symbols without this subscript to refer to true or optimal values.)   
 
Taking the statistical expectations of (2.1.1) and assuming the observation errors are 
uncorrelated with background errors, we find that the mean analysis error is zero (by 
definition) and the covariance of analysis error, 𝐀, is given by 
 

 𝐀 = (𝐈 − 𝐊𝒔𝐇)𝐁(𝐈 − 𝐊𝒔𝐇)𝑇 + 𝐊𝒔𝐑𝐊𝒔
𝑇 ,     (2.1.2) 

 
We assume that 𝐊𝒔 takes the form: 
 

 𝐊𝒔 = 𝐁𝒔𝐇𝑇(𝐇𝐁𝒔𝐇𝑇 + 𝐑𝒔)−1 = (𝐁𝒔
−1 + 𝐇𝑇𝐑𝒔

−1𝐇)−1𝐇𝑇𝐑𝒔
−1 ,  (2.1.3) 

 
where 𝐁𝒔 and 𝐑𝒔 are, respectively, the assumed values of background and observation 
error covariance which, in general, are not the true values. 
 
When 𝐊𝒔 = 𝐊, its optimal value, 𝐀 takes the forms derived in Part I: 
 

 𝐀−1 = 𝐁−1 + ∑ 𝐇𝑗
𝑇𝐑𝑗

−1
𝑗 𝐇𝑗 = 𝐁−1 + ∑ 𝐙𝑗𝑗 = 𝐁−1 + 𝐙 ,   (2.1.4) 

 
where we define the observation precision matrix: 
 

 𝐙 = ∑ 𝐙𝑗𝑗 = ∑ 𝐇𝑗
𝑇𝐑𝑗

−1
𝑗 𝐇𝑗.          (2.1.5) 

 
𝑗 denotes the jth observation or group of observations, and 𝐇𝑗, 𝐙𝑗 and 𝐑𝑗 represent the 

associated sub-matrices of 𝐇, 𝐙 and 𝐑 respectively.  We make the assumption that 
observation errors may be correlated within group j but they are not correlated with the 
errors of observations in other groups. 
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In this study we will consider in particular the effect of 𝐑𝒔 ≠ 𝐑, where 𝐑 is the true 
observation error covariance. 
 
We make the same assumptions concerning the propagation of error by the forecast 
model as in Part I: the forecast error covariance, 𝐏𝑛, is given by 
 

 𝐏1 = 𝐌𝐀𝐌𝑇 + 𝐐 = 𝐁 .        (2.1.6) 
 

 𝐏𝑛+1 = 𝐌𝐏𝑛𝐌𝑇 + 𝐐 ,        (2.1.7) 
 
where 𝐐 is the model error covariance, 
 𝐌 is the Jacobian of forecast model,  

and 𝑛 is the index of forecast-assimilation cycle.   
 
 
2.2 The system used in this study 
 
The analysis error covariance for the system in equilibrium is calculated by solving 
(2.1.2) and (2.1.6) for 𝐀: 
 

 𝐀 = (𝐈 − 𝐊𝒔𝐇)(𝐌𝐀𝐌𝑇 + 𝐐)(𝐈 − 𝐊𝒔𝐇)𝑇 + 𝐊𝒔𝐑𝐊𝒔
𝑇 .    (2.2.1) 

 
As in Part I, we assume that the system is stationary from one assimilation cycle to the 
next.  Therefore, 𝐇, 𝐑, 𝐌 and 𝐐 are constants, and hence also are 𝐙 and 𝐊𝒔. 
 
When the system is optimal, we recall from Part I (eq.2.3.4) that this simplifies to: 
 

 𝐀−1 = (𝐌𝐀𝐌𝑇 + 𝐐)−1 + 𝐙 ,       (2.2.2) 
 
In either the optimal or suboptimal case, we can then evaluate 𝐁 from (2.1.6) or (2.1.4). 
 
In contrast to Part I, where we used a simple two-variable forecast model, we choose 
here an even simpler, one-variable model, which is adequate to illustrate the main 
effects of suboptimality.  It also allows us to manipulate the values of the observation 
error covariances directly (rather than through the projection of their inverses into state 
space, as in Part I), in order to investigate the effects of their suboptimal specification.  
However, it introduces some additional limitations, which are discussed in section 5.   
 
With this simplification, 𝐌 becomes the forecast error growth parameter 𝑎.  For a system 
with one state variable but multiple observations, 𝐊𝒔 becomes a row vector and 𝐇 
becomes a vector with all components equal to 1.  Eq.(2.2.1) for the suboptimal case 
then simplifies to: 
 

 𝐴 = (1 − 𝐊𝒔𝐇)(𝑎2𝐴 + 𝑄)(1 − 𝐊𝒔𝐇)𝑇 + 𝐊𝒔𝐑𝐊𝒔
𝑇 ,    (2.2.3) 

 
or 
 

 𝐴 = {(1 − 𝐊𝒔𝐇)2𝑄 + 𝐊𝒔𝐑𝐊𝒔
𝑇}/(1 − (1 − 𝐊𝒔𝐇)2𝑎2) .    (2.2.4) 

 
Note that 𝐴 is linear in 𝐑 for a given 𝐊𝒔 (i.e. for given 𝐑𝒔 and 𝐁𝒔).  
 
Eq.(2.2.2) for the optimal case simplifies to: 
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 𝐴−1 = (𝑎2𝐴 + 𝑄)−1 + 𝑍 ,       (2.2.5) 
 
and, assuming that 𝐑 is diagonal, eq.(2.1.5) simplifies to 
 

𝑍 = ∑ 𝑍𝑗𝑗 = ∑ 𝑅𝑗
−1

𝑗 .           (2.2.6) 

 
Eq.(2.2.5) can be written: 
 

 𝑎2𝑍 𝐴2  + (1 − 𝑎2 + 𝑄𝑍) 𝐴 − 𝑄 = 0 ,      (2.2.7) 
 
which can be solved for 𝐴. 
 
Note that when 𝑄 = 0, 𝐴 becomes: 
 

 𝐴−1 = (1 − 𝑎−2)−1𝑍 .        (2.2.8) 
 
This is the scalar system as described in Part I (eq.(2.3.5) and section 2.6). 
 
We will explore a system containing two observation types, one of which has its 
assumed observation error covariance specified correctly and the other incorrectly.  We 
specify the difference in the true relative information contents of the two observation 
types through a ratio ρ: 
 
 ρ = 𝑍1 𝑍2⁄ = 𝑅2 𝑅1⁄  ,        (2.2.9) 
 
Concerning the other system parameters: the total observational information is fixed 
through 𝑍 = ∑ 𝑍𝑗𝑗 = 1; 𝑎 usually takes the same nominal value as used in Part I (𝑎=1.2), 

but some other values have been examined; 𝑄 takes either the nominal value used in 

Part I (𝑄=0.02) or is set to zero.    
 
 
2.3 The observation impact metrics 
 
We retain the DDE metric used in Part I (eq.2.4.1) with the simplification that there is 
now only one forecast variable: 
 

 %𝐷𝐷𝐸𝑛 = 100
𝑃𝑛(𝑑𝑒𝑔)−𝑃𝑛(𝑓𝑢𝑙𝑙)

𝑃𝑛(𝑓𝑢𝑙𝑙)
  ,       (2.3.1) 

 
where 𝑓𝑢𝑙𝑙 denotes the full observing system and 𝑑𝑒𝑔 the degraded system, and we 
again focus on the DDE score for the 24h forecast (𝑛=4), defining %𝐷𝐷𝐸 = %𝐷𝐷𝐸4.   
 
We also compute, for reasons explained below, an alternative metric based on the 
forecast precision (i.e. the inverse of the error variance): 
 

 %𝐷𝐷𝐸𝑛
∗ = 100

1/𝑃𝑛(𝑓𝑢𝑙𝑙)−1/𝑃𝑛(𝑑𝑒𝑔)

1/𝑃𝑛(𝑓𝑢𝑙𝑙)
  .       (2.3.2) 

 
The FSOI metric for the suboptimal case is discussed in Appendix A.  It is shown that it 
no longer measures accurately the reduction in forecast error variance attributable to a 
subset of the observations.  Instead it measures a quantity that is linear in the assumed 
observation weights, 𝐊𝒔.  The FSOI method still allows a difference in forecast error 
variance to be propagated backwards in time, through the adjoint of the forecast model, 
to give a difference in analysis error variance.  This is then propagated back to individual 
observations through the observation weights (derived using the assumed observation 
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error covariances, not their true values).  In a one-variable system, the difference in 
analysis error variance is a single scalar value; the final step of the FSOI calculation then 
partitions this between the different observation types according to their observation 
weights.  Therefore, the FSOI metric simplifies considerably to: 
 

 %𝐹𝑆𝑂𝐼 = 100 𝛿𝑒𝑗 𝛿𝑒⁄ = 100 𝛿𝑒𝑗 ∑ 𝛿𝑒𝑗𝑗⁄ = 100 𝐾𝑠𝑗
∑ 𝐾𝑠𝑗𝑗⁄  ,   (2.3.3) 

 
where 𝛿𝑒𝑗 is the contribution of the jth observation type to the FSOI energy metric and 𝛿𝑒 

is the sum of contributions from all observation types, as discussed in Part I.  
 
We also recall, from the discussion of the scalar case in Part I, our expectation of the 
results for an optimal scalar system: when 𝑍 is reduced by 1%, we expect a DDE impact 
of 1%, and also that the observations denied will contribute 1% of the total FSOI in the 
full system.  The purpose of this study is to investigate what happens to these values 
when the observation error covariances are not specified optimally. 
 
 
3. Experimental design 
 
The calculation proceeds as follows: 
 

(a) Set the values of the system parameters: 𝑎, 𝑄 and 𝑍. 

(b) Set a value for ρ = 𝑍1 𝑍2⁄ .  Compute the true values of 𝑍1 and 𝑍2, and hence 𝑅1 
and 𝑅2. 

(c) Choose one of the observation types to be the one that will be denied in the 
DDE. (We choose observation type 2, for which the true observation error 
variance is 𝑅2.) 

(d) Evaluate the optimal value of 𝐴 through eq.(2.2.7), for the full observing system 

and for the degraded system. 

(e) Evaluate 𝐵 using eq.(2.1.6) for both cases. 

(f) Vary the assumed value of observation error variance for observation type 2.  For 

each value, compute 𝐊𝒔 through eq.(2.1.3) using 𝐵𝑠 calculated for the optimal 

system, step (e).  Then compute the suboptimal 𝐴 through eq.(2.2.4). 

(g) For each value of 𝐴, calculate the equivalent values of 𝑃𝑛, using eq.(2.1.7). 

(h) For each set of 𝑃𝑛, calculate %𝐷𝐷𝐸𝑛, %𝐷𝐷𝐸𝑛
∗  and %𝐹𝑆𝑂𝐼.  We consider values 

equivalent to the 24h forecast error (n=4). 
 
We use an assumed value of background error variance, 𝐵𝑠, that is the same as the true 
value for the optimal system.  (The effects of mis-specifying 𝐵 have been discussed by 
Eyre and Hilton (2013)). 
 
 
4. Results 
 

We first conduct three experiments in each of which we set the observation error for the 
suboptimally-specified observation type to a range of values, from 𝑅𝑠 = 0.25𝑅 to 𝑅𝑠 =
4𝑅.  Note that, for simplicity, we denote here 𝑅2 by 𝑅 and 𝑅2𝑠 by 𝑅𝑠.  (𝑅1𝑠 is constant and 

equal to its true value 𝑅1.)  In all experiments we set 𝑎 = 1.2 and 𝑍 = 1.  The 
experiments are summarised in Table 1. 
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Table 1. Summary of experiments.   

 
In Experiment 1, ρ = 99.  This corresponds to 1% of the information in the observation 
type for which errors are incorrectly specified and 99% in observation types for which the 
errors are correctly specified.  The model error, 𝑄, is set to zero.  Results are shown in 
Fig.1. 
 

 
 
Figure 1. Results of %𝐹𝑆𝑂𝐼 (dashed/blue), %𝐷𝐷𝐸 (solid/red) and %𝐷𝐷𝐸∗ for (dotted/black) 

for Experiment 1 (𝑄=0, ρ=99). 

 
It can be seen that, when 𝑅𝑠 = 𝑅, all three metrics are in agreement at an impact of 1%.  

(In fact, %𝐷𝐷𝐸∗ and %𝐹𝑆𝑂𝐼 are exactly 1% and %𝐷𝐷𝐸 is very close to 1%.  This is 
consistent with the problem being exactly linear in precision as discussed in Part I.)  
When 𝑅𝑠 ≠ 𝑅, %𝐷𝐷𝐸 (or %𝐷𝐷𝐸∗) is reduced, as is expected for a suboptimal system.  

When 𝑅𝑠 > 𝑅, the DDE impact decreases towards zero, corresponding to the 
observations being given decreasing weight, relative to their optimal weight.  However, 
when 𝑅𝑠 < 𝑅, the positive impact decreases more rapidly.  This corresponds to the 

Experiment  𝑄 ρ  

1 0 99 

2 0.02 99 

3 0 9 
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observations being given too much weight relative to their optimal value.  In fact, the 
impact of these observations becomes negative for 𝑅/𝑅𝑠 ≳ 2.  This is analogous to the 
“danger zone” problem discussed by Eyre and Hilton (2013) for the equivalent problem 
with the suboptimal specification of background error covariance. 
 
The behaviour of %𝐹𝑆𝑂𝐼 is seen to be very different; it increases linearly with 𝑅/𝑅𝑠.  This 

shows that, in the suboptimal case, %𝐹𝑆𝑂𝐼 is responding primarily to the observation 
weights.   
 
In Experiment 2, 𝑄 is set to 0.02 whilst retaining ρ = 99.  Results are shown in Fig.2.  
Compared with Expt.1 this change in 𝑄 results in a small reduction in the DDE impacts, 
both the positive and the negative impacts.  However, the FSOI impacts are unchanged, 
because the observation weights are unchanged.  This is consistent with the effects of 
changing 𝑄 found in Part I. 
 

 
 
Figure 2. Results of %𝐹𝑆𝑂𝐼 (dashed/blue), %𝐷𝐷𝐸 (solid/red) and %𝐷𝐷𝐸∗ for (dotted/black) 

for Experiment 2 (𝑄=0.02, ρ=99). 

 
In Experiment 3, we set ρ = 9.  This corresponds to 10% of the information in the 
observation type for which the errors are incorrectly specified and 90% in observation 
types for which the errors are correctly specified.  𝑄 is set to zero.  Results are shown in 
Fig.3.  The shapes of all the curves are very similar to Experiment 1, but the impacts are 
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equal or close to 10% for the optimal system.  There is also now a clearer separation 

between %𝐷𝐷𝐸 and %𝐷𝐷𝐸∗, because of the linear relation between 𝐴−1 and 𝑍, and the 

nonlinear relation between 𝐴 and 𝑍.   
 

 
 
Figure 3. Results of %𝐹𝑆𝑂𝐼 (dashed/blue), %𝐷𝐷𝐸 (solid/red) and %𝐷𝐷𝐸∗ for (dotted/black) 

for Experiment 3 (𝑄=0, ρ=9). 

 
Further experiments (results not shown) have been conducted to look at the effect of 
varying the forecast error growth parameter, 𝑎.  It is found that, when 𝑄 = 0, the results 
of Experiments 1 and 3 are replicated exactly.  When 𝑄 ≠ 0, the results are similar to 
those of Experiment 2 but modified, with larger differences from Experiment 1 for smaller 
values of 𝑎.  
 
 
5. Discussion 
 
The key feature of all these results is the opposite behaviour of %𝐷𝐷𝐸 and %𝐹𝑆𝑂𝐼 when 

𝑅 > 𝑅𝑠: %𝐷𝐷𝐸 is reduced, as it is for all suboptimal values of 𝑅𝑠, but %𝐹𝑆𝑂𝐼 is 
increased, because of the increased observation weight.  This result is independent of 
the value of ρ.  As shown in Appendix A, %𝐹𝑆𝑂𝐼 is no longer measuring how much an 
observation type contributes to the reduction of forecast error, resulting from the 
reduction in analysis error on each assimilation cycle.  However, %𝐹𝑆𝑂𝐼 is showing the 
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“correct” tendency in one sense; it is showing the increased impact of the observation 
type on the analysis as a result of the increased observation weight.  But this is also a 
misleading result, as it strongly conflicts with the %𝐷𝐷𝐸 result; it gives the erroneous 
impression that the observations are more beneficial to the analysis than in the optimal 
case, when in fact they are not. 
 
The inclusion of model error is found to be important in reducing %𝐷𝐷𝐸 scores, as in 
Part I.  This can be understood by considering model error as one way in which the 
NWP system progressively “forgets” observational information.  %𝐹𝑆𝑂𝐼 is not affected in 
this very simple system, because the observation weights (relative to each other) are 
unaffected by the model error.   
 
Compared with the effects explored in Part I, those examined in this study are limited; 
they have all the limitations of the single-variable problem discussed in Part I.  
Nevertheless, this helps us to focus on the key difference between %𝐷𝐷𝐸 and %𝐹𝑆𝑂𝐼 
for suboptimal systems. 
 
In a one-variable system with static error variances, %𝐹𝑆𝑂𝐼 must always be positive, 
because analysis error must be lower than background error (for a stable system) and 
analysis weights must be positive.  It is well known from real-world systems that FSOI 
scores can be negative.  This is because, although the analysis must be more accurate 
than the background overall, some aspects of the analysis can be degraded by 
observations used in an erroneous way.  In these circumstances, the FSOI statistics can 
highlight problems with observations and/or their assimilation. 
 
With this very simple system it is only possible to study suboptimality as represented by 
the mis-specification of observation error variances.  In real-world systems, observation 
errors can also be mis-specified in other ways, such as their correlations and their 
biases.   Both of these aspects of suboptimality will lead to degraded DDE scores, but 
their effect of FSOI scores may be different. 
 
These results show the danger of using FSOI statistics alone to tune an NWP DA 
system.  It is possible for overweighted observations to have misleading high FSOI 
scores.  This shows that other methods (such as OSEs) are needed to tune the 
observation error covariances themselves.  However, once these are tuned close their 
optimal values, FSOI statistics can be expected to give helpful and informative results, 
as is found in practice. 
 
 
6. Conclusions  
 
In Part I, we developed the theory relating the DDE and FSOI impact metrics for an 
optimal DA system, and we applied this theory to a very simple, two-variable system.  In 
this study, Part II, we have extended the theory to the suboptimal case.  We have 
applied this theory to an even simpler, one-variable system, in order to illustrate a key 
property of the DDE and FSOI metrics in response to suboptimality.   
 
Within a DA system, when the observation error variance of any observation type is 
assumed to have a value that differs from its true value, then the analysis error 
variances and subsequent forecast error variances will be higher than they would be for 
an optimal system.  This is expected, and it is indeed what we mean by an optimal 
system, i.e. one with minimum error variances.  The observation impacts as measured 
by DDE will tend to confirm this result; DDE impacts will be lower for a system in which 
the observation errors are specified in a suboptimal way. 
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The behaviour of FSOI impacts, in response to incorrectly specified observation errors, 
is very different; if the observation errors assumed by the system for a given observation 
type are underestimated, then the FSOI impact for that type will increase.  It does so 
because the observation weight is increased.  This represents the increased impact of 
this observation type within the system.  However, this can give the misleading 
impression that the benefit derived from this observation type has increased, which is 
not the case, as the DDE experiments confirm.   
 
These results, although derived using a highly simplified DA system, provide a warning 
concerning the interpretation of FSOI results from real-world systems. 
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Appendix A. The FSOI metric for suboptimal data assimilation 
 
In section 2.5 of Part I, we derived the FSOI metric for an optimal DA system.  Using the 
expression for the FSOI percentage error reduction attributable to jth observation subset: 
 
 %𝐹𝑆𝑂𝐼 = 100 𝛿𝑒𝑗/𝛿𝑒 ,                (A.1) 

 
where 𝛿𝑒 is the FSOI energy metric and 𝛿𝑒𝑗 is its contribution from the jth observation 

subset, we showed that: 
 

 𝛿𝑒𝑗 = 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐁 − 𝐀)𝑗𝐌𝑛𝑻
] = 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀𝐙𝑗𝐁)𝐌𝑛𝑻

] ,   (A.2) 

 

and 𝛿𝑒 = ∑ 𝛿𝑒𝑗𝑗 =  ∑ 𝑡𝑟𝑎𝑐𝑒[𝐌𝑛(𝐀𝐙𝑗𝐁)𝐌𝑛𝑻
]𝑗  .       (A.3) 

 
This derivation relies on the following expressions for optimal DA:  
 
 𝐁 − 𝐀 = 𝐊𝐇𝐁 = 𝐀𝐙𝐁 = 𝐀 ∑ 𝐙𝑗𝑗 𝐁 .      (A.4) 

 
and (𝐁 − 𝐀)𝑗 = 𝐀𝐙𝑗𝐁 ,        (A.5) 

 
where (𝐁 − 𝐀)𝑗 is the change in analysis error covariance (relative to the background) 

attributable to the jth observation subset. 
 
In the suboptimal case, we can derive equivalent expressions starting from equations 
(2.1.2) and (2.1.3): 
 

 𝐀 = (𝐈 − 𝐊𝒔𝐇)𝐁(𝐈 − 𝐊𝒔𝐇)𝑇 + 𝐊𝒔𝐑𝐊𝒔
𝑇 ,     (A.6) 

 

 𝐊𝒔 = 𝐁𝒔𝐇𝑇(𝐇𝐁𝒔𝐇𝑇 + 𝐑𝒔)−1 .       (A.7) 
 
Using (A.7) and with 𝐁𝒔 = 𝐁, (A.6) becomes 
 

 𝐁 − 𝐀 = 𝐊𝒔𝐇𝐁 + 𝐊𝒔(𝐑𝒔 − 𝐑)𝐊𝒔
𝑇 ,      (A.8) 
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This reduces to (A.4) when 𝐑𝒔 = 𝐑, and hence 𝐊𝒔 = 𝐊.   
 
Denoting 𝐊𝒔𝑗

 as the jth block of rows of 𝐊𝒔 and 𝐇𝑗 as the jth block of columns of 𝐇, and 

assuming that 𝐑𝒔 and 𝐑 are block diagonal, with diagonal blocks 𝐑𝒔𝑗
 and 𝐑𝑗 

respectively, we obtain: 
 

 𝐁 − 𝐀 = ∑ 𝐊𝒔𝑗𝑗 𝐇𝑗𝐁 + ∑ 𝐊𝒔𝑗𝑗 (𝐑𝒔𝑗
− 𝐑𝑗)𝐊𝒔𝑗

𝑇 ,    (A.9) 

 

and (𝐁 − 𝐀)𝑗 = 𝐊𝒔𝑗
𝐇𝑗𝐁 + 𝐊𝒔𝑗

(𝐑𝒔𝑗
− 𝐑𝑗)𝐊𝒔𝑗

𝑇 .     (A.10) 

 
In the case of a scalar (one-variable) system, (A.10) simplifies to: 
 

 (𝐵 − 𝐴)𝑗 = 𝐾𝑠𝑗
𝐵 + (𝐾𝑠𝑗

)2(𝑅𝑠𝑗
− 𝑅𝑗) .      (A.11) 

 
Therefore, for the suboptimal case, equations (A.9) and (A.10) take the place of 
equations (A.4) and (A.5) in the optimal case.  Equation (A.9) is the equation we would 
need to evaluate in order to find the change in analysis error covariance attributable to 
the jth observation subset.  However, this is not what the standard FSOI technique 
evaluates.  Instead, it computes a quantity that is linear in 𝐊𝒔, and in so doing it 
misallocates the assessment of impact between the different observation types.  Note 
also that, in practice, equations (A.9) and (A.10) cannot be evaluated because the true 
values of 𝐑𝑗 are unknown. 

 
This result can be understood most easily by considering the case of a one-variable 
system.  The FSOI method effectively allows a difference in forecast error variance to be 
propagated backwards in time, through the adjoint of the forecast model, to give a 
difference in analysis error variance.  In a one-variable system this is a single scalar 
value.  The final step of the FSOI calculation then partitions this analysis error variance 
difference between the different observation types according to their observation 
weights.  Therefore, eq.(A.1) becomes: 
 

 %𝐹𝑆𝑂𝐼 = 100 𝛿𝑒𝑗 𝛿𝑒⁄ = 100 𝛿𝑒𝑗 ∑ 𝛿𝑒𝑗𝑗⁄ = 100 𝐾𝑠𝑗
∑ 𝐾𝑠𝑗𝑗⁄    (A.12) 

 
Note that this partitioning uses the assumed values of weights, 𝐊𝒔, and not their optimal 
values.  The relationship to the FSOI expression for the optimal case (equations A.2 and 

A.3) can be further appreciated by noting that the K𝑠𝑗
 is proportional to 𝑅𝑠𝑗

−1, through 

eq.(2.1.3), and hence to the assumed value of 𝑍𝑗.   

 
 
Acronyms 
 
DA  data assimilation 
DDE  data denial experiment 
FSOI  forecast sensitivity-based observation impact 
NWP  numerical weather prediction 
OSE  observing system experiment 
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