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15 INTRODUCTION

While spectral methods are in almost universal use for the global
atmospheric models used for weather forecasting and climate research, there
is still an interest in developing finite difference methods suitable for
these applications. This is because, as resolution increases, the cost of
the spectral method may increase faster than that of finite difference
methods. Also, as interest focusses on local behaviour in the results,
finite difference methods may be found better at representing local, rather
discontinuous behaviour because they avoid problems associated with
spectral fitting.

A very efficient finite difference scheme developed for use in
forecast models is the split-explicit method, Gadd (1978a). Gadd combined
this method with an accurate version of the Lax-Wendroff advection scheme,
Gadd (1978b). Mesinger (1981) used the split-explicit method together with
the Heun advection scheme, which avoids the complexity of time-staggering.
Both schemes have been used successfully in operational models for a number
of years; the former has been used in the U.K. Meteorological Office global
operational model since 1982.

In climate research an important requirement is to conserve
mass-weighted temperature and moisture, so that the heat and moisture
budgets can be accurately calculated and their effect in various climate
change scenarios assessed. Neither of the above split-explicit schemes do
this when written in the standard sigma or hybrid sigma/pressure vertical
coordinate systems. The difficulty is that the vertical advection of
potential temperature forms part of the gravity wave dynamics and has to be
treated separately from the horizontal advection. Correct treatment of the
angular momentum and energy budgets is also important. Simmons and

Burridge (1981) show how to do this in hybrid coordinates. For energy



conservation, it is necessary for the calculation of vertical veloecity to
be consistent with that of the horizontal velocity through the continuity
equation. This is also not ensured by the standard split-explicit method.

It is not generally agreed what properties of the finite difference
schemes are necessary to ensure satisfactory results in extended
integrations. Lagrangian conservation properties may be important, but
cannot be enforced within conventional methods. Conservation of quadratic
quantities provides an approximation to Lagrangian conservation. Mesinger
(1981) has shown how this can be achieved in split-explicit finite
difference schemes.

In this paper, the split-explicit method is modified to conserve
mass-weighted potential temperature and moisture, and to treat the energy
conversion term consistently.

This is done by treating only the vertical advection of a basic state
temperature with a short timestep, and treating the remainder of the
advection with a conservative scheme and a long timestep, using the average
velocity from the short timesteps. The technique is exactly parallel to'
the split used in semi-implicit models, Simmons et al. (1978). It is also
necessary to ensure that a finite difference flux conservation law can be
obtained by combining the advection scheme with the continuity equation in
finite difference form. This is done by using the Heun scheme, since this
combination is difficult to achieve with the time-staggered Lax-Wendroff
scheme. The scheme is implemented in hybrid coordinates as in Simmons and
Burridge (1981) to ensure correct treatment of the angular momentum and

enery.




2 THE FORECAST EQUATIONS

To simplify the presentation, the scheme is described in horizontal
Cartesian coordinates (x,y). When used in a global model the application
on a latitude longitude grid in spherical polar coordinates is
straightforward. Careful attention has to be paid to the method of
filtering near the poles to ensure that the conservation properties are
retained, the method required is discussed at the end of section 3. The
construction of conservation laws depends on the continuity equation, whose
form depends on the choice of vertical coordinate. We use the hybrid
coordinate system described by Simmons and Burridge (1981), which combines
the advantages of the terrain-following sigma coordinate system near the
surface, and the pressure system in the stratosphere, thereby reducing the
error in the pressure gradient term. Only the adiabatic equations are
presented, since moisture conservation is assured by using the same
advection scheme as for the perturbation potential temperature.

Define a vertical coordinate n = n(p,px), where n(0,pyx)=0 and
n(px,pPx)=1. The equations are then %

3u/3t + udu/dx + vOu/dy + nou/dn +

4

s

3¢/9x + (RT/p)3p/3x- fv = F, (1)

9v/3t + udv/dx + vOv/dy + nov/on +

+

3¢/9y + (RT/p)ap/dy + fu = F, (2)

96/t + ude/dx + v3e/dy + ndL/dn = Fy (3)

9/3n(9p/dt) + 3/3x(udp/dn) + 9/3y(vap/an)

+ 9/3n(n3p/dn) = 0 (4)




The quantities F,, F Fg represent source terms, and also include any

vl
diffusion required for computational reasons. The vertical boundary

conditions are:
A o= Oratine 01, (5)

Integrating (4) in the vertical from n=0 to 1 gives:
8py/3t = -/ '[3/3x(udp/dn) +
9/3y(vdp/3n)ldn (6)
Integrating (4) from n=0 to n gives:
79p/dn = -8p/dt-J "[3/3x(udp/3n) +
9/3y(vap/3dn)ldn (7)
The hydrostatic relation is given by:
9%/9n = -(RT/p)dp/dn
= -cpean/an 1 (8)
where II=(p/1000)*
3. THE INTEGRATION SCHEME 3
The variables are held on the Arakawa 'B' grid. The variables u, v, 8
and ¢ are held at levels Nys where k is the vertical grid-length index,
while n is held at the intermediate levels ny,,,,. The lower boundary is
k=1/2 and the upper boundary k=TOP+1/2. The pressure is defined at

intermediate levels by

Pus1/2 = Bkr1/2 + Brerz2Per (9)
where A, .q,, @nd By, 4/, are specified constants. Thus
and
Bpy = (Apar/27Ak-1/2) * Bra1/27By-1/,)px (1)
6




Note that this definition makes Ap, negative, since k increases with
physical height. In the split explicit integration scheme, the solution
procedure is split into two parts, called the 'adjustment' and 'advection'
steps. The adjustment timestep is written as &t, the advection timestep as
At. In the former, the pressure, temperature, and wind fields are updated
using the pressure gradient and the Coriolis terms, and the vertical
advection of the basic state potential temperature. Only the final updated
values of surface pressure and horizontal wind are used in the next step.
The average horizontal wind from the adjustment step is used to define the
horizontal advection in the advection step, and, via the continuity
equation, the vertical advection. This procedure is needed to ensure
conservation and correct treatment of the energy conversions. All
advection increments except the vertical advection of basic state potential
temperature are then calculated in the advection step, together with any
horizontal diffusion.

The standard finite difference notation

8§, X = (X(x+1/,8%) = X(x-1/,8%))/8x <

Tcx— 1/ (X(x+1/7,8%) + X(x=1/,8%))
= ) x 2X X 2X

is used.
(a) The adjustment step
This uses the 'forward-backward' scheme in which a forward step is
used for the u and v equations, and the new values of these variables are
then used in the py and 6 equations. The 'forward' part of the integration

scheme is:




u2+1 = uﬁ + 6t[1/2f(v§ + vﬁ+1) e
Y,
n —X 5 n
18,0 + cp8y 8Lyt oPye1/27 Mk 1/2Pk-1/2] }-] (12)
’
(k+1) Apy
AL D s talorl ot
X
n ey n
{ 840, + By 8y[Myq/oPret/2 = Tk-1/2Pk-1721 ] (13)
?
(k+1) Apy

Equations (12) and (13) can be arranged to allow explicit integration. The

hydrostatic equation is approximated by

k-1
¢ = & * Iny Cpbn(Mpiq/p = Tpoqz)

Cpfy(My—q/2 = (My=1/2Pk-1/2"Tks1/2Pke172) ) ¢n

(o<+1)Apk

The special form of the last term is chosen to ensure angular momentum

\

conservation. The implicit treatment of the Coriolis term removes the

stability problem noted by Gadd (1980).

The 'backward' part of the integration scheme is given by

n+1 n TOP. 'n+i
Py mipy = 8t) Do (15)
m=1

St gl s Tl (pimae) ¢

2(8p)",  On k+1/2

f19py  (6rL=BRy-1)] (16)
( Bn)k-1/gk it



where eR(n) is a basic state profile of 6. As discussed by Simmons et al,
(1978), this must be carefully chosen to ensure computational stability.
The problem is caused by instability of gravity waves, rather than the
energetic inconsistency of the adjustment equations considered on their
own. The standard choice, used here, is an isothermal basic state with
temperature 300°K and surface pressure 1000hpa. The form of these
equations ensures that mass and mass-weighted potential temperature are

nen+1

conserved; in particular the integral of Ap Hpits

equals that of Ap

(f2p) - (2 ARLME e (17)
an’k+1/2 Opx’ k+1/2 M=1 m=1
y B Tt Sl A
XY Sy
Dp = [&6,(udp, ) + Gy(vapm 1 e (18)

In order to ensure that 8 is conserved under advection, it is
necessary that all advection is done by a three-dimensional velocity field
which satisfies the continuity equation. The average values of umApm and
vapm over the adjustment steps must be saved for use in the advection
step.

(b) The advection step

The basic state op is first subtracted from 6 to give 6'. The Heun
advection scheme is used, as in Mesinger (1981). This avoids the stability
problem noted by Gadd (1980). Experiments within the split-explicit model
described by Bell and Dickinson (1987) have shown that it is more stable
than the Lax-Wendroff scheme used in that model, even though it has growing
eigensolutions of order (1+0(Atu)). The scheme can be corrected to remove
this instability. The correction term can be found by a Taylor expansion,

and is scaled by (UAt/Ax)3. It is thus only effective when UAt/Ax is close



to 1, and is found in practice to be submerged by the diffusion required to
handle the cascade of energy to small scales. It is therefore not used

here.

The scheme has two steps. The advecting velocity for both is the
average value saved from the adjustment steps.

Define

e XY K
Hk o (Uk'vk) o (ukApkv VkApk)' (19)

as saved from the adjustment steps. Define

nopy.. = E (20)
(el 7 *ale

where E,,,,, is calculated from the finite difference formulae (17) and
(18). Use the " overbar to denote values at the end of the first advection

step. The finite difference equations are then:

n n. n
Apy 6y = APy — :

X 3x y 3y

o Vet ey oyl A, i =X (21)

2 = =
/obt {Epyq/2(80, 178" ) * Ey_q/5(80-0) )}

e iy

(8P} u, = (AP)p up -

S 3x y 3y
Pty 4 il X P ¢
Xy XY XY =Xy
Ac{ (149U, 8yu, = WUy Spuy + (1+v) ¥y Gyuk ok Gyuk Y5 (22)

= /2At {Ek+1/2(uk+1-uk) + Ek—1/2(uk—uk“1)},

with a similar equation for v.

10



Note that in the scheme of Gadd (1978b), higher accuracy is achieved
without requiring the timestep to be reduced by modifying the second step
of the Lax-Wendroff scheme. In the Heun scheme, it is necessary to use the
same finite difference approximation in both steps, or else there is an
O(Atz) instability. The value v=1/6 in equations (21) to (22) gives
fourth order accuracy, but will increase the squared amplification rate of
the growing solution from (1+1/ug“) to (1+1/u5u1) where £ is the Courant
number and 51=1.37£. This will reduce the maximum timestep that can safely
be used. A fixed value must be used for v to allow conservation, but for
applications where this is not important the choice v=1/6(1-£2) should
avoid the need to reduce the timestep.

The second advection step can be written:

' kR | 1 ~8
™! 6 ML (17, (ap)te ™0 )+ 1/, (8D (8 40y ) ) -

1 'n P |
/50t (U.Ve, + U.V8 ). (23)
where U is the three-dimensional velocity vector. The equation for u is

Xy B 4 —Xy,
+ + +
(Ap)ﬁ 1uE ! ={1/2(Ap)a (un-u )k + 1/2(Ap)2 (u

LR (24)

1/t (U, Yl + UL Vu)
with a similar equation for v. The form of equations (23) and (24) ensures
conservation under time differencing.

(¢) Fourier filtering

When this finite difference scheme is used in a global model on a
latitude-longitude grid, some form of filtering is needed at high latitudes
to avoid the need for a very short timestep. It is necessary to ensure
that global conservation properties are not affected by the filtering.

Mass-weighted increments to 6, and mass weighted velocity fields Ap(u,v)

11



are therefore filtered. Filtering mass-weight velocity fields before the
update to py removes the need to filter py and 6 increments after the
adjustment steps, so that the conservation proofs of section 4 do not have
to consider the effect of filtering. This strategy also avoids the problem
of filtering fields which vary rapidly along a model coordinate surface.
(d) Conservation properties

The angular momentum and energy conservation properties are retained
with respect to vertical differencing by similar arguments to those of
Simmons and Burridge (1981), modified by the use of potential temperature
rather than temperature as the model variable.

We set out the proof that the global mass-weighted mean of 6 is
conserved under meridional advection as an example of how it works for
other variables and directions. Combining (17-20) gives the continuity

equation in the form:

TOP k
Egs1/2 = (QEJ In-1Pn = 2n-1Pn (25)
OP% Ke1/2 .
where
=X
Dy = AyVm 3 (26)

A simple second order forward update of 6 by meridional advection, and
advection by the vertical motion associated with the meridional motion, is

given by

R Y

+ + + =X

1 o <
/ol Es1/200ka178)) * Epq (86,901, (27)

where the superscript + denotes updated values.

12



The update of py can be written

- TOP
Px = Px — At)n_.Dp, (28)

because of the definition of Vm as the average over the adjustment steps.

Equation (10) can be used to rewrite (28) as

G
Eps1/2 = Ex-1/2 = 8By(px = Px)/Bt = Dy. (29)

Multiplying (29) by 6,, substituting for Ap, using (11), and adding to (27)

gives

- - +

(AR, +AB.Px)(8,~8)) + 8, (px ~ DPx)AB, =

SRy
X X

-At[vkéyek + Gkﬁyvk =%
1 i 25 &
This reduces to

5 ey
(Apkek) 3 Apkek - —At[éyvkek *

1 =
/2 Ba1/2(0e1 * B)) = Eyq/p(Op + 63 g0, (31)
which gives the desired conservation integral when integrated over y.
Now consider the fourth order terms in (21) and (22). Conservation

cannot be achieved if v is a function of E, as may be necessary to avoid

reducing the timestep. Suppose that v is a constant. The terms

ST RN < SN B
S, g L

(1+V)Uk6x9k bt VUkéxek

13



can be expanded as

A
(1+v)Uk(x+1/2Ax)(ek(x+Ax)-6k(x)) =

SR
vU (x+3/28%) (8 (x+28%)-8) (x+Ax)), (32)

with symmetrical terms in -Ax. These terms cancel with contributions from
e;(x+Ax)and ei(x-Ax) when p;e; is summed over x to give the required
conservation.

We also demonstrate that the integral of Ap62 is conserved using the
second order accurate approximation to the advection terms. Multiply (29)

by eﬁ and add to (27) multiplied by 26,:

+ +
2Apk9k[9k =3 ek] - ekz(p* 7 p*)ABk =
o AT
D ¢ o S, €

-t [(20,0,8.8) + 8,8 V) + (8E g 5(8)0q = By) +
2
8, E-1/2(8 = Bk-1) * O)(Eypaq/p = Eygq/p) 3. (33)

The left hand side is a discrete approximation to

2 2 '
Ap, 3(8y) + 6 23Ap,. (34)
3t ot

However, it cannot be written as exact conservation of Apkeﬁ. The right

hand side becomes
S e JRGAT
2 B Z &
At[ Gyvk(2(9k) ek ) & ek9k+1Ek+1/2 Bkek_1Ek_1/2]. (35)
This is in conservation form. In order to achieve quadratic conservation
with the fourth order terms included, the Ek's must be redefined

(M. Fisher, private communication). The resulting scheme is rather less

accurate because it uses a broader stencil of gridpoints.

14



y, RESULTS

The proposed scheme has been implemented for both forecast and climate
applications. Some illustrative results are given, but exact comparisons
with previous schemes used in the Meteorological office are not possible
since many other changes were made in migrating the models to a new
computer system.

The proposed forecast configuration is a 288 x 217 latitude-longitude
grid with 20 levels, the highest at 7 hpa. The performance is illustrated
by a 6 day forecast from the 10th of September 1990 (Fig. 1). The
verifiying analysis is shown in Fig. 2 and a forecast from the operational
model described by Bell and Dickinson (1987) in Fig. 3. The results show
that the modified scheme still works satisfactorily in forecast mode.

The proposed climate model configuration is a 96 x 73 lati-
tude-longitude grid. The levels are the same as in the forecast
configuration. The performance is illustrated by monitoring the kinetic
energy and the variance in the temperature field. Graphs against time of
total, zonal, and eddy kinetic energy, and of temperature variance, all .«
integrated globally, are shown in Fig. 4. Sample values of the first three
from the current operational climate model are 151 mes-z, 95 m25'2 and
56 ms™2, The results show that a model including the proposed finite
difference scheme gives comparable figures. Checks on the conservation
properties, using a CRAY Y-MP computer, showed that the temperature error
was about 1°K in 15 years, with comparable results for other variables.
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Fig. 4
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Contour interval 4 hpa.
Verifying analysis for OZ on 16 September 1990.
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current Meteorological Office operational model.
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