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Application of the Jackson and Hunt Linear Analytical Model to

Practical Wind-flow Problems

Introduction

The first part of this paper givés an account of the Jackson and Hunt
linear analytical theory of the wind component perturbations as air
traverses a hill of slight to moderate slope. Toéics covered are the
original theory of Jackson and Hunt, the extension of the theory to
3—dimensional topography, and further refinements used in Met., Office
versions. Of the latter, models C and D, due to P J Mason, are now
programmed for routine application.

This account draws freely from:

Jackson and Hunt, 1975, henceforth JH
Mason and Sykes, 1979, s MS
Walmsley, Salmon & Taylor, 1982 Ly WST
Taylor, Walmsley and Salmon, 1983 b THS
Mason and King, 1985. s MK

It differs from JH in dealing with the 3-dimensional application and
omitting the wealth of analytical detail in which the wmethod of solution is
embedded. From the other papers it differs in_setting out, step by step,
the full solution of the problem. A number of these papers contain
comparisons with experimental results.

The second part of the paper describes the computer program, which can
be adapted for application to specific wind-flow problems. The program can
be used without familiarity with the underlying theory, but it is most
important that users should keep in mind the limitations of the analysis,

as detailed in part II, section 1.
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( PART I: THEORY

1. The solution of the 2-dimensional problem

1.1 Specifying the problem
JH contains the linear asymptotic theory of turbulent wind flow over a
2—dimensional hill of slight to moderate slope. They assumed a logarithmic

upwind profile in a boundary layer of depth 8,
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Here, ¥{ is von Karman's constant, U\* the friction velocity, % the height
above surface and Z.o the roughness length. The flow, (fig. 1) is divided
into an inner layer of depth .l, in Wh::LCh the turbulence adjusts rapidly to
the increased shear, and an outer layer where the turbulence time scales
are comparable with the time of transit over the hill, and the eddies are
strained and distorted in broad accordance with rapid distortion theory

(Britter et al 1981).
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The length scale of the hill is L, the maximum height h _, and

~ha (X
non-dimensional coordinates X, Z are defined X = )7‘_ ; Z = —2———1-'1‘—& )
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where the hill profile is from 2Z = l,\ (7{_) = \W.M‘g (/L. ) ‘, is a
smooth function such that the slope \‘\m %‘ ( )"'/\_ 3/\_ i \‘ Z is the

dimensionless distance above the surface.

JH assume that the streamwise velocity over the hill is

e

w(x,z) = uo[z s \1M-}(X)} L el (X,Z.) (2)

je W (1—, 2) is obtained from the upstream velocity profile at a similar
height above the surface plus a small perturbation. U is a dimensionless
perturbation velocity and € 4.! a small parameter which provides a scale
for the perturbation velocities. L : was obtained by balancing the
terrain—-induced pressure gradient and stress gradient terms in the
non—-dimensional Navier—-Stokes equation for the inner layer, and £ was
obtained by the asymptotic matching of the inner and owter layer equations
for the vertical component of veiocity. In effect, the inner layer
acceleratioﬁ, pressure and stress gradient perturbatioms are balanced, the
pressure being generated in the outer layer by the veritical displacement.
The inner layer pressure perturbation matches that at the base of the outer

layer. The analysis yields
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The non-dimensional forms for perturbation prGSSure’F),and surface stress)’cng)

are “('\‘OM

AT N e Lt (5)
= /3 X “xz

av = 2pd g, (B)P(X,Q) O

o

where, for the outer layer, c -
A first-order mixing length closure is used with the perturbation
kinematic stress defined as the difference between the perturbed and

undisturbed upstream values:
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Using (5) and a conventional mixing length (Prandtl) representation of

surface stress the result

i
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is obtained and the linearised inner layer non—dimensional equation of

motion reduces to
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where W is the perturbation vertical velocity.

1.2 Method of Solution

Using the equation of continuity (9a),(9b) yield

\71\7-‘- O (\O)
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where v = axt_\' S’q‘—, By using the Fourier transform (Bracewell,

. - ¢ 2 X
Pla) = Tix)e AX (W)

with the condition that ?‘9 O as )( = To0 an equation with a single
independent variable is obtained:
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e
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with a solution, for bounded ?

B
P = Ae (w)

A can be obtained from the boundary conditions. MS point out that at the

surface the dimensionless vertical velocity



W =
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so that using (9b)
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From (12) and the surface boundary condition (14)
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so that at the surface
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It is now possible to solve the inner layer equation (8). Applying Fourier

transforms similar to (11) yields

| U
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a differential equation which is transformable to a modified Bessel's

equation of order Zero. This is done by assuming that in the inner layer
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to obtain
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The general solution is H Ko(z )* BXO(Z ) where Kc and 10 are the
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modified Bessel functions. For U bounded as Z - o0 we obtain
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the inner
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From the boundary conditions U=0 ow ZZC)"

layer solution
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is obtained. The inverse Fourier transform, e.q.
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. requires integration over the wave numbers A to arrive at the solution

— in practice the summation of a truncated series.

2. Extension to 3 dimensions

MS extended the JH theory to 3 dimensions, so that practical

application could be made to real terrain. The hill profile now becomes




o \’\M% (x/l_) 3/L-> - \(‘w\ % (X/ys g The steps of the analysis

remain similar to JH, but now the pressure perturbation in the outer layer
produces a gradient in the inner layer in the transverse, y, direction, of
the same order as that in the x direction. Hence a perturbation velocity

EQ*V(XI\/, Z.) is induced and the inner layer equations
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derived. As the equations are linearized the perturbation velocity V does
not appear in the U equation. The factor 2 in (20b) is due to the
consideration that the stress component T'JL} reflects perturbations in

both the eddy viscosity and velocity gradient, while for U Ethe

3

perturbation velocity gradients have no effect on the eddy viscosity (to

1st order). The outer region equations are
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yielding v ’P =@
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The solution effectively follows the same steps as the 2-dimensional
case, but now requires 2-dimensional Fourier transforms. As the details
will be given for a similar calculation in the next section, it is only
necessary here to quote the results:
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where k, m are wavenumbers in the x and y directions, requiring the inverse
Fourier transform.

3. Later Developments: Model A

MK revert to the dimensional form of the equations of motion and carry

out a standard linearization to obtain the perturbatiom equations




Outer layer:

&L’S c)

JU _é__.?o ._é_[ VAT é_k..* Rua)
%3;: QX+AZ_ IR \*AZ_

>
b AV 2ls . o g 3V 24 b)
- 5 4 = izt . 5 Q

where the closure is of a conventional mixing length form, uc a basic flow -‘\
speed in the x direction, Z = Z h (X/ ‘3) the height above surface, i
: : : At/
now defined by the height of the relief h\l,y,and the perturbations ? ~ }’f) 5
where /7 is the air density, assumed constant. By scaling the inner layer
i i 1 i.e. i = 1 2 = L
vertical coordinate by /L- , i.e. using ZS Z//L ’ wit 20,5 ol /L :

the inner layer equations are more conveniently written, using (3)
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(cf equations (20a), (20b)).

Using the continuity equations system (23) yields

Vi = © G

%Y

The dimensional lower boundary condition is from W = uc :)—;_ on Z =y

Using (23c)

?_f o uz él (2%)
37 dt

(3]

To solve (26) given (27), two—dimensional transform pairs are defined (as
in WST) using truncated Fourier series to represent functions over the
e ; g A S

finite domain Xo < Xo* L‘ g \/0 £ \:S £ \/O*L

2 For example,
for ‘r\ (,1,(3) we define
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The transform (28) is, in practice, applied to a digitized topography using

a fast Fourier transform computer package. For convenience, express the
\
2w 2w ’

wavenumbers k -

wA = so that the exponential terms take
) : b !
the form ( for example) s
2 U+ wy)
<

Applying Fourier transforms to (26), (27) yields

~e

—(\Rx*wc—) Vi %%L & 0 (22)

subject to the boundary condition at Z =0
N ~
2 \Q’- \(\
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Given ?‘70 as /.o (30) has the solution ¥
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Applying (31) yields l
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So that at the surface

A
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As the inverse transform is expressed
P - zz?““"““‘*Q
- -0 xR0

substitution from (32) gives

e oapl ity 2 dleedy)
e P e .

1 o
and writing W =\ yields
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Result (33) permits the solution for the inner layer. Fourier

transform of (25a), for example, gives

L N
de (0, 0+%) = 3z, \(25*2"'5) Bt A

: v \
which on substitution of g - ‘2'(\\"“253 5 (é‘ Q2 k‘/ (l‘lg)) and

recalling _%__? = (0 vyields (except for heights very close to ;‘Lo )
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a modified Bessel equation of zero order in (\Aou +?03. The

solution follows similar lines to (19) and is usually expressed

14




U = —-:o_ | - Wc(i(‘LZ'yL) (259)
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For the V component the Bessel equation is in (kuo‘/+w \o , 9iving
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(compare system (22))
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This is Model A of MK, and requires the inverse transform (29) for final
solution. In pract_ice this is done by fast Fourier transform.
4, Model C

The choice of a single-valued M as an advection velocity in a
region where there is considerable vertical shear is arbitrary and may
detract from the validity of the solution. Also, as pointed out in WST, _

~

equation (22a) can be approximated,. over a range of k,m, by ?c e \k\s
so that there is a substantial high wavenumber contribution~to the pressure S
field. In practice the high wavenumber components of -}c'r' k are not
known, or distorted by interpolation and digitization, so that they add
noise to the solution.

The first refinement in MK (and adopted independently by TWS) is to £

&

choose outer layer velocity scales USU’\)W‘) at the wave scale heights Zw: (h *’“‘}.
In effect advection velocities are adapted to the scales of the relief as
interpreted in Fourier transform space. The same scales are used for the
inner layer. The arguments of the Bessel functions in (35a), (35b) are

accordingly replaced by

. Rt Z = - RUZ

) o 36
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and ub(\’l,w\) substituted for U, in (33), (35a), (35b).

Secondly, the inner and outer layer solutions are combined to allow
the outer layer exponential decay of the perturbations with height to
influence the inner layer. It is clear from (23a) that as U and P tend to

zexro as X ~»> o0 the outer layer solution for the x—component is
3
U = ?/ Ug (3 )

as 2 = O the outer layer solution (37) tends to A Ug «

v P/
Likewise, as Z ~3 OO , the inner layer solutions (35a), (35b) tend to Y 5 Sy

Accordingly, incorporating (36), 2 2\ '
16 {8V By - A \ ;
e Us k \\ (\’\ X z

(350)

s Y. %
oo j)_— l— \Kc(i(iz‘) L) A\
St Ko(lklZ'oY"’)_ (35b)

~ e
e T iz 1202y .
s k19 (2c 2-'03\"')_ (35 L)

is a universally valid solution combining the inner layer solution with the
outer layer exponential decay with height: . the effect of high wavenumber
noise is reduced as Z increases.
5. Model D

The Model C solutions' were found to give insufficient pexrturbation,
and have not really solved the problem of the inner layer wind velocity

scale which, for given U’l' VW), is fixed. Nor is it obvious what U,V are

16



perturbations from. MK point out that high in the inner layer a balance
between the advection and the outer layer pressure field is approached;
nearer the surface, in the 'equilibrium’ region of shear-generated
turbulence, a velocity scale based upon the height scale gf the stres
divergence is more appropriate. For Model D a velocity scale b\Z'is chosen
which is equal to the upstream velocity at the height above the surface for
which a flow prediction is required. The outer layer scale remains

us(\\.w\) as in model C. The solutions then become (38a) with

g B _\Kc(l(‘z'y'"ﬂ (3%)
i s PRENEE LR

_mP | K. (2(2:2)*) (355)
\QU\Z M0\1 (2.(, 2'0\\“')

=

2! kuy g v k U-, %,
(where e R e o o = S e W E ), requiring

T Rux 2 ¥ 2K Uy ;
inverse transforms in the usual way.

In the computer program all winds are scaled by an upstream
'geostrophic' value at height ch so that \A(ZQ = 1 and \A\E < 25\ <l
U and V are perturbations of UZ and are plotted in the model output
(default option SCLP = UOUT) in the normalised form \’\/‘*‘z L V/uz so that

the magnitudes of the perturbations for any specified, unscaled wind at

height Z can be inferred immediately.

17
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PART II: THE COMPUTER PROGRAM

1. Under the assumed conditions of a logarithmic wind profile with

neutral static stability the drag coefficient

' 2
e\ MapE

so that with the winds scaled to unit velocity at the top of the mixed
layer the perturbations depend solely upon the surface roughness. In the
computer program provision exists for prescribing either a geostrophic
drag coefficient or the roughness length. Models C and D are both
available for practical application on a single computer program, for which
a digitized topography must be supplied. It is most important that the
user familiarize himself at the outset with the limitations of these
models.,

(1) The theory is a linear one, and can be applied only to relatively
gentle slopes. Steep slopes and bluffs are often associated with powerful
accelerations, flow-separation phenomena, wakes, etc which are outside the
scope of the theory. In addition sharp corners or angles are difficult to
represent using finite Fourier series.

(2) A uniform surface roughness is assumed, which may be inappropriate in
reality, particularly where there are strong contrasts, such as a wooded
island in a large lake, etc.

(3) The static stability of the air is neutral. The model is particularly
inappropriate for stable conditions when, depending én the Froude number,
the flow may follow the contours rather than accelerate up slope.

(4) 7The nmixing length closure of the equations of motion is well known to

have theoretical inadequacies.

18



(5) The upstream vertical wind profile is assumed logarithmic,

(6) The topography must be considered as isolated in a flat domain, as the
theory requires all perturbations to be zero sufficiently far upstream and

downstream. In otherlwords the solutions using Fourier transforms require a
periodic domain (in both x and y directions) and all perturbations must be

contained within one wavelength.

2. Data Input and Adjustment of wind direction (program TROTATE)

The Jackson-Hunt model calculates perturbations to the mean wind over
a prescribed orography of slight or moderate slope. In the Jackson-Hunt
program the wind direction is always from the left hand side of the frame
so first it may be necessary to rotate the 'hill', This is effected using
the program 'TROTATE', so that the wind approaches from the desired
bearing. If no rotating is required the orography can be read straight
from the data set by the Jackson Hunt program.

The hill or orography over which the airflow is required should be
contour digitised and is read from device FMIY9 into array X (dimension 63 x
63). The mean altitude of the terrain surrounding the digitised orograéhy
should be determined and entered later via variable BASE in 1JHUNT (section
3). The grid-length used in the digitisation must be used to compute the
overall dimension of the domain used in the main program (127 grid-lengths
for MX=MY=7, see section 3) and BX, BY in TJHUNT adjusted accordingly.

Array H contains the hill after rotation. THETA is the anti-clockwise
angle of rotation, in degrees, (format F6.1) and array N provides different
options for output (format 4I2), where N(I)=1 means 6ption is required;
ie, if N(1)=1 array X is printed out in tables; -

iE Nk2)=1 afray H ie printed out in tables;

if N(3)=1 array X is plotted using calcomp,

xD



if N(4)=1 array H is plotted using calcomp,

Program Description

In the program, the coordinates of the grid are rotated clockwise
using the transformation:-—
X' = X Cos(THETA) + Y sin(THETA)

and Y'

I

-X sin(THETA) + Y cos(THETA)
Subroutine HEIGHT computes the clockwise rotated grid-point heights by‘*

interpolation between the adjacent unrotated grid-points using:— H' = 224C‘L\“1
=\

A

LS
amy  Coue (~‘?r:¥”?l )

(hiare heights at the 4 adjacent gridpoints, pjy and pz are the
perpendicular distances from the rotated gridpoint to the appropriate
row/column of the old grid).

These heights are then transferred to array H and inserted at the
pre-rotation locations. THis has the effect of rotating the hill by THETA

degrees anti-clockwise (N.B. an anticlockwise hill rotation through THETA

degrees is equivalent to a clockwise rotation of wind direction through
THETA-90 degrees in the output of the main Jackson-Hunt program; if
THETA-90 degregs is negative the wind bearing is THETA+270 degrees).

The array conta;ning the rotated hill is stored in a dataset on disk
where it can be accessed by the Jackson-Hunt program.

The JCL to run 'TROTATE' is shown in Appendix A and sample calcomp

output is shown in figure A(1).
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3. Running the Jackson-Hunt Program TJHUNT

Input Data

The dataset containing the contour digitised array is read from FTO9
by subroutine FILLUP, and is put into a larger array F, so that the hill
should take up approximately 1/3 x 1/3 of the domain if it is comfortably
contained in array H.

The input parameters are:--

TITLE ('A' format with a maximum of 36 characters).

&CNTL (namelist with choice of values as shown)&end

&PARMS (namelist with default values as shown) &END

NMAST ( format I2)

(TMAST(I),DMAST(I),I=1,NMAST)-fortran 77 list format

THP,TH1 (format 2F12,4).
TITLE:— A title can be read in if required; it will be printed in the
heading of the contour map of the orography. If no title is required,

leave a blank line.

&CNTL:— In this namelist the choice of model C or model D is controlled by

the variable MODEL and the choice of specifying either a geostrophic drag
coefficient DRAG orvthe (uniform) surface roughnéss length ZR@ is
controlled by the variable INST. (It'is not necessary to specify a wind
strength or direction). Variable SCALE is used to scale the perturbations
either with respect to the upstream wind at the same height or the unit
upst;eam wind at the 'geostrophic’' height ZU@. The latter option allows
perturbations at different levels to be compared directly.

Thus:— INST='DRSP' = > DRAG is specified (ZR® is calculated).

INST="'ZRSP'

]

> ZRP is specified (DRAG is calculated).

MODEL='MODC' = > model C is required.

21



MODEL='MODD' = » model D is required.
SCLP="'UQUT' =»> perturbations scaled by upstream wind at same height.
SCLP='UZUp"' => perturbations proportional to unit wind at height
zZug.
defaults are INST='ZRSP'. MODEL'MODD' and SCLP='UOUT'’
&PARMS has default values:-—
MX=7 (2**MX is the number of grid points in the X-direction)
Iy 2Ny " i " " L o " Y-direction)
The dimensions (number of grid-points) of the domain or of arrays H, X
in TROTATE can be adjusted, if necessary by application to Met O 14.
=MY=7 is appropriate for H(63,63) and yields F(128X128). Note that
the dimension parameter IP depends upon MX, MY.
BX=5000. (box size in X-direction, in metres)
BY=5000. ( " " " Y-direction, in metres)
BASE=0. (mean height of terrain surrounding hill, in metres)
ZROUT=10. (height (metres) at which flow is required)
ZUP=1000. (height (metres) at which the scaled upstream velocity is
un%ty).
DRAG=1.207 e—-3 (drag coefficient)
ZRPp=0.01 (roughness length, in metres)
It is only necessary to overwrite ZR@ or DRAG depending upon the option
INST.
ZUp and DRAG define UpP the scaled logarithmic velocity profile eq.
Up(2ug)=1.0
UP( ZROUT )=( DRAG**0, 5 ) /0, 4*ALOG( ZROUT/ZR? )

N.B. Ug<l1l.0

22




NMAST is the number of 'masts' (maximum 15) for which a windstrength and
angle are required. The strength is relative to unit or upstream value per
option SCLP.

TMAST and DMAST are the coordinafes for each mast; TMAST being the
anti clockwise angle between north, the centre of the digitised orography
(typically a hill-top), and the mast, DMAST being the distance in metxes
between the mast and the orography centre.

THP (degrees) is the anticlockwise hill rotation (i.e. TH@=THETA).

TH1 (degrees) is the anticlockwise angle from north defining a cross
section of U and V from the hilltop perpendicularly to the edge of the
frame. Thus a cross-section is only drawn if the angle between the
cross—section and the wind bearing (section 2) is an integer multiple of 90
degrees.

4, Description of ‘Output

Output is directed to film (FTYEFP@Yl) and paper (FTPeF@@l)
the film output is a series of calcomp plots showing the following:-
(1) A contour map of the hill
(2) and (3) contour maps of the alongwind and crosswind (u and v)
perturbation to the mean wind caused by the orography. Solid contours are
positive, pecked contours negative. For the v perturbation positive is a
deflection to the left looking downwind. Thus at height ZROUT ( for SCLP
option UOUT) ;f the mean wind upstream is 10 m/s, a 0.1 contour would
represent a perturbation of 1 m/s. For SCLP option UZUZ all perturbations
are fractions of the 'unit' geostrophic wind, but can be compared directly
with the scaled upstream mean wind at the same height above surface, ZROUT,
which is listed in the printed output,

(4) (optional) a graph showing a cross—section of velocity perturbations.

23



(5) A graph showing wind arrows over the whole domain.

The printed output includes:

Input data, maximum height_of orography, upstream wind at height ZROUT and

upstream friction velocity (Ux) both scaled by wind strength at height zZup,
maximum perturbation velocities and for each mast, u and v perturbations to
the mean wind and the resultant strength and deflection.

The JCL to run 'TJHUNT' is shown in Appendix B and sample calcomp output is
shown in Figure B(1l).

Acknowledgement is due to Ms H.M. Schrecker, who carried out a substantial

part of the computer programming in the early stages.
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J/TIATTRTH JOE (M1é,TToP213) s MACART « 2457 ,NOTIFY=T14TT,PRTY=22,TIME=(410)
//7*INFORM PRIMTDATA
// EXEC FORTVCLG
//ECRTSYSIN DD DSMN=Ml4.TLIF.FORT (TRCTATE)DISP =SHR
//LKED. PLOT DD DSN=MET +CALCUMP 4 DI SP=SHR
//LKED.CMAP CD DSN=M1Z.EADBZ2,DISP=SHR
//LKED. FPNO DD DSN=M21.0BJLIB,DISP=SHR
//LXED. SYSIN DD %

INCLUCE PLOT(CALCCMP 4DASHP,RECT)

INCLUDE CMAP(CMAPCALC,CMAPOUTFyCMAPLARS)

INCLUDE FPNO(JIFPND)
//GOSYSIN DD %

e 0001 1

/X
//GO.FTELFCOL DB SYSOUT=M,DCB=(RECFM=FRAsLRECL=137,BLKS IZE=1330)
//GOJETGTEOCL DD SYSOUT=A,DCR=(KECFM=FRA,LRECL=133,8LKSIZE=1330)
//C0.FTOSFOCL DD SYSGUT=GsDCR=(RECFM=FR,LRECL=E8C,RLKSIZE=1680C)
//60%FTCOFOCL DU DSN=M14.. TNYLAND.SRRAY,DISP=0LD y SPACE=(TRKy (141)4RLSE)
7 /CC.FT1GFOCL DD DSN=M14.TRCT.DATAyDISP=CLD
7/

APPENDIX A: JOB CONTROL & SAMPLE INPUT FOR PROGRAM TROTATE.,
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HILL AFTER ROTATION OF 2.55x10? DEGREES

Fig, &(1b)




J7T14TCSTC JCB (NM144T14P212) ,NACART.2457,NCTIFY=T14TT,PRTY=22,TINE=C
//%INFCRM PRINTDATA
// EXEC FCRTVCLC,FVREGN=1200K,R=T3
//FORT.SYSIN OO DSN=M14.SCURCE(RARM),CISP=SkR
// DC CSN=NM14.TLIB.FCRT(TJHUNT),CISP=SHR
7/LKEC.CALCCMF DD CSN=MET.CALCCMP,LISF=SKF
//LKEC.JCNTR DC DSN=MZz1.0BJLIB,CISP=SHR
//UKEC.SYSIN CC #
INCLUDE CALCCMP(CALCOMP ,8RCHC,AXTS,LINE ,SCALE)
INCLUCE JCNTR(JCATR,JIFFNO)
/¥
//C0.FIQSFCC] CC *
NYLANC hILL
EPARNS _
MX=ToNY=T1EX=22404,BY=22404, BASE=T.,ZRCUT=E.,2L0=1C00.,DRAG=142C7E~3
ZR0=0.01
EENC
ECATL
INST=*ZRSP!
MCCEL='M0DD
SCLF='UZUC"
EENC
15
80.0,125.0,1€0.0,125.0,120.C,125.C4140.C,125.C,160.C,125.0
180.C9125.€1200.C+125.0,220.04125.04240.0,125.0,260.04125.0
17651083, 205.C 121 by 161,041E,Cr15420520542,187461203.6
0CCOZ5E.CCCCCCCO2E5.0000
/*
//CO.FTOEFCO1 CC SYSCUT=G,CCB=(RECFM=FB,LRECL=8C,BLKSIZE=1680)
//GO.FT0GFCCL CD DSN=Ml4. STRCT .CATA,CISP=0LC
/1

APPENDIX B: JOB CONTROL & SAMPLE INFUT FOR PROGRAI T JHUNT.
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INPUT TOPOGRAPHY FOR JRCKSON-HUNT MODEL - NYLAND HILL

HILL RFTER ROTATION OF 2.55x10° DEGREES
CONTOUR INTERVAL= 5.C0x10° METRES

HIND OIRECTION= 1.65x10? DEGREES

Z-FlELD

Fig. B(1a)




JACKSON-HUNT TURBULENT FLOW OVER 3-D

PERTURBRTIONS SCALED WITH RESPECT TO UNIT WIND RT
BOX DIMENSIONS 2.24xI0%' X 2.24x10?%

UP HWIND VELOCITY (AT HEIGHT ZROUT)= S5.81x10"

U-FIELD CONTOUR INTERVAL = 3.91x10"?

Fig. B{1b)
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