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A special varsion of the FFT WX ;;=, Iy
2 DIXON

1. Introdustion

The Fourier Transform may be represented as a matrix transformation of a
given data vector, ie the process may be reoresented by a matrix/vector equation.
If the rows of the watrix are suitably interchanged the resulting matrix factorizes
inte a form which gives rise to the Gentleman-Sande verszion of the Fast Fourier
Transform (FFT). If the transpess of this factorized matrix squation is taken the
result is the Cooley~Tukey version of the FiTl, Tha well-nigh innumerable variations
of these two main versions have dominated the literature over the past fifteen years.

A third group of pozsibilities dealt with in this note concerns a factorization
which leads to a version of the FFT which is remarkably constant from stage to sztage.
This version may have soms gpecial interest for scientists workiag on. large problens
in the office.

This note is largely sn explicit exposition of an article by M C Pease. Readers
who turn to Pease's work for further enlightment should beware that his paper contains
a few textual and alzebraical infelicities. In particular bis definition of the
Kronecker product of two matirices is nonestandard. This nots uses the standard
definition.

M C PEASE:- "An adaptation of the Fast Fourier Transform

for Parallel Processing" J Assocn for Comput
Hachinery, 15, 2, Apr 1963, pp 252-264

+

NB This paper has not been published. Peruiesion to quote from it must be obtained
from the Ascistant Director of the above Metecorological Office Branch.
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2. Matrix formulation of a stsndard FFT

If two mxl vectors h and a are related by

ml ml
a = 1{W.h
al ;(m ..rf) )
where
Wre = w_o= exp2]lirs/m r, s=0, ==,(m=1) (2)
mm

then a is said to be the Fourier Transform of h. The Fast Fourier Transform arises
because a certain reordering of the rows of W gives a matrix Wl which can be advantageously
factored. The process is best illustrated by working through a specific case, with

w=8 (ie 25), Bearing in mind that in (2) w is an m=th root of unity, in the case m=8

the exponents rs can be evaluated mod 8 and g is given by

Bit Order
wo w’ w° Wl W e w’ 000
W’ vl w2 w3 va \; w6 w7 001
W wz vlb u6 w° wz wu w6 010
V= W' w3 u6 vl u“ v7 wz w5 011 (3)
8 W wl+ v wh W wu W wu 100
W \P w2 u7 w" vl v6 u3 101
. w’ v6 wh' v ° w6 wh vl 110
o 7 6 2 -1

ol v v Wt W 11

The numbers to the right of the matrix are the row numbers in binary. The rows are
now interchanged to get

ol ke g 000
v° v" w° w" w° vu w° vh 100
v vz wl’ w6 v’ '2 wu v6 010
1 v v6 vu v ° v6 vl‘ v ~ 110 (&)
g n v° wl vz w3 vuv5v6 v7 001
v° w5 wz w7 "0 vl v6 v3 101
wow}w6 wl uk w7 vZ\; 011
w° v7v v5w4 w3 v2 wl 111

The original binary row numbers are listed at the side and it is seen that the new
pow ordering has been cbtained by simply reversing the bits in the original binary
row numbers of (3)JfW: is used to do the transform there results

al = _:_(wl _g) (5)

and 31 is the bit-reversed form of a . In matrix terms the connection between v* and
¥ is that

wl.p.u (6)
8 8 8

where l; is the 8 x 8 permutation matrix
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The matrix Ul factorizes so that
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(5) may be written as
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In the flow-graph (9) the dotted lines represent additions and the solid lines
represent multiplications, the numbers in the nodal circles giving the exponent
of the multiplying we For example, at the first stage of transformation the value
of h, (101) is given by

hl (101) = h, (001) « u"hl (101) (10)

The first stage of the transformation, h-—>h, in (9) represents the action
of the rightmost matrix in (8) on the origi data vector h. The next stage

in (9), h 1-}_1_:, , Tepresents the action of the middle matrix of (8) on _}ll.

The last stage of (9) b= h; represents the action of the leftmost matrix in (8).
Then finally al . h ..
o m = 3 §

Thus the FFT tree-graph (9), which is one of the most popular forms_of the
FFT, is simply a flowegraph of the mction of the particular factors of w: which appear
in (8). A little investigation soon reveals that the factorization in (8) is by
no means unique. There are several other ways in which wl can be factored. The
question then arises as to whether a factorization exists which has some advantage
over the customary (8). The next section is concerned with this possibility.

3. Ap slternstive matrix factorization for the FIFT

First, it can be verified that wl factorizes as

o 1,0 1, 1
, Lok " b, &
e R e e \==q==1] [=-=7-- (11)
8 o 't o !k 3 g1
0 !y b b
In (Q1) W' is the & x 4 matrix which comprises the top left hand cormer of W in (%),
ie 8
: o 0o 0 o
v W W W
: o 4 o &4 :
e o w W oW W it
v . o 2 h 6 (12)
~ ¥ W W W
o 6 & 2
W W oW W

{ is the 4 x 4 Idemfactor (unit matrix)

O is a & x 4 matrix of zeros
&

K is the b x 4 diagonal matrix K = Diag (w°, \11. vz. v)

4

It is evident that the last factor in (11) is the same as the last factor im (8).

. This follows because w° = 1 and w' = -1. The other factors in (11) are not the same
as the corresponding factors in (8). Equation (11) iz a different factorization to

(8) and it has a diffsrent tree-graph, but its tree-graph is of no special interest
in the context of this section.

- The introduction of the Kronecker product now facilitates the further
development of (11). For any two matrices the Kromecker product is defined as

A3 2 b? ' (13)
mn st



a matrix of dimensions ms x nt. Using (13), equation (11) may be written as
1 /
W 1I®w) .p. W' ® 1)

8 8

where I is the 2 x 2 Idemfactor
2

D is Diag (I, K)
8 4 4

and W' is the 2 x 2 matrix which comprises the top left hand corner of v in (12), ie
4

2
Hl w° wo
= ° l‘ (15)
2 W W
It.is then found that wl can be written as

4
W = @®w) . D . WAI)
> > > > (16)

b4 4

where D = Diag (I, K)
4 2 2

with K = Diag (w°, wz)
2

Since i = I®I, (16) can now be substituted
2 2

into (14) to get
el S B I®W) .D. (W I].D.[U]'@I@I
g 28{(2®2 i (282)} g L% gy a?)

As it stands (17) is somewhat inscrutable but using the matrix identity

I® (A +BrCos eeee) = (IA) » I@B) « (I1QC) + =emww (18)
it can be brought to the form

v o= (I@I@Vl) . (I1®D) ,(1@»11@1) .D.(w]‘@I@I) (19)
8:~ i g : 2. & 2 2 2 8 2 e

This is now a fairly regular looking expression since g and (I &D) are simply
L

2
diagonal matrices and the other factors all involve only I and Hl, It is evident

e 2
that (19) would become even simpler if by some manipulation W' could be located in
2

the same position in each of the factors in which it occurs. This is possible as
follows. Define the permutation matrix g



10000000
00100000
00001000
00000010

- B 01000000 (20)
00010000
00000100

00000001

It can now be shown that

Q. IBWR®D . q = 1®ISw (21)
8 2 2 2 8 > 2 2

and that
Q. WRI®ID . Q = I®VEI (22)
8 2 2 2 8 2 2 2

which means that
C.WMOI®N . P = IRIDW (23)
8 2 2 2 8 > 2 2

In other words, each time the operations Q. and . 28{”0 simultaneously applied the
8

Hl matrix is chifted one place to the right. It them follows that if we put

2

\'1@ I1XI = g the use of (21) to (23) brings (19) to the form
2 2 2

il AR ST @
Now notice that QB- 13 which means that Q2 e« Q =1 and therefore that Qz = Q'l.
But Q is sn orthogonal matrix and so Q-l =Q , 80 that in the end
=7 . - (de)
Thus if 've put
~ 1 :
g. (;8’1‘3) : g = (;@E) | (26)

then (24) can. be written as

o= Q.
A

.'cg. (1®0)t . (27)

c c
8 2. h 8



In (27) Q is a permutation matrix, and (I & p)t is, like (I @ D), diagonal.

8 2 b 2 b
The especially simple charteristics of these matrices enable: (27) to be expressed
in the final very regular form

Vo= (a: C). Diag (w°, v, Wy ¥, s, w2, W, wa). (a:C)
d 8 8 8 o o 1 o 2 .o 88
. Diag (v, w%, w%, wry W', w5, W, W) . (g.g) (28)

Since (28) is a0 regular in form it is inevitable that its tree-graph is also
regular from stage to stage, being in fact

he b b b he by (=ma’)

(oYoto)

ol (29)

. 100
101
1o

The regularity of the tree-graph (29) stems from the fact that the matrix which
determines the "cross-wiring at each stage is always the same matrix (Q.C).
Thie regularity does not depend on m being 8. For example, for m = 16, omitting the
algebraical details the factorigation, with C and Q suitably defined, is

. 16 16

. VP a(3.0) . Ding OO0 0 v O N O TN, Q.C)
16 16 16 : 16 16
. Diag (up,wo. wo. v°, wo. w2. wo. '2' wo, w“. wo.w“. wo.v6.w°.v6). (%.Cg
16 1
™ m.s ('ogwoqvoo '1| \lo. '2' '0' '30 wog H“. 'o' ?|vo"61'°"7)0 (EQC)

16 16
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Applications

(a) The regular form should enable very compact FFT programs to be
written for the IBM 195.

(b) There may be some special advantages in relation to array processors
or vector machines,

(¢) The regular form raises the possibility that a very simple (and therefore
inexpensive) machine could be built, pre-wired to do the FFT for a
particular m. The simplicity of the machine would arise from the fact
that only one stage would have to be wired up and the machine would be
designed to use this stage the necessary number of times.

It will be apparent from a detailed study of the foregoing slgebra that the
regular form arrived at is not unique. There may well be another regular form having
some optimal qualities. It is difficult to know at this stage whether this point is
worth pursuing. What seems to be desirable is that scientists in the Office having
& problem to which the FFT is or can be made applicable should give some thought to
the general possibility outlined in Section £.75 .

A possible major application might be in the development and implementation of a
spectral model using (¢) in conjunction with & main computer. It might be possible

in this way to achieve a very fast mcdel.

R DIXON
Met O 11
August 1976



