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Div, Curl, Grad, and the equations of motion in obligue curv.linear coordinates

!ﬁﬁroduction by R DIXON

Whilst it is usually possible to work only in terms of orthogonal coordinate
systems it may be necessary for certain special requirements to use an oblique
system. This note provides a systematic derivation of the general obligue
curvilinear case and highlights the connection with the more familiar orthogonal

and rectilinear cases.
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1. Rectangular Cartesian Coordinates

If V is a 3-d vector such that
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If r is the position vector then
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This is all standard work such as may be found in, for example, Weatherburn's

"Advanced Vector Analysis Vol 2",
brought out in standard texts -

The Grad operator is
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and therefore, using this on x, y, 2z in turn we get
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but there is a relevant point which is not

~
O
R

(10)

(11)



and so from (8), (10), and (11) the Idemfactor can be written as
T = V92 4+ Vyor 4 Vzozx _ (12)
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(12) is little more than a curiosity in rectilinear coordinates, but it is a form
which matters in curvilinear coordinates.

2. Orthoponal Curvilinear Coordinates

Again this is standard Weatherburn or Rutherford material apart from slight

variations in notation. Take 9, @, as the independent orthogonal curvilinear
coordinates and let a, b, ¢ be the corresponding orthogonal unit vectors. As in
the cartesian case g__,- _}2—,_ _c_—are a right-handed set. Now
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and again the Curl can be expressed as a determinant
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In (13) to (16) the hg are the usual 'scale factors" such that if dlels an element
of distance along the 6-coord1nate,dl¢ is an element of distance along the @ -
coordlnate, and dfx is an element of distance along, the A-— coordinate then

df, = hdo dly = h,d¢ | b, = hyd) o

As a cautionary note, whilst the great majority of authors follows this convention
there are a few whose h; are the reciprocals of the above he .

The Idemfactor is now
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and by manipulations similar to those carried out from (8) to (12) it can be got
into the same form as (12). From (13)
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and immediately we have
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But ’"o() ﬂ’x'ern the angles made by the e-— direction (ie the a direction) with

he cartesian axes then
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futting (22) into (21) yields
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Clearly differentiating (6) with respect to ¢and)\ will yield corresponding results,

so that altogether ;
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Therefore, using (20) and (24) in (18) we have
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The relationships (20), (24) and (25) are the key to the orthogonal curvilinear case.
Before moving on to the oblique curvilinear case it is useful to emphasize certain
features which link the orthogonal case to the oblique case.
First, if 1, m,

and p, g, t are any vectors then
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is a necessary and sufficient condition for 1, m, n and p, g, t to be reciprocal
sets of vectors. This is true whether the vectorsg are _S;'t}'mg;onal or not. Thus

(25) itself establishes that VG)V¢)V>\and 521; y 0% 3 7% are reciprocal
sets. Of course this can be shown from (20) and (24) buf (25) alone is enough.
2 2T T

Second, (20) and (24) show that VG, V¢, V)\ and =g > S5 25 are functions of
the same set of unit vectors. This is peculiar to the orthogonal case. ¢

Third, a point which is of little importance in the orthogonal case but which
becomes valuable in the oblique case is that by back-tracking from (20) to (19)
the Grad can be put in the form
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and the scale factors have been eliminated.

Fourth, although (13) has been presented as an expression for Gmad V, it can just as |
well be viewed as an expression for thedyadic VV. 1In this case it is valid, |
as a purely formal exercise in Gibbsian vector notation, to obtain expressions for DivV
and Curl V by inserting the ® and X symbols in the dyads on the RHS of (13). 2
thus for Div V we get
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Different though they look (28) and (14) are exactly equivalent expressions. Similarly
we have
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and this is equivalent to (15) and (16).

3. Obligue Curvilinear Coordinates

We can use (27) to write Grad V (or the dyadic V!) ac

vy = ved . vgdY . UAYY 509
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This can be done not simply because (27) has an obviously greater generality than

the usual forms, but also because (30) can be derived without reference to any

coordinate system. For if n is a unit vector specifying the direction of greatest

increase of any given function and %, represents differentiation along that arc then
n
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If we now take some quite arbitrary direction specified by a unit vector e and
consider a change dV along an arc ds in this direction then
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and either (31) or (32) can be taken as a coordinate - free definition for the symbol
Then the chain rule for differantiation can be used to write the LHS of

(32) as
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and the order of the factors may be reversed to give
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so that from (32)
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but, as e is purely arbitrary, this implies that
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which is (30). Note that the derivation depends entirely on the coordinate-free
(32). No use have been made of 6,¢' as coordinates. Thus (27) is the general
form for V and the more familiar orthogonal and rectilinear expressions are

simply the special cases which arise from (27) as a result of acknowledging that

9’ )\ are, in those cases, coordinates having special properties.

?
Similarly (27) can be applied to the position vector r to get

Vi = V6322 + Vg 4+ VAT (a5
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. Since V does not depend on the coordinate system aﬁd since it has already been

shown that VI = I in rectilinear and orthogonal curvilinear coordinates it
follows that
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wiztever the coordinates are. As before, this means that the antecedents and
consequents of (%6) are reciprocal sets. We therefore have the relationships

(L pAs Y S R e
3¢ T M 2 HY 3% ‘Tv)\"?@x °p (37)

TOGxON | %:Jv)\xve T VO x U (38)

oA o

where J is the Jacobian
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From (39) and (40) we have the obvious
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Furthermore if the position vector r, which marks a particular point in the
coordinate system, ic allowed small elemental increments dr 4 dr " dr)\
. oA . . -0 —p =
in the coordinate directions then
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and sé the volume dt of the elemental parallelopiped defined by d’EO’ d_£¢, dr
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Of course dZ= TJGMJX is a matter of elementary calculus, but the JT'BG ;; gidédféc/’\
is important as it connects dT with the vector quantities we are dealing witn. The
relationships (37) to (43) are vital for handling the oblique curvilinear case.

Note that nothing in (37) to (43) implies the simple relationships (20) and (24) which
hold in the orthogonal case. In order to get (20) and (24) the additional conditions,

required for orthogonality
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have to be used. It is not immediately obvious that the use of (44) reduces (37) and
(38) to (20) and (24) and it is worth digressing & bit to se» precisely why this
happens. Taking the variable as typical we have from (37) and (38)
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and it is required to show that if (44) holds then _z! = a and h, = -P-; From (45)
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If 1, m, and p are any vectors then we have the two vector identities

(£xm)' = - (£-m)* (48)

and

(Lxmep)?= Lm*p? - (g V'm? = (Lem¥p* - (m-R)E* |
+2 (4o ) (- (k- £) (ko)

and thus using (48) on the numerator and (49) on the denominator of (47), we have
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To show that a” = a if (44) holds then all that is necessary is to show that VOx%x &= =0O.
From (45) we have 26
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but by the standard formula for a triple vector product this is
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| and clearly this is zero if (44) holds. Although as far as the orthogonal case is

| concerned this analysis does no more than verify something which is geometrically

} obvious by visualization, yet the formalism serves to pinpoint the difference between
the orthogonal and oblique cases.



However, for Grad, Div and Curl in the oblique curvilinear case we can simply take
the expression (30) forVL/and insert © and X in the dyads getting
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The vector formalism of (53) to (58) opens up various manipulative possibilities.
For example, by using the triple vector product identity on each term in (58)
it can be put in the form
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and this can be expressed as the determinant
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which clearly reduces to (16) and (5) in the appropriate circumstances. However

in (60)
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and similarly for the ?_': oV anda_': o V terms, and
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so the oblique case is quite complicated.

L, A mixed Oblique and Orthogonal System

The system considered here is one where 9 and ¢ are curvilinear coordinates in a
plane and z is a rectilinear coordinate perpendicular to the plane. Without repeating

the argument the essential algebra can be set down as
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(69), (70) and (71) show that although this mixed system is simpler than the general
obligue case it is nothing like as simple as the completely orthogonal case.
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One use for thesecurvilinear expressions for the invariants is that they enable the
equations of motion to be transcribed into some unusual coordinate system. The 3-d
equation of motion is

dV + 202xY¥Y = -xVp —3_/_2_ (80
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and this can be expressed as
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in which case (56) can be used, or as
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and now (56) and (60) can be used. If, say, (60) is used in (82) it may be
desirable to use (24) to put the Grad and Curl in scale factor form again, eg
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This is quite legitmate, but is must be remembered that the unit vectors a, b, ¢ are not
orthogonal and that therefore axbec #1, _g;o_V_:ﬁu , beV £7v and ceV £ .
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Up to the present meteorologists have not been greatly concerned with the 3-d equations
and a problem more likely to arise is that of transcribing into oblique curvilinear
coordinates a set of equations such as

AW + LV " + Qf&; Vﬂ, & Qg.b\/b -+ F‘Q \/b =
At a op

VH..Y“ -+ —2_‘—‘3 = O
%P

’ /
h + Ve Uh + wp =o0
ot
in customary notation. We now use o
Vi 7\/h
oW =2 |(Z k)5 + (e
PY) Y]

v RSV | ’:-(3: ) oV R x B,t). 3¥“J
- JL\o 36/ 2?0

ot 2)\4; ‘;1» oV
$=keVx “‘"[(w >a 79 'a¢)_]

from (75), (76) and (78). J is given by (65). In terms of unit vectors and scale

factors (88) to (90) become
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where ¢ is the angle between a and b.
In this system
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and likewise
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Now if the 9 and ¢ lines are curved as well as being obligue then the unit vectors
a and b c% e v150cbcn from woint to point #long the coordinate lines and so
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and then taking into account that
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Thus (91) to (93) are still quite complicated.
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it is found that (91), (92) and (93) can be written as
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Equations (95), (102, (103), (104) provide all the information needed to transform

(85), (86) and (87).
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