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Abstract.

-It has been shown that lower tropospheric potential vorticity zones
formed during moist deformation frontogenesis will support growing waves if
at some time the frontogenesis ceases. In this paper, we identify the ways
in which these waves are affected by the frontogenetic process.

Observations show that fronts in the eastern Atlantic commonly feature
saturated ascent regions characterized by zero moist potential vorticity.
Furthermore, in many cases the horizontal temperature gradient in the
lowest one to two kilometers of the atmosphere is rather weak. These
features are incorporated in an analytical archetype. The dynamical
implications of saturated ascent in conditions of zero moist potential
vorticity are represented in the model by assuming that adiabatic
temperature changes are precisely balanced by diabatic tendencies. The
observed small temperature gradient at low levels is represented in the
model by taking it to be zero in the lowest one to two kilometers.
Consequently, the forcing of the Ilow-level moist ageostrophic vortex
stretching which strengthens the low-level potential vorticity anomaly is
confined to mid and upper levels.

A semi-analytical initial value solution for the linear development of
waves on the evolving low-level potential vorticity anomaly is obtained.
The waves approximately satisfy the inviscid primitive equations whenever
the divergent part of the perturbation is negligible relative to the
rotational part. The range of non-modal wave developments supported by the
front are summarised using RT phase diagrams. Our analysis shows that the
most dramatic effects of frontogenesis on frontal wave growth are due to
(a) the increase in time of the potential vorticity and hence potential

instability of the flow and (b) the increase in time of the along front



wavelength relative to the width of the strip. An optimally growing
streamfunction wave is described. Finally, a diagnostic technique suitable

for identifying small amplitude frontal waves in observational data is

described.

1. Introduction

A complete understanding of frontal instability must include stability
analyses of developing fronts. Some progress toward this goal has been made
by Joly and Thorpe (1991). They examined the growth of eigenvectors of the
resolvent matrix for the linear tangent mode! of moist Eady waves of
differing meridional wavelengths and were thus able to indicate the
stability of moist Eady fronts (cf. Eady 1949). In the Eady model,
frontogenesis is initiated by horizontal shearing of the basic state
north-south temperature gradient. Whilst this mechanism is a component' of
frontogenesis, observations suggest that frontogenetic forcing is often
dominated by the compression of the cross-front temperature gradient by
horizontal deformation.

A mathematical model of frontogenesis produced by horizontal
deformation is given by Hoskins and Bretherton (1972]‘. As shown in Thorpe
and Emanuel (1985; hereafter TE), when condensation processes are included
in the deformation model the latent heat released by water vapor condensing
in the frontal updraft produces a local, line symmetric extremum in
potential vorticity (PV) at low-levels along the front. This PV anomaty
satisfies the Charney and Stern (1962) necessary condition for internal
Instability. Indeed, Joly and Thorpe (1990) have shown that 1000 km

'For a discussion of the history of frontal wave studies the reader is
referred to Joly and Thorpe (1990) and Joly and Thorpe (1991).



wavelength normal modes can grow on such fronts with e-folding times of
about a day. However, their results only apply to frontslwhich are not
subject to frontogenesis or frontolysis. Developing fronts must have
vertical circulations and these are not Included in Joly and Thorpe’s
(1990) model. The froantal wave model to be described in this paper includes
such processes and allows their effects on growth to be isolated.

As shown by Bretherton (1966) and discussed more recently in § 6 of
Hoskins et. al. (1985), instabilities in non-developing flows of the
barotropic type arising from strips of anomalous PV such as those found at
fronts, may be understood in terms of the synergistic interaction of
counter-propagating Rossby edge waves, Consider what these concepts suggest
about the stability of a front undergoing moist deformation frontogenesis.

Fig l(a) shows PV strips with wave disturbances on one edge only and
the wind vectors induced by such disturbances. It can be shown that the
speed of such waves is proportional to the ratio of its wavelength over the
width of the strip. Now suppose that edge waves were present on both sides
of the vortex strip and that their wavelengths were such that the wave
propagation speed was exactly half of the total wind shear across the PV
anomaly. Then, as described in & 6 of Hoskins et al. (i1985), all
configurations not characterised by a quarter wavelength phase shift
between eastern and western waves will adjust toward the configuration
shown in Fig. 1(b). Ia this configuration, each wave makes the other grow.
This is due to the fact that each wave induces a wind field at the other
wave which advects its crests and troughs even further away from their
equilibrium position.

Now consider what happens if the PV strip supporting such a wave is

subject to a deformation wind field, (ud.vd)=(—nrx.ay) and the convergent



ageostrophic wind typical of surface fronts. F irstly, deformation and
ageostrophic convergence both act to increase the wavelength of the wave
relative to the (decreasing) width of the PV anomaly. When this happens the
propagation speed of the edge waves becomes faster relative to the
cross-front shear. This causes the waves to move into a configuration like
that shown in Fig. l(c). This effect is stabilising as, obviously, such a
configuration allows less mutual amplification than that depicted in Fig.
I(b). Another stabilising effect of the cross-frontal convergence is that
it reduces the wave amplitude by directly compressing the crests and
troughs of any nascent wave. On the other hand, when the air is saturated,
the vertical ageostrophic flow increases the PV of the strip (shown by
darker stippling in Fig. l{c)) which would, in isolation, facilitate wave
growth. Thus, stabilising and  destabilising effects compete as
frontogenesis proceeds. Consequently, one of the primary aims of this paper
is

(i) to precisely describe how typical frontogenetic flows affect the
growth and behaviour of the edge waves of a PV strip.

To achieve this, we will utilise the "RT" phase diagrams developed in
Bishop (1993a) to synthesize the infinite number of non-modal developments
described by the semi-analytic solution. These diagrams depict the
evolution of horizontal structure for a wide range of initial conditions.
In the second part of this paper, we develop diagnostics based on a
mathematical modei of Bretherton’s explanation of instabiiity in terms of
counterpropagating edge waves.

The plan of the paper is as follows. Based on observations from the
Fronts 87 experiment, in § 2 we develop a simplified mathematical

description of North Atlantic fronts. Equations governing the evolution of



waves on such fronts are deveioped and solved in § 3. Section 4 contains
the major results of this paper including a description of the normal modes
of various stationary states that the evolving front passes through, an
analysis of the behaviour of the non-modal waves of the evolving system
using RT phase diagrams, and a presentation of a diagnostic suitable for
detecting small amplitude frontal waves on observed fronts. The paper
concludes with a summary and discussion in § 5.

2. Idealised moist front.

Our primary aim was to construct a model of molist frontogenesis simple
enough to enable the edge wave interactions on a PV anomaly subject to
latent heat release and ageostrophic convergence to be handled
analytically. As in any theoretical study not all aspects of a real front
can be incorporated but the key elements essential to all moist deformation
frontogenesis are included; f.e. a horizontal deformation field, a
frontogenetic ageostrophic flow and latent heat release. A number of
different arrangements were tried and the following is a description of the
most realistic front for which analytic solutions were obtained.

Data from the Fronts 87 research experiment indicates that the low
level temperature gradients at eastern north Atlantic fronts are often very
small (cf. Fig. 2). This suggests that the behaviour of waves on the
low-level PV strips observed in Fronts 87 might be similar to the behaviour
of waves in a precisely barotropic low-level zone. We divided the low-level
vorticity into discrete regions of uniform vorticity surmising that this
would allow analytic techniques similar to those used by Rayleigh (1880),
and Dritschel et al {1991) to be applied. The evolution equations for this
structure were deduced from the following considerations.

(a) Dynamics,



Data examined by Emanuel (1983), Emanuel (1988) and Thorpe and Clough
1991, (hereafter TC), indicate that in winter, over the mid-latitude
oceans, the moist potential vorticity (PVG) of frontal regions is often
nearly zero in the saturated ascent zones. When PV.=0 the Be surfaces are
parallel to the absolute momentum, M, surfaces; where, (taking the front to
be parallel to the y-axis), M= fx + v , f, denoting Coriolis parameter and
v, the along front wind. Furthermore, if the air is saturated then the
lapse rate of potential temperature @ along the M-surfaces will be that of
the corresponding moist adiabat. Consequently, if air is ascending in such
regions, the diabatic heating will be such as to ensure that at any height
the (virtual) potential temperature of rising air will be equal to that of
the air in its immediate neighborhood. Thus, in such regions of the
atmosphere, vertical motion has precisely zero impact on the mass field of
the atmosphere. This thermodynamic characteristic of frontal ascent may be
simply expressed by taking the diabatic heating, E, to be related to the
vertical velocity, w such that

E =~W(g—§] M (2.1)
where the subscript M indicates that the vertical derivative is to be taken
along M-surfaces. (The overbar is used to indicate that the evolving front
described here is just the basic state for the frontal waves described in
Section 3). The significance of (2.1) is that for a two-dimensional front

in thermal wind balance, the thermodynamic equation reduces to the form:

88/8T - aX 88/8X +laY + Fz)aéxay = 0, (2.2)

where (X, Y ,Z ,T)=(x + (Fg/f). ¥, 2, t) are the familiar geostrophic
coordinates. For a front in a background deformation flow of strength a,
the coordinates {X’,Y’,Z’,T’) = (Xexp(aT), Yexp(-aT), Z, T) reduce (2.2) to

the statement 86/8T’=0. Thus, any time dependent & of the form



8(x,Y,Z2,T) = E{Xexp(ar), Yexp(-aT), Z, 0} (2.3}

will satisfy (2.2). Thus, wherever (2.1) applies, horizontal deformation
produces a simple compression of the jsotherms.

Eq. (2.1) is a good approximation of latent heat release, only where
the air is saturated and the equivalent potential temperature, ee. and M
surfaces are almost parallel. To construct such a basic state, we took @ to
be equal to a basic state stratification 8(Z) equal to the lapse rate along
a moist adiabat, plus a perturbation 8°. The moist adiabat chosen as a
reference state was that for the wet bulb potential temperature equal to
12° ¢ . Saturated descent js only realistic immedjately beneath the front
but for the sake of mathematical simplicity we assume all descent is
saturated. (As is shown later, the error associated with the neglect of the
adiabatic heating’ of descent, being proportional to the descent rate, can
be significantly reduced by constructing fronts with very slow descent
rates).

To relate the along front flow, ;‘, to 86‘/3X using the thermal wind
relation, we must first determine the temporal variation of F‘ at some
height, This depends on what effect the coriolis torque on the cross-front
horizontal ageostrophic wind Ea has on the along front wind. Def ining an
ageostrophic streamfunction for the basic  state, E, such that
(u, w) = (fb'z. —ﬁx). Hoskins and Bretherton (1972) give its governing

equation as

2— —_ —
20°¢ g @ [-aw [g ]_ae' [g ]BE
f — o e q'_. = —zu ot ——— - = —_—
azz T8, 8% axl , e )ax 8,)3x

with ¢ = O at the upper and lower frictionless boundaries; here, q denotes
the dry potential vorticity equal; ie. § = [f + 6;‘/6):] [aﬁxaz] M ¢ &

denotes the gravitational constant and Bo. a constant reference potential



temperature. Noting that fw = [f + 87‘/8.):] [aﬁxax] and substituting from

(2.1), yields the simple form

i"-’ = -EE[E JQE' (2.4)
az? fz eo X

Choosing 8’ to be a separable function in the deforming coordinates X’ and

Z’, i.e. letting

£8'/0_ = F[Z')[B(x') - Bo], (2.5)
where Bo is some constant reference value, means that the solution to (2.4)
will also be a separable function of X’ and Z’. Consequently, there will be
some height Zc at which 8¢/8Z = 0. With dy/3Z = 0, the azlong front momentum
equation, (cf. Hoskins and Bretherton 1972), requires that 63./81" = —a?‘

and hence that
VX, Z,. T)=v(X, 2,0 e,
g c L ¢

Following Hoskins and Bretherton (1972), we assume that the front grew via
deformation from a quiescent (F‘=0) state with vanishingly small
temperature gradients. With this assumption, the above equation dictates
that ;, will be zero at the height Z_ for all time. Having defined 7' to be
zerc at the reference level Zc, it is now a simple matter to integrate
(g/f6,)88' /3X to obtain F‘(x, zZ, T

In Appendix A we show that whilst the assumption of cross-front
geostrophic balance is accurate in the barotropic layer for all strain
rates and all frontal intensities, the negiect of cross-frontal
accelerations above the barotropic layer can lead to serious errors when
the vorticity of the front becomes large. For a/f equal 0.1 and 0.02 such
serious errors will occur when the absolute vorticity of the frontal vortex
reaches 6f and 17f, respectively. These limitations should be kept In mind
when attempting to relate the specific results of this paper to the

stability of observed fronts.
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(b) Structure of idealised front.

As mentioned previously, the aim was to construct a simple front with
a low-level barotropic 2one (featuring ciiscrete regions of wuniform
vorticity. [EQ.(2.5) shows that the thermal structure of the front Iis
defined by the functions F, B and Bo’

The low-level baroclinicity was incorporated simply by choosing F so
that it was zero below some height Za and sinusoidal above. The discrete
regions of uniform vorticity were achieved by letting B be a quadratic
function of X’ in such regions. As a major aim Is to study the interaction
of edge waves propagating on the gradients between such regions, we also
define transition regions in which the vorticity varies smoothly from one
constant to another. In these regions B is a cubic function of X'.

In order to obtain a realistic frontal structure, we define 7 distinct
horizontal regions. These regions are illustrated in Fig. 3a, which depicts
the 8 and vorticity structure of an idealised occluded front in
geostrophic coordinates. As is evident from Fig. 3(a), the seven regions
were joined together by requiring that both 8° and 38’/3X° be continuous
across the boundaries of the regions. Apart from the boundaries between,
regions 1 and 2 and 6 and 7, we also require that 8%8' 73X" % be continuous
across boundaries.

Regions 1 and 7 represent the atmosphere far distant from the front
for which the horizontal temperature gradients are zero. Region 2 is
defined to be cold frontal as 3B/3X is positive and increases linearly with
X. Region 6 s analogous to Region 4 but here 88/3X is warm frontal and the
magnitude of 8B/8X (here negative) decreases linearly with X. The variation
of B with X produces anticyclonic-low-]evel vorticity in these regions. In

the transition regions 3 and S5, 8B/3X varies quadratically with X so as to
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ensure that the vorticity varies smoothly between regions 2, 4 and 6. In
region 4, 3dB/8X decreases linearly with X, thus producing positive
vorticity at low-levels. The widths of the regions are chosen so that the
magnitude of the positive vorticity is much greater than the magnitude of
the anticyclonic vorticity.

As shown in Appendix B, it is a simple matter to give the occluded
front an asymmetry such that the cold front is stronger than the warm front
or vice-versa. The structure of a case where the cold front is stronger
than the warm front is shown in Fig. 3b.

The stability analysis described in this paper is applicable to fronts
of the form described above when the transition regions 3 and 5 are taken
to be much narrower than region 4. Cross-sections of such fronts are
displayed in cartesian space in Fig. 4. We present Fig. 4, to show the
extent to which -these fronts resemble the data from the Fronts 87
experiment. Qualitatively, the fields displayed in Fig's 4(a)-(d) bear a
close resemblance to the corresponding fields displayed in TC. In 4(a),
note the low-level PV anomaly - the source of wave growth in this model.

Fig. 4(b) shows how the temperature gradient is confined to upper levels.

As discussed, eq. (2.1) is consistent with thermodynamic laws only for
a saturated atmosphere having Wa = 0; i.e. where the M and 33 contours are
parallel. Fig's 4l(e),(d), (g} and (h) show the extent to which this
condition is met by the idealised fronts. In the updraft regions of both
fronts, the M and '66 surfaces are approximately parallel. In the descent
regions, (2 and 6), the M and '5e surfaces become less parallel and in the
lower part of the étmosphere a'éc/az < 0. It is assumed that the descent in

these regions is sufficient to prevent the outbreak of convective cells,

Referring to Fig. 2 of TC shows that this aspect of the models Ea profile

1



is realistic and was typical of the profiles observed in Fronts 87.

Note that the occluded front is nearer to moist neutrality than the
cold front. Note also how reminiscent the kink in the streamfunction shown
in Fig's 4{d) and (h) is to that obtained from the molst-up/dry-down
simulations of both Emanuel (1985) and TE.

For the purposes of the stability studies in the remainder of this
paper we assume that the relative vorticity of all fronts considered at t =
O is equal to f. Thus, the constant defined by exp(-ZaT)a;'/ax = 0.5 and
consequently the vorticity in r;éion 4 becomes infinite at the

non-dimensional time atc, where

In(2} = 0.347; (2.6)

N =

at =

c
Le. t = 9.63 hr/(ax10%s). Fig’s 3 and 4, however, pertain to the
time T = 4 hr/(axloss); thus, they represent the front nearly halfway
through the time it takes to form a discontinuity. To compute the

ageostrophic streamfunction shown in Fig's 4{d) and (h), we assumed

3. Analytic description of frontal waves
(a) Principal equations.

In this Section, we develop and solve equations for the perturbation
horizontal wind fieid in the lowest 2 km. As shown in Part 2, these
solutions implicitly describe the interaction of counterpropagating edge
waves on a thinning, intensifying PV strip. As such the solution fulfills
the aims of this paper. Some arguments to support the idea that a solution
which ignores the interaction of the flow below and above 2 km can still
capture the most important features of a complete solution are given in the
concluding discussion.

Below Z = Za' all components of the basic state wind are independent

12



of height except w which varies linearly with height in the vortex bands.
Assuming that vertical variations of the perturbation are negligible in

this region, the unapproximated inviscid vorticity equation requires that

2 2 2 2
gt.(f+a_~_;+£_: ,g_vzv[f+§_‘zz+9__:]_ (3.1)
ax ay i ax ay

where ¥ is the streamfunction for the non-divergent (rotational) horizontal
wind, (u, v) ie (-8¥/3y, a¥wsx) = (u, v) and w = w + w’. The
Icorresponding semi-geostrophic vorticity equation may be recovered by
replacing the terms in brackets by their geostrophic counterparts. For the
sake of a more accurate description of the flow we have chosen to use the
(primitive) vorticity equation for this analysis.
Now let

¥'= oxy + Wg+ ¥’ and the total flow (u, v)=(-ax + E.+ u’, ay + 7‘-* v’), (3.2)
where primed variables denote perturbations to the basic state and

aii'/ax = F'; then, using (3.2) in (3.1) and linearising leads to

a .. = .3 =3 1., T T
[a_t +(-ax + ua)ﬁ +Hay + v')s}-]c +u i g YT (3.3)
where & = f+ anxax is the absolute vorticity of the basic state, u’=

(' ,v') and &' = (8% /ax? + 8% /ayd).
The x and y dependent coefficients may be removed from the Lagrangian
operator in (3.3) by using the (X’,Y’.Z’.T') coordinates introduced

eariier. The vorticity equation becomes

a = twe ey 0T’ 3 P , o’ & ar _ _,dw
[Ef' -+ v‘(X T’ )e W']c +ue 7 EY' = c ﬁ" {3.4)
In regions of uniform vorticity, £’ = O is an exact solution to (3.4).

Within the transition regions, the perturbation wind fields create, via the
u’8Z/dx term, non-zero ¢’ - which is subsequently stretched or contracted
by aw/3Z’.

(b) Solution procedure.

13



In the following, we show how (3.4) can be solved by (a) utilising a
symmetry associated with the vorticity equation for the basic state to
absorb the perturbation vortex stretching term on the right hand side of
(3.4), (b) letting the width of the transition regions be small enough to
satisfy various constraints mentioned below, (c) integrating the equation
across the tramsition regions, (d) finding the relationship between
integrated quantities and the perturbation streamfunction, (e) requiring
that the streamfunction be continuous across region boundaries and f {nally
(f) utilising the R parameter technique introduced by Bishop (1993a) to
define the implicitly non-modal solutions of the resulting equation.

Making the substitution

Q" =(r/2)g’ (3.5)

in (3.4), and using the fact that in the barotropic layer

DT/DT* = [gf, + vx 1) T g—Y-,]E =T gw/8z’
ylelds
[‘g"]"" + wxr, 1 )e T 'g"f']o' + uel g—‘g, = 0. (3.6)

The authors found the substitution (3.5) to be crucially important in
solving (3.4).

Taking &L, the width of the transition regions in deforming
geostrophic coordinates, to be small enough so as to enable the variations
in ;: and u’ across the transition regions to be ignored, it is a simple
matter to integrate (3.6) across the transition regions to obtain

[g_T’ + ?gje-at g—},-,]aj + u’ear'afj =0

where ) stands for either 3 or 5 depending on the transition region being

considered. The aj are defined by

14



..% E-i- SL

2

53= fo'(x', Y’, T')dX’ and 65 = Io'(x'. Y’, T')dX’.
L L
--2' - SL '2“

The net changes in absolute vorticities across the regions are aEa= Ef4- Ez

- F - r o "___E'_: _'_"_I;l H
and 6(5- cb C4 and the vgj are vgs— v'( 2.T } and vzs- v‘(z.T ). Assuming

-the non-divergent part of the wind remains much larger than the

irrotational part u’ may be replaced by its non-divergent part so that
[a - -at 8

ﬁ" .+ vgje W‘]Q‘] - ¥ Y:SCJ =0 (3.7)

In Appendix C, we show that the 51 and ¥’ are related according to

N - ’ _E - ’ __I: - aT' = R -I: _ . L arl.
Q, = [vr( 2) vr( 5 BL)]e and Qs = [V.-(z + 8L) V.-(.'z') e (3.8)
T 5] (1 = 3 or 5) equals the change in the

rotational part of the perturbation along front velocity across the

where v'r = g¥’'/9x i.e.

relevant transition region. Eq. (3.8} enables the 6] and hence (3.7) to be
expressed purely in terms of derivatives of ¥’.

We now discuss the conditions that ¥ itself must satisfy. Firstly, we
need to ensure that the &’ = 0 condition is satisfied outside the
transition regions. Secondly, as &L tends to zero the change in ¥’ across
regions 3 and S must tend to zero. Finally, the amplitude of the
streamfunction induced by edge waves must monotonically decrease with
distance away from the front. To see that the chosen form of ¥ satisfies
these constraints, it is convenient to first describe it in terms of
cartesian coordinates. Centering these coordinates so that the west and
east edges of the strip lie at -LC/Z and Lc/2, respectively, and letting
ll!'z. llf’4 and ll"a denote ¥’ in regions 2, 4 and 6, respectively. In regions

2 and 6, we take

L
W’z(x, ¥y, t) = G(-L /2, t)exp[l [-—5- + x]]exp[ﬂ. [y - p'(t)e""t]] {3.9a)

15



L
\I"b(x. y. t) = G(Lc/.?.. t)exp[l [—% - x]]exp[il[y - p’ (t)e"at]] (3.9b}

where !, the wavenumber, is real and p’(t) is a complex function playing
the role of an integrated complex phase speed in deforming coordinates. The
G(x, t) function, referred to in (3.9a) and (3.9b) defines the horizontal
structure of ¥ in region 4:

Glx, t) =C exp[—lLGIZ] [iR(tlsinh (lx] + cosh(lx]] {3.9¢c)
and

¥ (x, y, t) = Glx, t) exp[il[y - p'(t)e‘“t]]. (3.9d)

In (3.9¢}, C is a complex constant defining the initial phase and amplitude
of the wave and R(t) iIs a complex function defining the evolution of the
horizontal structure of the wave. Clearly, x and t are taken to be
non-separable and consequently, in the terminology of Farrell (1984), our
approach includes non-modal solutions.

Note that in regions 2 and 6, ¥’ attenuates with an e-folding distance
of A/2m, where A is the along front wavelength. As can be shown from the
results of the stability analyses presented later, the maximum wavelengths
reached by the fastest growing waves which achieve amplifications greater
than e are all less than 900 km. The minimum width of region 2 for our cold
frontal case is 1026 km. Since a 900 km wavelength would attenuate more
than 1000 times across such a distance and since the vorticity jumps at
these outer edges are always less than a fifth of the size of the vorticity
jumps across regions 3 and 5, it is clear that the outer edges have a
negligible influence on the dynamics of waves on the main frontal vortex.

We now express the 51'5 in terms of the expressions for ¥’'.
Transforming (3.9} to (X’,Y’,Z2’,T’} coordinates, letting 8L tend to zero

and applying (3.8) yields

16



63 = Cl [IR(T") - l]exp{uo [y - p' (T’ )]} (3.10a)

and

~ -
05 = Clol-IR(T } - llexp{tlo -Y - p'(T )]}. (3.10b}

where lo = lexp(aT’). The significance of the R parameter can now be seen.
The phase shift southward, Ay, of the edge wave in region 5 relative to
that in region 3 is
AY(T') = arg [-IR(T') - 1] - arg LR(T’) - 1. (3.10)

where arg. iIs precisely defined in Appendix D but essentially stands for
the argument of a complex variable; (Note that this argument must be
defined in a way that ensures the continuity of the phase shift southward
of a particular crest). It can be shown that if R = (Rr. Rl). then Ay has
the same sign as R'_. When Ax is positive, the vorticity wave leans against
the shear and draws energy from it, whereas when Ax is negative, the
amplitude of the wave decays. The ratio of the amplitudes of the vorticity

wave in region S to that in region 3, A|Q), Is also determined by R, viz.
I{R -1,R )]
1 r

105'403' = HRIH,Rril‘

Eq’s (3.11) and (3.12) show that the horizontal structure of a frontal wave

(3.12)

may be deduced by its R value on the complex plane.
We now show how the time rate of change of p’ and R may be deduced
from (3.7). Firstly, note that in def orming geostrophic coordinates

GIX',T')=¢ eXp[- [%]] [tRsinh(fX') + cosh(fx')] (3.13a)
and where

i = toe'z"‘r (F7Z,), (3.13b)
where E4 denotes the absolute vorticity in region 4. Eq. (3.7) could be
solved at this point using substitutions from (3.13) and (3.1¢); however,

the algebra is simplified considerably if one first writes ;:J and GEJ in
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terms of their symmetric and asymmetric parts about X’= 0; i.e. we let

v = [; - v ]eaT and v = [F + v ]ear' (3.14a)
g3 s n 5 s n
where
- _ H - H
v, = 0.4 ¥ I' and v, o= 0.4 7 A {3.14b)

where I' and A define the symmetric and antisymmetric parts of the

temperature gradient; {cf. Appendix B, for details). Furthermore, we define

8T, = 8T + 8T and 8T, = -8T_+ &, (3.15a)
where

s_F _1fz . % = _1fz _ =
8 =T, 2[c6 + cz] and 8 = 2[c6 cz]. (3.15b)

Using (3.10) and (3.13)-(3.1S) in (3.7), one can show that

dp’ lv _ )
it 1B, | - V[ = R 8T [-2" - e™Msinh(w)| - 1 6T e Pcoshiy) (3.16)
o| {dT ] n a-c- s

dR ) lOF _ L v _ _ o
g7 = ~8C |R°|—" - esinn(u)[+|-22 - eMcoshim)||+iR ST e (3.17)
n - s 1
3¢ 3¢

where gy = iL/2. Eq. (3.17) describes the relationship between the current

horizontal structure of the wave {(l.e. its R value) and its structural
evolution, dR/dT’. Eq. (3.16) gives the relationship between the horizontal
structure of a wave and its complex phase speed in deforming geostrophic
coordinates at X’ = 0.

Note that since

2aT’ a;u L avg4 E4 av 4
I L . =1 L .
v =e 3% 3 when Ec = 3% F ax " it follows that
lov
— = (3.18)
acn
Also note that since the along front wavelength I = loe_aT , and since the

) —oT* _
width, Lc. of region 4 in Cartesian space is given by JL‘= = Le et £/, it
follows that p is equal to the pl"oduct of haif the width of the vortex

strip and the along front wavenumber. When these considerations are taken
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into account it is readily seen that for «=0, (3.16) and (3.17) reduce to
the non-modal form of Rayleigh's classical barotropic instability solution.

Throughout this set of papers eq's (3.16) and {3.17), which describe
wave evolution on the basic state, were solved where necessary using a
standard fourth order Runge-Kutta numerical algorithm.

4. Description of wave solutions.
(a) Normal modes ?

For «=0, the above system has amplifying normal modes, the growth rate
and phase speed of these normal modes are recovered by letting R be equal
to an where an is the positive value of R that makes dR/dT’ = O and then
substituting this value of R into (3.16) to recover the growth rate and
phase speed.

Fig. 5a shows the variation of normal mode growth rate with 2u for the
cold front at several different stages of its development here identified
by the non-dimensional time Tn where 'I"_b = T’/tc. Note that the exponential
growth rates at Tn = 0.8 are an order of magnitude greater than those
supported at 'I'n = 0.0. Note also that the high and low wavenumber cut offs
for normal mode instability decrease as 'I‘n increases. (We do not show the
corresponding diagram for the occluded front as it is almost identical to
Fig. 5a).

These normal mode growth rate curves could be used to measure the
growth of a wave on a developing front if it could maintain a normal mode
structure. As indicated by Fig. Sb, the 2u value of waves on developing
fronts decreases monotonically to zero at 'I'n = 1. Thus, a wave which
maintained normal mode structure with an initial wavenumber, 2u0, equal to
2.1 would grow at the rate indicated by the dashed line on Fig. 5a.

Eq. (3.17), however, dictates that normal mode structure can only be
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maintained for an instant in a developing flow. This is easily shown. As pu
changes, an changes; consequently, for R to remain equal to an, dR/dT’
must be non-zero, but a priori dR/dT’= 0 at R =an. Thus, dp/dt = 0 = no
normal modes.

(b) RT phase diagrams.

As shown in Bishop (1993a), the R values that yield normal mode
structures at any particular wavenumber play key roles in RT phase
diagrams. These diagrams allow the qualitative nature of a wide range of
non-modal! developments to be seen at a glance. Briefly, the idea of an RT
phase diagram is to overlay contours of the countershear phase shift, Ay,
and the amplitude ratio of edge waves, [65|/|63|, on the complex R plane
with the field of (dRr/dT’, dRI/dT ‘) vectors implied by (3.17), where Rr
and Rl are the real and imaginary parts of R, respectively. We call these
vectors RT vectors. The diagrams enable changes in R to be easily related
to changes in structure. In so doing they provide a method of qualitatively
estimating the structural development '‘of a wide range of initial
structures. For example, with 2u = 2.1 at '.l"n = 0, the RT phase diagram is
as shown in Fig. 6a. At this value of 2u the RT vectors simply circle
around an. This circling reflects the fact that at this wavenumber it is
impossible for eastern and western edge waves to lock onto each other and
that the region 5 edge wave would be continually advected north of the
region 3 edge wave if 2u were not monotonically decreasing with time.

Since 2u does decrease, (3.17) dictates that the real part of an
eventually- becomes greater than zero. When this happens the associated
normal mode can amplify and the corresponding RT diagram radically changes
its character, most importantly the RT vectors no longer circle around R

nim

but rather converge towards it. This is illustrated by Fig. 6b which shows
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the RT phase diagram for waves at Tn= 0.4 with 2u =].1 and an = (0.95,
0.064). Note that all waves with 2u = 1.1 at Tn = 0.4 correspond to waves
which had 2u = 2.1 at Tn = 0.

For the cold front, the imaginary parts of an are always slightly
positive for fRe(an) > 0, whereas for the occluded front Im(an) is zero
whenever :‘Re(an) > 0. This indicates that for the cold front, all non-modal
waves having wavenumbers less than the high wavenumber cut off for normal
mode instability tend towards a structure in which the amplitude of the
wave in region 3 is slightly larger than that in region 5. This is a
consequence of the fact that the vorticity jump across region 3 is greater
than that across region 5 for the cold front. For the occluded front no
such asymmetries are present and the an values corresponding to low
wavenumbers have zero imaginary part. Otherwise, the dependence on Tn of
the an values and RT diagrams pertaining to the occluded front is very
similar to that for the cold front. From (3.16) and (3.17) it can be seen
that this is a direct consequence of the fact that the ratio, GE./GEH is
initially small and sdbsequently decreases to zero as Trl tends to infinity.
Because of this there should be no qualitative differences between the
stability of the occluded and warm fronts and only small quantitative
differences. Consequently, for the remainder of this set of papers we shall
focus on the stability of the structurally simpler occluded front and
assume that its stability characteristics pertain, in a qualitative way at
least, to the cold front.

An excellent indicator of non-modal wave growth is the counter-shear
phase shift, Ay. Indeed, in Part 2 of this work we show that the growth of
an edge wave is proportional to sin(Ay) multiplied by the ratio of the

amplitude of the edge wave on the opposing boundary over the amplitude of
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4‘the edge wave whose growth is being considered. The temporal development of
these quantities is described by RT phase diagrams. Thus, these results
from the second part of this paper may be used in conjunction with RT
diagrams to make qualitative predictions about edge wave growth.

Fig. 7 shows the variation of Ay with Tn for wave disturbances with
2u = 2.1 and R = (122, 0} at Tn = 0. For the occluded front, (3.17) implies
that de/dT‘ is always equal to zero and hence if R is initially real, as
it is for the current cases, It remains real for all time. For such waves
the amplitudes of the waves in regions 3 and 5 remain equal for all time
and hence horizontal structure and growth are uniquely defined by Ay which
in this case relates to R via the eq., Ay = 2 tan_l(R}.

The RT diagrams indicate that when the Re{an} is greater than zero,

the R values of all non-modal® waves are attracted to an. Consequently,
the countershear phase shifts of all non-modal waves will be attracted to
Axnm, the countershear phase shift of the normal mode of the instantaneous
structure. This is essentially what is being seen in Fig. 7. For

@ = 0.2x10°s, there is a relatively long period before the fRe{an}

becomes greater than zero and before this time the phase shift almost

reduces to zero. Before it does so ERe{Rm} becomes positive and thereafter

it is attracted to ever increasing values of Axnm. Similar comments could
be made about the structural development of waves on more highly strained
fronts. As indicated by Fig. 7, however, the higher the strain rate the

In reference to the work of Farreil (1984), a distinction needs to be drawn
between his definition of non-modality (viz. non-modality = non-separability
of time) and the continuous spectrum of Pedlosky (1964). For the Eady (1949)
problem the continuous spectrum is uniquely associated with non-uniformities
in perturbation quasi-geostrophic PV; its counterpart for the current problem
would be uniquely linked to non-uniformities in the perturbation vorticity
field in regions 2, 4 or 6.
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less closely the Ay value of waves follow Axnm. This effect is because
whilst axnm changes more rapidly as the strain rate is increased, the
magnitude of the RT vector field at any time Tn is unaffected by the strain
rate as the RT vectors depend only on the current non-dimensional
wavelength and wind shear. Thus, Ax tends to lag Axnm by a greater amount
at large strain rates simply because Axnm moves faster at large strain
rates.

As mentioned previously, edge wave growth is proportional to sin(Ay),
thus, one might expect that the fastest growing waves will have initial Ay
values which maximize the amount of time the edge waves spend with a
countershear phase shift of 90°. For the set of waves shown in Fig. 7, it
is apparent that the initial 179° phase shift is quite well suited for this
for @ = 0.2x10°5s and a = 0.4x10° %! cases, whereas for the « =

1 the 179° initial phase shift is clearly non-optimal, a smaller

1.0x10"%s"
initial phase shift would lead to more growth. In part 2, we present a
formal method for finding the initial counter shear phase shift which
yields maximum growth. Using these methods it can be shown that the 179°
initial phase shift maximizes streamfunction growth in the o« = 0.4x10_5's'l
case.

To summarize, at short non-dimensional wavenumbers the edge waves tend
to be advected past each other but as the non-dimensional wavenumber
.decreaseés this eventually becomes impossible; ultimately, the edge wave
configuration tends toward a 180° countershear phase shift.

(c) The streamfunction Ffield.

The streamfunction field is the most important In this model as all

other fields depend on it. Here, we detail a specific example of

streamfunction growth; viz, that corresponding to the o = O.4x10'5s-1. 2,
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= 2.1 case discussed above. This case was chosen for detailed examination
because it exemplifies rapid growth in significant strain at a wavelength,
potentially resolvable by fairly sparse observational networks.

Fig. 8 shows horizontal cross-sections of the perturbation
streamfunction wave corresponding to the curve in Fig. 7 for a =
0.4x10°s!, The initial amplitude of the wave was chosen to ensure that
the root mean square wave slope defined in Part 2 was equal to 0.1. For
this wavelength (518 km), the constraint gave an initial amplitude of 0.032
mb, This corresponds to a 0.4 ms’ amplitude in the cross frontal
perturbation wind, (u’r = -il¥’). This is just 2% of the initial total wind
shear across the front (17 ms ). Over the next 23.5 hr, the streamfunction
wave amplifies 27 times to reach the amplitude of 0.85 mb; the wavelength
increases to 726.5 km and the perturbation cross frontal wind amplifies
18.4 times to reach the amplitude of 7.4 ms™. This final value of the
across front wind is 30% of the total wind shear across the front at this
time (24 ms™). Despite the fifteen foid amplification in this percentage,
the dynamics of the wave remain quasi-linear as the root mean square wave
slope only amplifies by a factor of e. This is discussed in more depth in
Part 2 of this paper.

Note that in spite of the fact that the countershear phase shift of
the edge waves tends to 1800. (at 7=23.5 hr, the wave depicted in Fig. 8
has Ay = 1'7501, the countershear phase shift of the streamfunction wave
does not. This is easily explained by noting that the countershear phase
shift of the streamfunction wave, Azw, may be deduced from (3.13a) to be

Ax‘p = arg'[-iRsinh(p) - coshiu)} - arg‘[iRsinh(p) - cosh(u}l.
Thus, the difference between qu, and Ay increases as p decreases.

(d) Diagnostics for revealing wave structure of observed fronts.
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In order to identify frontal waves in data, a suitable diagnostic must
be found. Often the first Field meteorologists look to is the geopotential
or horizontal streamfunction field. Fig. 9 displays this signature for the
last 7.8 hrs of development of the wave. Clearly, the details of the waves
structure are somewhat obscured by the basic state deformation field and
frontal shear. At 15.7 hr, the wave is evident only as a periodic splaying
of the streamlines of the total flow. At 19.6 hr and 23.5 hr closed
streamlines can be seen but note that the existence of such closed
streamlines would probably not be noticed if a larger contour interval had
been used. Whether seen or not seen, the existence of such closed contours
is important since such low centers might be able to organize convection on
the 100-300km scale in such a way that a secondary, diabatically driven
development might take place.

The fields in which the basic state has no signature are more likely
to give the observationalist a clearer picture of frontal wave structure.
Such fields include all along front derivatives of the total wind field.
One possibility is du/dy = 6ur'/ay. Since aur'/ay = -IZ\F'. its structure |s
exactly the same as that shown in Fig. 8 At 23.5 hr its magnitude is
6.4x107°s ", Another alternative is to examine dv/dy = a + avr'/ay.
Horizontal cross sections of the last 7.8 hrs of avr'/ay are shown in Fig.
10. In order to maximize the similarity between these plots and what might
be seen in observational data, we plotted these fields on a 50 km grid in
the cross front direction. At 15.7 hrs, there is some indication of the
structure of this field in region 4. At 19.6 and 23.5 hrs, however, region
4 is not picked up at this resolution. Remarkably, in all these diagrams
the avr’/ay field tilts with the shear,

To summarize, a method of diagnosing the existence of small amplitude



frontal waves in data is to examine (after having chosen a suitable
coordinate frame) the 3u/dy and dv/dy for wavelike features. A 8u/8y field
tilting against the shear together with a 38v/8y tilting with the shear may
be taken as indicative of a frontal wave amplifying by a barotropic process
similar to that described here.

5. Concluding remarks.

A semi-analytic description of frontal wave development on an evolving
frontal PV strip had been given. The evolution of this frontal vortex strip
is that which would arise from a saturated front with nearly parallel M and
6e surfaces, a barotropic low level layer and an along front wind in close
geostrophic balance. These assumptions are supported by observations of
fronts in the north-east Atlantic and although they represent a rather
severe idealization, we believe that our assumptions yield a description of
frontal dynamics as realistic as any other analytic model of frontogenesis.

Our description of frontal wave development, which assumes that
low-level waves are unaffected by upper level waves, is adequate for
investigating the behavior of barotropic waves on an intensifying narrowing
PV strip. An aim of future research is to find out how much interactions
between upper-level and low-level waves affect barotropic development.
Examples of counterpropagating edge wave interactions, where one edge wave
propagates on a larger PV gradient than the other shows that when the edge
waves move into a growth configuration, the amplitude of the edge wave on
the greater PV gradient becomes larger than its counterpart. Such examples,
include Eady waves with surface friction, and asymmetric barotropic shear
zones such as that corresponding to our cold front. On these grounds, one
might expect an analysis of frontal wave growth which included interactions

between upper-level and low-level flow to yield growing modes whose
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amplitudes -were maximized where the PV gradients where maximized, i.e in
our model, this occurs at the edges of the low-level barotropic shear zone,
This suggests that our model captures the most important dynamical
processes affecting frontal waves on an intensif ¥ing frontal PV anomaly.

In terms of the normal modes of the stationary states that the
evolving front may be thought to pass through, the potential instability of
the front increases markedly as the front intensifies. However, because the
non-dimensional wavenumber of the front decreases with time, normal mode
solutions are not supported by the evolving front. The behavior of the
non-modal waves supported by the evolving front are best described in terms
of RT phase diagrams, which enable the structural development of a wide
range of initial states to be inferred at a glance. The RT diagrams make it
clear how, as a consequence of the decrease of wavenumber with time, a
wave, which initially had a wavenumber so high that little growth would
come from it in a stationary system, can amplify significantly in the
evolving flow because the RT vectors associated with it, eventually push it
into a configuration ripe for amplification, at a time when the potential
instability of the front has increased considerably.

Finally, we note that the structure of a frontal wave is more likely
to be extracted from the basic flow in which it is embedded by examining
along front derivatives of observed horizontal wind fields. We note that a
du/dy field tilting against the shear together with a 8v/dy field tilting
with the shear may be taken as indicative of a frontal wave amplifying by a
barotropic process similar to that described here.

A limitation of the present analysis is that it is only possible to
trace frontal wave development up to the point of frontal collapse. In the

atmosphere, discontinuities of the type predicted by the analytic model are
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prevented from occurring by some combination of eddy heat and momentum
transport. The reason we have chosen not to parameterize these processes in
some way to enable our integrations to be extended is that the current
model provides an explicit representation of the growth of eddies
responsible for horizontal momentum transport., Thus, it is of interest to
assess under what conditions these eddies are potentially capable of
preventing frontal collapse. This is the main sub ject of Part 2 of this

paper.
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List of selected symbols

o Horizontal deformation or strain rate.

u Cross front ageostrophic wind of basic state.

v Thermal wind of basic state, 7:3 and ;‘5 denote it in regions 3 and 5.

Zz Height of barotropic layer

H Height of overlying baroclinic layer. (Rigid lid at Za + H).

&(Z) Potential temperature sounding of 12 °C wet bulb potential temperature
moist adiabat.

N®  Constrains the magnitude of 88‘/3Z; viz, |86‘/82 | = (9°/gJN2.

(x.,y .z'7)
Deforming geostrophic coordinates (X’,Y*,Z’.T’ )=(XeaT,Ye-aT. Z, T

L,6L Widths of strip and transition regions in deforming geostrophic

coordinates,
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L, 5L

Widths of strip and transition regions in cartesian coordinates,

EJ Equal to e-chT“/f )6‘7‘/6)( in region j.
¥ Streamfunction for ageostrophic cross-frontal circulation of basic State,
¥ Streamfunction for totai non-divergent horizontal wind field.

¥’  Streamfunction for perturbation non-divergent horizontal wind field.
B{X"),F(Z'}

Functions defining horizontal and vertical structure of 8.
(ur.vr) Total non-divergent horizontal wind field.
(u'r.v'r) Perturbation non-divergent horizontal wind fieid.

' Absolute vorticity of basic state in region .

t  Time at which E‘ becomes infinite.
Tn Time non-dimensionalised with Te: Tn = T'/te.
8%, Difference between absolute vorticities of basic state in regions )+t and

11 i.e. SEJ=EJ+|- E.j_l.

3% Symmetric part of SEJ about X’=0.

8% Anti-symmetric part of 631 about X’=0.

v Symmetric part of ;gjexp(-al") about X’=0,

v Anti-symmetric part of Fuexp(-aT'} about X’=0,

Q Change in perturbation along front wind across transition region j
multiplied by exp(eT’).

R Complex parameter governing horizontal structure of waves, R = (Rr.RI)

R Value of R which renders 8R/8T’= 0; i.e. the normal mode R value.

p’ Complex integrated phase speed, 3p’/8T' gives the growth rate and
northward propagation rate of the streamfunction wave in deforming
coordinates at X’=0.

Ay  Countershear phase shift of edge waves.
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Axnm Countershear phase shift of edge waves in normal mode conf iguration.

2 Along front wavenumber multiplied by cartesian width of strip; i.e.
non-dimensional wavenumber,

2p  Initial non-dimensional wavenumber,

i Along front wavenumber in cartesian coordinates

~e

L=2pt = 17T (17 )

APPENDIX A: Balance assumption.

It is of interest to assess the accuracy of the assumption of
cross-front geostrophic balance in our moist front. Letting (u, v, ¢) =
(~ex + 'Ja. ay + v, foxy - (a2/2)(x® + y2) + @), the inviscid,
unapproximated momentum eq. is (cf. Bishop 1993a)

bu /pt - au_-fv = - ¢

Thus, an appropriate measure of the extent to which the front is out of

cross front geostrophic balance is the ratio,

[ua./m - a-ﬂ.] [ fFJ : I - , v/ ;‘l

K =

where F‘ denotes the along front ageostrophic wind. Using thermal wind
balance in (2.4) and noting that both 8y/8Z and V‘ are zero at the height

Z , it follows that
c
20, -

the

8U/0Z = u + w (I/F)av /82 = - 2% V. (A.1)
a g Fi

Hence, in the low level barotropic zone where W/azZ = E:'a and we may use
(A.1) and the along front momentum eq. (BF‘/BT' = - air': - faY/8Z') to show
that
Du /Dt - aii’ = 8u /3T’ - au = -2/ f)8v /8T - v ]
a a a a t z
= (z.mxf)(fﬁa + zair") = 0.
Remarkabiy, cross-front geostrophic balance is an exact solution to the

primitive equations in the barotropic layer. In the non-barotropic regions
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of intense highly strained fronts, the balance assumption is less
Jjustified. This break down of balance occurs in association with the large
vertical velocities" arising from our PVG = 0 thermodynamics. Using (A.l),

it can be shown that

ol aw aF'[f;]-l] . 0[1 < ]S[GJZJ
8Z'8Z' ' "y i ) ; ;

The expression indicates at what point, the predictions of the
primitive  equations are likely to diverge from those from the balanced
equations. This divergence will definitely be significant once k Is order
one. For «/f = 0.1, this occurs when E/f = 6. For a/f = 0.02, this occurs
when {/f = 17.

APPENDIX B: Algebraic description of the basic state

The basic state is described by the following eq’s.

8=yg+08(2)+ g 8’ (X’.2*,0). (B1)
4] 1]

). Referring to (2.5), which gives 35/90 = F(Z')[B(X‘ }-Bo].

@joq

(recall X’=X eaT

the vertical structure function is defined by

#{(z-2) - 3]
1 +cos{—1||2'-Z | - = for H>2Z > Z
F(z') = {H B 2 S (B2)

0 for ZB >Z>0
Letting L be the geostrophic coordinate width of region 4 and &L, the
corresponding width of the transition regions 3 and 5, the expressions
defining B(X’) in the seven regions may be written

*Since aw/8Z = (T /£)8°6/8X3Z, (A.1) implies that,
13 av 3
S 2o E _ _
W—O-}.——f.—ﬁaﬂ]-—O[‘f GSHJ
where 6H is the height scale over which the vertical velocity. changes. Thus,

with 8, = 5 km, and a = 1x10°%™", T /f = 6, it follows that w = 0[30 cm s
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2

HN i ,
- 2""'3[‘5' GL] for X'<X |

L 8B ( L 4, 2 L
B[-'z‘ - 5[.] + -g-f‘. [—z - aL](xl)i‘E (XI). fOI" xlsx <"§ —5[.

[2A a0 (X2 aLfyn L], 22l L1 A s ) e rixty for-Eospex < b
L “2]I763L 2 Z 3)|z 2 3 1or=y 3
BOX')={- & x* % sT(X1) for -% s x st (B3

3 A 2
[3.’5+A6] [‘x"’ 5"[}{’-" "’“]]+-2-"[X'-l‘-] -A[X' L] +T(XL),for Lesrsx'> L

L 63L 2|1 273 2 4 2 2
L aB [ L -4, 2 L
4
B[ 3 + 6L] + -a—x—,[ 3 + 6L](Xr)+-2- (Xr)~, for erx > 3 +3L
HN? L
- + B[ = + aL] for X’'>X
{ 2n 2 r

The coordinates X! and Xr measure distance relative to the outer edges of
regions 3 and S, respectively; I.e.

Xi= X’ +%+6L aner=X'-%-6L. (B3b)
A consequence of confining temperature gradients to upper levels is that
temperature gradients which extend over considerable horizontal distances
are associated with large horizontal changes in 88‘/3Z‘. Thus, in order to
constrain (g/Bollaa'/aZ’I to always be less than some prescribed parameter,

NZ. it is necessary to limit the horizontal extent of regions 2 and 6. This

is the role of ,Xl and Xr in the above equations. They are related to N° by

o B ()
X = - [g-ﬁ—z] /{%[g-g-, [é+a:.]]}+ SrsL. (B3c)

The constants Az and Aﬁ define the rate at which 8B/3X’ diminishes moving

the expressions

away from region 4. Since 88/8X' diminishes to zero at XI and Xr. Az and As
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depend on N? and the value of 8B/8X’ at the outer edges of regions 3 and 5.
To be precise,

Sl )] )

2 4|9x't 2 2n

“ei[ee b)) () (B3
The value of 8B/8X‘ at the outer edges Is determined by solving the

quadratics which arise from the requirement that azB/ax'z be continuous at
X’ = % L/2; (the continuity of a’B/ax'? at (L2 + SL) is implicitly
assured by the form of (B3a}). Assuming that A = IT| = 0, and taking the
roots of these equations which give positive and negative 8B/8X’ at the

inner edges of regions 2 and 6, respectively, gives
2 -1/2
a8 (L _ (AN 2n L 3L _
X" [‘z - "L] = [m] {‘ * HNZ["[‘ * _L] : "]} 3

2 -172
8B (L . _ [HN 2asL sL} _ _
3%’ [E + 6L] = [?S—L“E] {1 + HNZ[A[I + 'T] r]} 1}. (B3e)

Note that in the limit as 3L tends to zero

3B (L _ 8B (L o
W,[‘E-aL]—-A"'FWhIISt 5?,[2"'6[.)— A+ T, (B4)

Since azF:/ax ‘2 s proportional to aZB/ax'z, it follows that the
vorticity fields in regions 2, 4 and 6 are proportional to Az, -2A/L and
Aa' respectively. As indicated by (B3a) and (B4), 2A is the amount by which
aB/ax’ changes across region 4. The parameter I, however, determines the
asymmetry in B. For A = T, 8B/3X’ is everywhere greater than zero giving a
"pure” cold frontal structure, conversely, with A = -I', 3B/8X’ is less than
zero everywhere, giving a "pure” warm frontal structure.

The parameter values common to both the fronts displayed in Fig’s 3
and 4 are @ = 285.16 K, N = Ix107's%, H = 8 km, Z =2km A=

2.707x10”" s'z, L = 346 km and T’ = 4 hr/(cleoss) i.e. both fronts are
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displayed at the non-dimensional time oT’= 0.144. For the occluded front I’
= 0, for the cold front I' = 2,165x10"' s 2. We took &L = 300 km and O km in
Fig’s 3 and 4, respectively, The solution to (2.4) may be written in the

form

— I
¥ =22 F 2T g—g,]
re
where F Iz(Z') is F integrated twice with respect to Z’ plus a linear

function of Z’ which ensures that F:z equals zero at the upper and lower
boundaries. Its precise form for H = Z’> Z is
1 Zy H )?
I Vouu it I4 - L L el I Bl ’
F (2= 2[2 (z,+ m] @22, 7z, [ZK] F(z')  (BSa)

whilst for an Z'=0

H H/ZB

Numerical analysis of the vertical derivative of FI2 shows that 8y/8Z’ Is
zero at Z'= Zc = ZB + 0.45 H. Thus, following the arguments given in

section 2, if '\;' is initially zero at this level it will always be zero at

this level. Thus, we integrate the thermal wind relation from this level to
obtain,

v (X2, T)= B } [gf ]r (z*) (B5a)

where above Z

Fuzefz - 2] F{ 2 (2 2,)- _]}{z[[ 2)- ﬂ]}}
z' - z -_n{sm z- B]- ]} . 0.31153} (B6b)

whilst below Z
F“(Z'J = Fu(ZB) = -0.4 H. (Bé6c)

b

The dynamic quantities relevant to the stability analysis presented in
Section (3) may now be derived. All these quantities pertain to the flow

below zB. With 8L = 0, ?g(x',r') = 0 in regions ! and 7, whilst
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L oL
A+ T + AZ(X 2). for Xls X< 5
— ’ ,___Q'.T'l _.E Fi _L s £
vz(x T )= e -}.—0.4H i X’ +T, for :.Z-SX 52. {B7)
A+ T+ AX'+ 2), for X = X> 5

The absolute vorticity,  (in physical space) is then given by

-1
E, = f[l - E expl(2aT” )] (B9)
where I-:J equals Ez' E4 or E& according to the region of interest; i.e.
.. L
[ E, for X =X’<-3,
L P L
E.‘| = 9 E4, for -E = X' = z (BlOa]
E for X zX’ > L
. &' r 2°
where
1 r + A 1 2A 1 r - A)?
E =-= 0.4 W E == 04 H—= and E=-— 04 n {B10b)
2 2 N q 2 L 6 2 N
r I f
For the above mentioned parameters defining the cold and occluded
fronts, A‘E‘4 = 0.5. For the occluded front, (the front whose stability we
analyse in. detail}, E2= Es = - 0.092, whilst for the cold front cass, Ez=

~0.298 and E = - 3.69x10™,

APPENDIX C. Relationship between aj’s and streamfunction.

Firstly, note that Green's theorem implies that

v
I[v:_(xbi-af_c,n) ~ v:_(xb.n)]dn =

0
y Xx +38L x +8L
b c 62‘1’, az\p, b [
+ dudn + u’(p,y) - u/(p,0)fdu, (C.1)
2 2 r r
ax ay
0 x x
b b

where x gives the left boundary of the transition region of interest,
(u‘r.v‘r) = (-3¥' /3y, 8¥'/8x and aL_ gives the width of the transition
region in Cartesian space. The second term on the right hand side of this
equation is negligible provided that

(2naf_c/,\)z < 0.01, (C.2)
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where A is the along front wavelength. Typically, the fastest growing waves
have' A = mLc, where L'= is the width of the vortex strip in physical space;
for such waves, the above approximation Iis satisfied provided that
8L/L < 0.2f/(T+f). Taking 3L small enough to satisfy (C.2), equation (C.1)
becomes, (after differentiating with respect to y),
x + 3L
b c
viix +3L, y, t) - viix, y, t) = f Clx, y, t) dx (C.3)
r b c r b

X
b

- ’ —
Since dx = e T f/%dX’, the deforming geostrophic coordinate counterpart of

(C.3) is simply

L
3
’ __1_' - ¥ _E - _ _NT' 5 ' P " i —aT’n.
vi(-5) - vil5 - 8L) = e f Q' (X*, Y, T)dX’'= ™ Q (C.4a)
% - 8L
in region 3 and
% + &L
- ' - 'ﬂl
vt san - vl =T J' QX , Y, Tax: = e 5 (C.4b)
r 2 rée 5
L
v

in region 5. Thus, the integral of @’ across the transition regions in
deforming geostrophic space is exp{aT’) times the difference in

perturbation along front velocity across the regions‘,

Appendix D. Definition of arg-.
The arg. function of a complex function of time, zcmpft) = (zr. zl) is
designed to return the angle between the real axis and zcmp. In addition,
however, in order that information concerning the number of times, n, zcmp

passes through +m during a specified time interval be contained in the

YIf the integral was done with respect to the geostrophic coordinates the
exponential term would not appear.
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initial value of arg'[z (t)] we define
i 0 for any 2, and zr> 0

z
- -1("1
= * Py
arg [zcmp(t)] tn 2 + tan [z..] *{-n for z < 0 and z < 0
where, for example, if the phase of zcmp passed through -m twice the first

term would be equal to 4n.
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FIGURE CAPTIONS

Fig. 1. Heuristic diagrams of edge wave dynamics. (a) Propagating edge

waves on PV strips (shaded). Vectors marked V‘ indicate cross front shears.
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Fig. 1. Heuristic diagrams of edge wave dynamics. (a) Propagating edge waves
on PY strips {shaded). Vectors marked F; indicate cross front shears. Broken
vectors marked c, and Ce give propagation veloclities of western and eastern
edge waves, respectively. Horlzontal line and open arrows lndicate cross front
winds induced by western and eastern edge waves, respectlively., (b) Mutually
amplifying configuration of eastern and western edge waves. (c) Conflguration

produced by action of frontogenetlc flow on the (b} conflguration.

Tkm

«100 kms

Fig. 2. The cross-frontal temperature gradlent, 86/8x, and wind shear, d3v/dx,
from dropsonde data taken in Fronts 87 (for further details of this experiment
see Thorpe and Clough 1991).

(a) Run 3 from IOP7; contour intervals are 0.75 x 107 s
(100 km)™* for 38/ax;
(b) Run 3 from IOPS; contour intervals are 1.5 x 107 s

(100 km)~! for ae/ax.

“! for av/8x and 4 K

“! for dvs/ax and 4 K
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Fig. 3. The seven regions of the ideallsed front with 8L = 300 km at ol =
0.144, depicted in geostrophic (X,Y,Z,T) coordinates: {a) shows the occluded
type front (F = 0 s™2), (b) the cold front, I = 2.165x10"'s™2, In both
diagrams, dashed lines depict the rate of change of the along front
geostrophic with respect to the cross front geostrophic coordinate (65;/ax)
whilst solid lines depict perturbation potential temperature (35'/80): contour

intervals 0.1 x 10" ‘s™ and 2 K, respectively.
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Flg. 4. Examples of the idealized front in physical space. The vertlcal
east-west cross-sections shown have been taken 1000 km north of the center of
the deformation field. In (a)} - (d) parameters have been chosen so that the
structure of the idealized front is similar to that of the IOP7 and I0OPS
frents. Scale analysis suggests that the stability of the low level flow of
this idealized front should be simllar to that of the occluded type frent
shown in (e) - (h). For simplicities sake, all the stability calculations of
this paper pertain to the occluded type front.

(a) Dashed contours are of PV and solld lines give the along front wind;
contour intervals are 0.25 x 10~° m°s 'K(kg)™! and 5 ms™?, respectively.

{b) Dashed contours are the vertical component of relative vorticity whilst

solid lines describe the potential temperature fleld; contour intervals 0.5 x

107%™ and 2.5 k respectlively

(c) Dashed lines show M surfaces whilst solid lines show saturation equivalent

potential temperature 5;. (in Celsius); contour intervals are 8 ms ' and 2.5

%, respectlvely. Note that in our saturated atmosphere 5;’ = 5;
{d) Dashed lines show ?VL' surfaces [FV;_ = (-aG;/az, 3 . vﬁ;.] whilst solid
lines show streamfunction of cross frontal ageostrophic circulation; contour

1, respectively.

intervals are 0.25 x 10°° m%s 'K (kg) 'and 2 x 10° n%s”
{(e) As In Fig. 4(a), but for occluded front.
(f} As in Fig. 4(b), but for occluded front.
(g) As In Fig. 4(c¢), but for occluded front.

(h) As in Fig. 4{d), but for occluded front.
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Fig. 5. The variation of "instantaneous” normal mode exponential growth
rates with non-dimensional time Tn is depicted by the solid lines In (a).

The growth is expressed in terms of the number of e-foldings per 10 hr

period. During frontogenesis normal mode growth rates can only be

maintained for an instant because the non-dimensionai wavenumber of any
wave varies with time; the lines in (b), illustrate this variation for a
range of initial wavenumbers. The dashed line-in (a) shows the growth that
a wave which maintained normal mode structure would have as its 2p value
decreased with time from an initial value of 2.1. The passage of time is
indicated by the crosses which from right to left mark the 2u value at 'I'rl =

0, 0.2, 0.4, 0.6 and 0.8.
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Flg. 6. RT phase dlagrams for the cold front. Fig 6(a) pertains to waves with
2u = 2.1 at Tn = 0 whilst {b) pertains to waves with 2u = 1.083 and Tn = 0.4;
{note that all waves which had Zuo = 2.1 have 2u = 1.083 at Tn = 0.4). The
continuous (dashed) lines are contours of positlve (negative) Ay and the
contour interval 1s 30°. On the R, axts, Ay = 0 for |Rl| < 1 whllst for
|Rl| >1, Ay = +180°. Dotted llnes are isolines of |65|/|5:| The arrows are
proportional to (aRr/ar'. BRI/BT') and are scaled to indicate an "R veloclty”
in "R units" per hour.
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Fig. 7. Varlatlon of Ax with Tn for wave disturbances with 2;10 = 2.1 and
inittal countershear phase shifts of 179°. This varlation depends on the
strength of the lmposed strain and this 1s indicated by the solid lines. The
straln rates corresponding to each line are indicated in units of 1075571, The

dotted line indicates the variation of Axm with time.
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Fig. 8. The evolution of the most rapidly growing streamfunction wave of
inttial non-dimensional wavenumber 2.1 on a front developing in a strain fleld
with an along front stretching rate of 0.4x10™°s™. The fleld shown is the
perturbation streamfunction converted to pressure units of hectopascals so
that, if the flow were geostrophic, Iits surface perturbation pressure field
would be as depicted. Negative contours are dashed. From t = O hr to t = 11.7
hr the contour interval is 0.025 mb; thereafter it is 0.1 mb.
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Fig. 9 As In 8, but here the structure of the total streamfunction Iis
indicated. The contour interval is 0.5 mb. The initial position of the front
was assumed to be 1000 km to the west of the center of the deformation fleld.
The windows shown above move eastwards with the front as 1t 1is advected
eastwards by the deformation fleld and show only that section of the front
1500 km to 2500 km north of the axls of contraction. Only the last 7.8 hr of
development are shown as the wave 1s barely perceptible in the total

streamfunction field at earlier times.
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