
EOROLOGICAL
AZINE

HER MAJESTY'S

STATIONERY

OFFICE

April 1983 

Met.O. 958 No. 1329 Vol. 112





METEOROLOGICAL OFFICE Met.0.958

THE METEOROLOGICAL 
MAGAZINE

No. 1329, April 1983, Vol. 112

551.501.45:519.23

Extreme value analysis in meteorology
By R. C. Tabony 

(Meteorological Office, Bracknell)

Summary

The theory of extreme values assumes that maxima (or minima) are drawn from infinitely large samples of independent 
observations belonging to a single population. Failure to satisfy the theory, therefore, can be due to using too small a sample or to 
the inclusion of observations from more than one population. It is demonstrated that in meteorology these reasons are often 
alternative expressions of the same problem, namely lack of data.

A series of extremes may be regarded as belonging to the same population if a single forcing factor is responsible for the whole 
range of extremes encountered. This is seldom true of meteorological variables. It is shown that analyses of annual extremes are 
commonly to be preferred to those based on monthly data.

When observed extremes fall well short of a physically imposed upper limit it is suggested that they can appear to be unbounded 
above. For short duration rainfall this can be interpreted as being due to changes in the organizational structure of convective 
storms as we pass from the lesser to the greater extremes.

1. Introduction
A knowledge of the highest and lowest values which meteorological variables are likely to attain in a 

given number of years is important to many aspects of engineering design. The analysis of extreme 
values is therefore a topic of great importance in meteorology. A good introduction to the subject is 
given by Kendall and Stuart (1977) while comprehensive accounts are given by Gumbel (1958) and 
Galambos (1978).

Many extreme value analyses of meteorological variables have been undertaken in the past. In the 
United Kingdom, for instance, temperature has been analysed by Hopkins and Whyte (1975), wind by 
Hardman et al. (1973), and rainfall by Jenkinson in the Flood Studies Report (Natural Environment 
Research Council, 1975). The application of extreme value analysis to meteorological data is seldom 
without its problems. Hopkins and Whyte, for example, found that the predicted upper bound of 
temperature was too low, while Jenkinson found that rainfall extremes appeared unbounded above. 
Hardman et al. encountered problems with outliers, i.e. observations which, when plotted on extreme 
value probability paper, did not lie on the same general curve as the remainder of the data. An example 
of an outlier is shown in Fig. 1 which displays maximum temperature in June at Ivigtut on the south-west 
coast of Greenland. Most of the observations lie between 13 °C and 23 °C, but the highest recorded 
temperature is 30 °C.

In this paper the assumptions behind the theory of extreme values are examined and the difficulty of 
meteorological observations in meeting them is discussed. Suggestions are made as to how the various
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Figure 1. Maximum temperatures for June at Ivigtut, 1875-1960.

problems posed by analyses of meteorological extremes may best be interpreted. All the data used are 
tabulated in Appendix 2. They were either held in manuscript form within the Meteorological Office or 
extracted from the year books of the appropriate country.

2. Theory
Consider a series of independent observations belonging to the same population and divided into 

samples each containing N observations. The series of extreme values is constructed by selecting the 
highest (or lowest) observation from each sample. In the trivial case of N = 1, the sampling procedure 
would obviously result in the parent distribution itself. lfN= 2, then each choice of maximum value in 
the sample will result in a bias towards higher values, and as N increases it is clear that the new 
distribution will progressively depart from the parent distribution. The differences are illustrated in 
Fig. 2 which displays schematically the probability density functions f(x) of the parent and extreme value 
distributions. The theoretical extreme value distribution is approached asymptotically as JVapproaches 
infinity.
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An extreme value distribution is usually expressed in terms of the cumulative distribution function 
F(x), and when this is plotted against x an S-shaped curve is obtained. It is usual to transform F(x) to a 
new variable y, known as the reduced variate, in which the cumulative probability distribution is 
represented by a straight line when plotted against x (see Fig. 3). The reduced variate can be related to the 
return period T. The value x which has the probability l/Tof being exceeded in any one sample is said to 
have a return period of T.

A general solution to the extreme value problem was obtained by Jenkinson (1955) in the form

v-* +ttx — x0 T a

where y is defined from the equation F(x) = exp (-e

Extreme 
value

Figure 2. Probability density functions of parent and extreme value distributions.

0--

(a) F(x) plotted against x (b) Reduced variate y plotted against x

Figure 3. Cumulative probability function of extreme value distribution.
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On a graph of x against y, x0 is the value at y = 0 (which is exceeded by about two-thirds of the 
observations), a is the slope at y = 0, and k is a curvature parameter. The solution may be categorized 
into three types corresponding to separate solutions previously obtained by Fisher and Tippett (1928). 
They have come to be known as Fisher-Tippett types I, II, and HI and are characterized by their 
different shapes when plotted on a graph of x against y (see Fig. 4).

Variable x

Reduced variate y 

Figure 4. Fisher-Tippett distributions types I, II and III.

Type I corresponds to k = 0 and forms a straight line. It is the solution popularized by Gumbel (1958) 
and is unbounded above and below.

Type II corresponds to k<0 and is bounded below but not above.
Type HI corresponds to A>0 and is bounded above but not below.
Fisher and Tippett (1928) obtained their stability postulate by assuming that the original data were 

independent and identically distributed (i.e. belonged to a single population). Galambos (1978) shows 
that asymptotic extreme distributions can exist if these conditions do not hold, but they will not 
necessarily be those of Fisher and Tippett. The application of her results, however, requires that the 
distribution of the original observations is known, and this is seldom the case in practice.

In meteorology, the problems caused by the lack of independence of the data appear to be limited to 
the associated reduction in the number of independent values. The problems caused by observations not 
being identically distributed, and by extremes not being drawn from infinite samples, are, however, 
considerable, and are discussed in the following sections.

3. Small samples

A series of independent and identically distributed observations will only yield a set of maxima that 
conform to an asymptotic extreme value distribution if the maxima have been drawn from infinitely
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large samples. In practice this is never achieved. The extent to which the asymptotic theory can be 
applied depends on how quickly the extreme value distributions approach their limiting form. Fisher 
and Tippett (1928) show that when the parent distribution is normal convergence is slow, while Cook 
(1982) demonstrates that an analysis of the square of wind speed converges more rapidly than that of 
wind speed itself.

Exactly how large N must be to satisfy extreme value theory within acceptable limits is an important 
but difficult question to answer and will vary from one application to another. Some useful guide-lines 
may, however, be given. The selection of maxima from a very large sample ensures that they are almost 
certainly drawn from the tail, which may be loosely defined as the top 10-15%, of the parent distribution. 
If TV is so small that some of the maxima are not being drawn from the tail then this is an indication that 
the assumptions of extreme value theory are not being met.

For monthly maximum temperatures the number of observations from which extremes may be 
extracted is about 30, but serial correlation reduces the number of independent values N to about 10. 
This is clearly insufficient to ensure that all the maxima are drawn from the tail of the parent distribution. 
When N exceeds 100, however, experience indicates that observed extremes usually fit the asymptotic 
extreme value theory very well. For maximum temperatures this would mean taking, say, ten Januarys 
at a time.

In any extreme value analysis a failure to draw observations from the tail of the parent distribution 
will be most readily apparent in the less extreme observations. There the influence of the parent 
distribution may be expected. Since the type I distribution has a skewness of 1.14 these effects will be 
most evident when the parent distribution has negative or large positive skewness. This is illustrated in 
Fig. 5 for maximum temperature in January at Oxford. The general extreme value distribution has been 
fitted by simulating five year maxima using a computer program designed by Jenkinson (1977). 
Although the general curve is clearly bounded above, and may be fitted by a type III distribution, the 
lowest four points clearly reflect the negative skewness of the parent distribution.

The contrast with the effects of a positively skewed parent distribution is evident in Fig. 6 which 
displays maximum temperatures for August at Santander on the north coast of Spain.

Points drawn from a normal distribution are plotted on extreme value probability paper in Fig. 7. It 
can be seen that a sample of normally distributed observations could easily be accepted as belonging to 
an extreme value type III distribution. In practice, the only criterion for obtaining a set of data which 
displays linearity on extreme value probability paper is that it should have a skewness close to 1.14. Since 
positively skew distributions are common in meteorology, this explains why many sets of 'extreme 
values' appear to be well fitted by the type I distribution even though TV falls short of that required by 
theory.

4. Mixed distributions
The discussion in section 3 assumed that the extremes were drawn from a single population. Where the 

observations are derived from several independent populations each may be treated separately. One 
area where this approach has been adopted is in the analysis of winds in regions affected by tropical 
storms (i.e. hurricanes, typhoons). The general methodology is well described by Gomes and Vickery 
(1977).

If the data contain samples from Q populations, and the distribution of extremes of the qth 
population are denoted by F, (x), then the distribution of extremes associated with the mixed 
distribution is given by

F(x) = PI F, (x).
q= I
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A simple example is illustrated schematically in Fig. 8. The extreme winds are assumed to belong to two 
populations, those due to hurricanes and those due to other causes. Each set of extremes is assumed to 
belong to a type I distribution. The combined probability distribution will then appear to be unbounded 
above and to be similar to a type II distribution. Fig. 9 presents an extreme value plot of winds for 
Progreso on the Yucatan peninsula of Mexico. In this example the discontinuity in the data is 
exceptionally well marked.

Variable

^ Reduced variate
y

Wind speed
I :

024 

Figure 7. Normal distribution plotted on extreme value probability paper.

/<-Combined distribution

___--•*- Population A (most winds) 

—————— Population B (hurricane winds)

Reduced variate y 

Figure 8. Extreme value analysis of observations drawn from two populations.

5. Seasonal variations
Most meteorological variables undergo a pronounced seasonal variation and consequently the 

observations cannot be regarded as coming from the same population. By extracting annual maxima, 
therefore, the theory of extreme values may well not be properly satisfied.
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Consider a variable (e.g. wind) whose values rise to a seasonal maximum in (say) November. Suppose 
that the strongest wind was recorded in November and that a type I distribution is fitted to maximum 
values for November and the year. The results are illustrated using observations from Durham in Fig. 10. 
In general, the maxima for November are below that for the year and in some cases the differences are 
considerable. The highest maximum in November, however, is equal to that for the year and so the slope 
of the November maxima is greater than that for the year. As a result linear extrapolation of the 
November extremes will lead to higher estimates than those obtained from the annual analysis. Clearly 
linear extrapolation of both lines is not possible. Either the slope of the annual fit has to increase towards 
that of the monthly or the slope of the monthly relation has to decrease towards that of the annual. 

Carter and Challenor (1981), analysing winds and wave height, obtain return values from linear 
extrapolation of the monthly extremes. The annual maxima are taken to represent a mixed distribution 
in which the data for each month are regarded as belonging to different populations. Carter and 
Challenor point out that, when choosing the number of intervals into which a year is divided, a balance 
has to be struck between reducing the variation within intervals and having sufficient data in each 
interval to maintain reasonable convergence to the asymptotic extreme value distribution. In 
meteorology, an interval of time as short as one month is seldom sufficient to enable the latter criterion 
to be satisfied.

To illustrate the point, consider the wind. One can easily imagine a month which is mainly 
anticyclonic with no deep depressions passing close to a station; a low maximum wind is then recorded 
for the month. Similarly, for short duration convective rainfall, one can easily imagine a summer month 
in which very little thunderstorm activity takes place; a low maximum rainfall is then recorded. At Kew, 
for instance, the highest daily rainfall in July 1977 was only 5 mm while in the Decembers of 1967 and 
1976 the highest mean hourly wind speeds were only 17 knots. It is these low maximum values that are 
responsible for the steep slope of the plots of monthly maxima. These 'extremes' are clearly not being 
drawn from the tail of the parent distribution. In other words, for monthly maxima, Nis too small. 

The relative merits of a direct analysis of annual maxima and the recombination of monthly extremes 
can be illustrated by the example of maximum temperatures at Oxford. Assume that annual maxima 
always occur in June, July or August (this is nearly always the case). An analysis of annual maxima may 
then be equated to an analysis of maxima in summer, for which N is about 30. The average maximum 
temperature at Oxford ranges from 18.4 °C to 20.9 °C in June, 20.9 °C to 21.6 °C in July and 19.8°C to 
21.5 °C in August (1941-70 figures). Average temperatures, therefore, show a range of 3.2 °C in the 
three month summer compared to 2.5 °C, 0.7 °C and 1.7 °C in the individual months. The difference 
between the methods, therefore, lies between a temperature range of 3.2 °C and a sample size N of about 
30 for the annual analysis, and a temperature range up to 2.5 °C and a sample size of about 10 for the 
monthly analysis. The sample size of 10 is so small that the verdict clearly lies in favour of the analysis of 
annual extremes. Suppose, however, that a sufficiently long time series was available for the highest 
temperatures in a calendar month to be extracted once every M years. The fact that an annual analysis 
has a sample size about three times larger than a monthly analysis becomes less important as M increases 
and eventually the recombination of monthly maxima becomes the best technique.

For estimating values of environmental parameters associated with return periods beyond the length 
of record, i.e. for purposes of extrapolation, the relative merits of the two techniques can only be 
assessed by the kind of abstract arguments used above. However, for estimating the values 
corresponding to small return periods within the length of record, i.e. for purposes of interpolation, the 
relative merits of the two techniques can be tested against data. This was done by using monthly and 
annual maxima of mean hourly wind at Scilly from 1927-81. The results, displayed in Fig. 11, show that 
the estimates of annual maxima obtained by combining distributions of monthly maxima were all too 
high; similar findings were found when wind data from other stations were analysed. As the technique
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Figure 11. Annual maxima of mean hourly wind at Stilly, 1927-81.

recommended by Carter and Challenor (1981) fails to provide a good representation of observed annual 
maxima, one can have little confidence in its use for purposes of extrapolation.

6. Populations and forcing factors

The theory outlined in section 2 required that the extremes be drawn from a series of observations 
which belonged to a single population. This condition may be relaxed to enable the original observations 
to belong to several populations. As long as the extremes are drawn from just one of these populations, 
and the sample of original data belonging to that population is large enough, the theory will be satisfied.

Consider a station in a monsoon climate where the winds can be regarded as belonging to two 
populations associated with the NE and SW monsoons. If the strongest wind in a year is always associated
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with the SW monsoon, then the series of annual maximum winds can be regarded as belonging to one 
population, but the appropriate sample size will not be 365, but 180 (say).

Thus application of extreme value theory need not be restricted to cases where observations are drawn 
exclusively from a single population. Provided all the extremes belong to one population, and the 
associated sample size is large enough, the original data series may be comprised of observations from a 
large number of sources.

Meteorological observations may be assigned to different populations according to the external 
mechanism or forcing factor chiefly responsible for producing the observation. A series of extremes may 
then be regarded as belonging to the same population if a single forcing factor is responsible for the 
whole range of extremes examined. In meteorology there are so many degrees of freedom that this 
condition is rarely completely satisfied. In practice it is reasonable to regard the observations as 
belonging to the same population if one forcing factor is dominant.

Consider maximum temperatures in summer at a place like Oxford. The mean temperature 
(thickness) of the lower half of the troposphere may be regarded as the dominant forcing factor. 
Dynamical subsidence, sunshine, and state of ground are other relevant factors since they determine the 
mean lapse rate of temperature in the lower half of the atmosphere. If these additional factors vary 
widely on the hottest days of the year, conventional extreme value analysis may not fit annual maximum 
temperatures.

Suppose a location could be found that was almost permanently overcast, then the extremes of 
maximum temperature might follow a type III distribution with thickness as the dominant external 
factor. However, the observations would be drawn from cloudy days instead of sunny ones; if there was 
then one sunny day the maximum temperature would be higher than before and the type HI curve would 
no longer provide a good fit to the observations. This would be because sunshine had become a second 
and important forcing factor.

In their analysis of annual maximum temperatures over the United Kingdom, Hopkins and Whyte 
(1975) found that a type III curve, fitted to all the data, produced an upper limit (37.5 °C) close to the 
highest recorded temperature. They considered this to be too low because, on the days which produced 
the lower maxima, a combination of high thickness and prolonged sunshine may not have been achieved 
and so these observations may be regarded as belonging to a different population from the majority of 
the maxima. This form of heterogeneity in annual extremes has previously been suggested by Jenkinson 
(1969). By combining a 1000-500 mb thickness of 5760 m (30 m above the highest observed in a 30-year 
record at Crawley) with a lapse rate observed at Cheltenham in July 1976, a maximum temperature of 
43 °C seems possible in some places in southern England.

In some locations, especially near coasts, wind direction is another possible forcing factor. Imagine a 
coastal resort where the maximum temperature is almost always limited by a sea breeze. If on rare 
occasions a sea breeze fails to develop, much higher temperatures than usual would be observed. A type 
III curve would not provide a good fit to observations from these occasions.

In Britain, the best examples of the effect of a second forcing factor on temperature are found in places 
affected by the form. Fig. 12 displays a plot of maximum temperatures for January at Aber in North 
Wales. The majority of observations may be fitted by a type III curve, probably representing occasions 
when thickness is the dominant factor, but the more extreme points may be regarded as lying on another 
curve in which the form is a forcing factor. The form is quite capable of producing the highest 
temperatures observed (18 °C) since on those occasions temperatures at 900 mb were around 11 °C. As 
forms are rare, the events plotted in Fig. 12 will not represent extremes selected from a large sample and 
there is no question of them satisfying the asymptotic theory of extreme values. The dotted lines 
sketched through the fohn events in Fig. 12 are therefore purely empirical; a very large amount of data 
would be needed before all the maxima could be drawn from a large sample of fohn events.



0
0

0
0

0
 

'4 13 10

X 
re

pr
es

en
ts

 a
 s

in
gl

e 
ob

se
rv

at
io

n 
• 

re
pr

es
en

ts
 a

bo
ut

 5
 o

bs
er

va
tio

ns

32 30 28

0
 

24

S 3
22 20 18

X 
re

pr
es

en
ts

 a
 s

in
gl

e 
ob

se
rv

at
io

n 
• 

re
pr

es
en

ts
 a

bo
ut

 5
 o

bs
er

va
tio

ns

1 
2 

Re
du

ce
d 

va
ria

te

1 
2 

Re
du

ce
d 

va
ria

te

Fi
gu

re
 1

2.
 M

ax
im

um
 t

em
pe

ra
tu

re
s 

fo
r 

Ja
nu

ar
y 

at
 A

be
r,

 1
92

5-
78

.
Fi

gu
re

 1
3.

 M
ax

im
um

 t
em

pe
ra

tu
re

s 
fo

r 
Ju

ne
 a

t 
T

ei
ga

rh
or

n,
 1

92
2-

75
.



Meteorological Magazine, 112, 1983 89

Another example of topography introducing additional forcing factors concerns the case of the 
Sheffield gales of 16 February 1962. These are described by Aanensen (1965) and were caused by 
standing waves set up by the Pennines. Much stronger winds were observed than if topographic effects 
had been absent and so this event belongs to a different population from the majority of gales at 
Sheffield.

The outlier in the data for Ivigtut, presented in Fig. 1, was probably caused by a fohn. Temperatures 
of 30 °C around southern Greenland are quite possible as is evident by a plot of maximum temperatures 
for June at Teigarhorn in south-east Iceland (Fig. 13). There the appearance of a type I curve is caused 
by the absence of a dominant forcing factor for many contiguous points, with thickness, wind direction, 
sunshine and fohn all playing a part.

7. Populations and sample sizes
In general, any set of data can be divided into a number (Q) of populations. As Q increases, the 

number N of independent cases from which the extremes are selected decreases. Thus while the aim of 
dividing data into separate populations is to provide a firmer foundation for extreme value analysis, this 
aim is negated by a decrease in N. The failure to satisfy extreme value theory is really due to one cause   
lack of data. The two reasons advocated so far (mixed populations and insufficiently large N), are often 
different ways of expressing the same problem.

Consider the example of maximum temperatures for January at Oxford (Fig. 5). In section 3, the lack 
of homogeneity in the data was expressed by saying that N was too small. The lower values of the 
maxima were clearly not being drawn from the tail of the complete distribution. There is another way of 
looking at the problem. The majority of observations in Fig. 5 will be associated with incursions of 
tropical maritime air across the country. These can be regarded as constituting one population. The 
lower January maxima in Fig. 5 are clearly not associated with tropical maritime air and can, therefore, 
be regarded as belonging to a different population.

In section 6, Hopkins and Whyte's (1975) analysis of annual maximum temperature was discussed. 
The failure of the type III distribution to provide sensible extrapolations was attributed to the lower 
maxima belonging to a different population from the majority. An alternative way of expressing the 
problem is as follows. Hopkins and Whyte show that the lowest annual maximum at Oxford is 23 °C. 
Since the average maximum in July is around 22 °C, an observation of 23 °C is clearly not being drawn 
from the tail of the parent distribution. Hence the failure to obtain a good extreme value analysis can be 
ascribed to an insufficiently large N. By extracting maxima every five years, and so increasing N, the 
lowest maxima is raised to 29 °C and the maxima examined are much more representative of the tail of 
the parent distribution.

Similarly, consider a plot of extreme winds at a place like Progreso (Fig. 9) where hurricanes are a 
feature of the climate. The immediate reaction is to ascribe the lack of a good fit to a general extreme 
value distribution to the presence of two populations, i.e. those winds due to hurricanes, and those due 
to other causes. Suppose, however, that sufficient data were available for a long series of centennial (as 
opposed to annual) maxima to be extracted; then all the extreme events would be caused by hurricanes, 
and a good extreme value analysis for a single population could be obtained. It follows that the plot in 
Fig. 9 may be regarded as an inadequate sampling of hurricanes, i.e. the lack of fit to a general extreme 
value distribution is caused by a too small value of N.

The formation of a combined probability distribution from a number of populations (as indicated in 
section 4) is only valid if the populations are independent. Determining the independence of 
populations may not be easy and many of the different populations described above probably could not 
be considered independent. In any analysis, therefore, it is sensible to keep the number of populations to
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a minimum and, where possible, to regard the data as belonging to a single population. In general, this 
aim will be furthered by the choice of as large a value of Was possible (e.g. five-year maxima instead of 
annual maxima).

8. Rainfall and the type II distribution

Annual extremes of daily and hourly rainfall are frequently best fitted by a type II distribution; this 
has always caused problems of interpretation. In the Flood Studies Report (Natural Environment 
Research Council, 1975), Jenkinson groups observations according to the magnitude of the fall which 
has a return period of five years. He shows that the greatest departures from a type I distribution occur 
for five-year falls of 20 mm in England and Wales and 15 mm in Scotland and Northern Ireland. These 
falls correspond to a duration of about an hour, a typical duration for thunderstorms. The departure 
from a type I distribution is also greater in England and Wales than in Scotland or Northern Ireland. 
These facts suggest that the type II appearance of the observations may be related to the behaviour of 
individual convective storms.

Warrilow (1981) has shown that by taking the distribution of storm movement into account modest 
rainfall extremes which belong to a type III distribution following the storm (Lagrangian) are converted 
to a type II distribution when observed at a point (Eulerian). This is likely to account for most of the 
type II behaviour of observed rainfall extremes. Other possible contributory factors are as follows:

(i) The complete distribution of short-duration rainfall displays large positive skewness, so any 
failure to satisfy extreme value theory due to insufficiently large N will result in a concave upward 
distribution of the lesser extremes.

(ii) Most of the larger extremes will be due to thunderstorms, but in many places some of the lesser 
extremes may be due to frontal rainfall. The mixture of populations would then give rise to a type II 
appearance to the observations. As convection will be dominant in the heaviest frontal rainfalls as well 
as in thunderstorms, however, the distinction between the two may not be as great as at first appears. 
Some of the heaviest rainfalls have been frontal in origin, but have contained embedded thunderstorms. 
If consideration is restricted to convective storms, however, it is true that as we pass from the lesser to 
the greater extremes, the organizational structure of storms also changes, from single cell through 
multicell to supercell. Hence the increasing organizational structure of storms as we pass from small to 
large return periods is likely to contribute to the type II distribution of rainfall extremes.

(iii) In certain areas, topography may encourage the development of stationary storms and give rise 
to a distribution of storm movements different from that considered by Warrilow. In districts thus 
affected, the conversion from the Lagrangian to the Eulerian frame of reference will result in some 
spectacular type II curves, and very large point rainfalls may have relatively modest return periods. In 
the United Kingdom, some of the large storms that have occurred in south-west England, together with 
the Hampstead storm of 1975, may enter this category.

9. The upper bound

Many sets of meteorological extremes are well fitted by the type I distribution, but this is unbounded 
above. Where physical considerations impose bounds, the highest extremes may not belong to the 
same population as the more modest extremes and will be represented by a type III distribution.

For events related to the duration of a single physical entity, e.g. a thunderstorm, a gale, or an 
afternoon maximum temperature, it is clear than an upper limit to extremes must exist. For longer 
duration events, e.g. monthly rainfall, which involve a succession of physical entities, a realistic
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physically imposed upper limit is more difficult to visualize and evaluate. Most practical applications 
are concerned with short duration events for which the concept of an upper limit is valid, and 
consideration is now restricted to these cases.

The return period at which extremes approach the upper limit varies widely with element. Over the 
United Kingdom, for instance, maximum temperatures appear to approach their upper bound for 
return periods around 100 years, while for rainfall Jackson (1979) shows this does not happen until 
return periods of the order of a million years are reached. For a given element, the return period at 
which the upper bound is approached will also vary from place to place.

Consider maximum temperatures and compare typical inland and coastal sites. For any given return 
period, the maximum temperature on the coast will be lower than that inland. The upper limit on the 
coast, however, may be the same, or nearly the same, as inland. Although optimum conditions will be 
more rare, it is still possible to visualize a set of conditions in which the highest coastal temperatures 
would be nearly the same as those inland. The situation is illustrated schematically in Fig. 14. The 
inland station is represented by curve A, and the coastal resort by curve B. The upper limits at both 
locations are similar, but the return period at which this is approached is larger on the coast.

Variable x

Reduced variate y 

(A) Inland (B) Coast (C) Headland (D) Open sea

Figure 14. Schematic extreme value analysis of temperature.

Now consider the change from a linear stretch of coastline to a headland. For any given return period, 
the headland will experience lower temperatures than the remainder of the coast and the highest 
temperatures experienced inland may never be reached. The slope of the extreme value analysis, 
although smaller than that for other inland or coastal locations, may well remain linear for longer 
return periods than in the previous two cases. This is illustrated by curve C in Fig. 14. Over the open sea 
(curve D), however, the probable maximum temperature will be much lower than over the land and will 
probably be approached at a similar (modest) return period. These ideas are illustrated using real data 
(as far as is possible) in Fig. 15.
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Figure 15. Annual maximum temperatures at Oxford, Worthing, Portland Bill and OWS'J'

The same arrangements may be extended to other elements. In the case of wind, for instance, curve A 
may represent places like the Faeroes, where intense depressions are frequent; curve B may then 
represent places further South, e.g. Valentia, where deep depressions are less frequent but still possible. 
In the case of rainfall, districts with frequent thunderstorms will be represented by curve A while curve 
B represents places where they are less frequent, but still possible.

When a set of extremes fall well short of their upper limit a highly skewed parent distribution and an 
inadequate sampling of limiting physical conditions are indicated. The lack of data for extreme value 
analysis is then acute. If the observed extremes are believed to belong to the same population as those 
near the upper limit, it can be argued that the observed extremes are not being drawn from the tail of the 
single population. Alternatively, if it is argued that the observed extremes are being drawn from the tail 
of one population, then there are grounds for thinking that the highest possible extremes belong to 
another population. Using either argument, the observed extremes are likely to display the appearance 
of being unbounded above.
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10. Practical considerations
There are two main approaches to the estimation of extreme events:
(i) Analysis of the tail of the parent distribution.
(ii) Direct analysis of the extremes.
When all the observations belong to a single population, a mathematical distribution may provide an 

exact fit to the original observations and both techniques will then give the same results. An example is 
the representation of Brownian motion by the normal distribution. In these circumstances, the only 
reason for using extreme value theory is the convenience of data analysis. The fitting of a parent 
distribution involves handling many observations, not all of which may be available. If a series of 
extremes are available, it is much easier to analyse them.

When a set of observations are not identically distributed, direct analysis of the extremes will give 
different results from an analysis of the tail of the parent distribution. In these circumstances, a 
mathematical distribution is most unlikely to provide an exact fit to the original observations. The main 
body of observations may be fitted reasonably well, but the tails will be poorly represented. Under these 
conditions, a direct analysis of extremes is clearly indicated, but it is in just these circumstances that the 
theory of extreme values is not satisfied. The dependence of a series of observations on more than one 
forcing factor is therefore responsible both for providing a good reason for performing a direct analysis 
of the extremes, and for ensuring that the theoretical assumptions on which such an analysis is based are 
not satisfied.

It has been shown that in meteorology there are usually a large number of forcing factors operating on 
a given set of observations. Sometimes it is possible to divide the observations into two or more 
categories each belonging to separate populations, but it is more usual for there to be a gradual change in 
the forcing factors and their relative importance across the spectrum of observations. The advantage of 
extreme value analysis is that it restricts the range of observations under consideration and thereby 
limits the changes in the forcing factors involved. The greater the value of N that can be used, the more 
restricted the range of extremes considered and the more likely it is that those selected can be regarded as 
belonging to one population.

When an extreme value analysis is performed on data from mixed distributions, any extrapolation 
lacks theoretical justification. Any results based on interpolation, however, are likely to be the best 
obtainable and will certainly be superior to those derived from the tail of a fitted parent distribution. The 
larger the value of N that can be used, the more reliable will be any limited extrapolation that is 
attempted.

In any practical application, however, a balance has to be struck between the number of observations 
from which the extremes are selected and the number of those extremes contained in the available 
record. Although an increase in N may reduce the systematic error, the smaller number of points 
available for analysis will increase the random error and, with the record lengths commonly found in 
meteorology, this is likely to be important. Volume I of the Flood Studies Report (Natural 
Environment Research Council, 1975) gives the standard errors (SE) associated with fitting a type I
distribution as,

SE(x.)= l.OSa/v/M, 
SE(a) = 0.78 a/v'M, 

and SE (X) = J(\. 11 + 0.527 + 0.61 F^a/ v/M,
where x0 is the intercept, a the slope, M the number of extremes and Y the value of the reduced variate 
corresponding to an estimate X of the variable under analysis. The second of these equations shows that 
if M is as small as ten then the standard error of the slope is as much as 25% of the value of the slope. It is 
an inescapable fact that extreme value analysis is a technique which demands a large amount of data for 
its successful implementation.
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11. Conclusions
The theory of extreme values assumes that the maxima (or minima) are drawn from infinitely large 

samples of independent observations that belong to a single population. Failure to satisfy the theory 
may therefore be due to selecting extremes from too small a sample or the inclusion of observations 
which belong to more than one population. These reasons, in meteorology, are alternative ways of 
expressing the same problem, namely lack of data.

Most meteorological variables undergo a pronounced seasonal variation and consequently the 
observations cannot be regarded as coming from the same population. The problem may be tackled by 
regarding monthly maxima as belonging to separate populations and then combining them to obtain a 
distribution of annual extremes. This approach, however, is likely to be compromised by the inclusion of 
insufficiently extreme monthly observations and it may be better to perform a straightforward analysis 
of annual maxima.

In meteorology there are so many physical processes involved in the creation of a series of 
observations that defining a single population is difficult. In practice, a set of data may be regarded as 
belonging to the same population if a single forcing factor is primarily responsible for the range of 
extremes encountered. Topography can often act as a second forcing factor. It can cause high 
temperatures or strong winds through fohns and standing waves and produce high point-rainfalls by 
encouraging the development of stationary storms.

The return period at which extremes approach a physically imposed upper limit varies widely with 
element and location. When a set of maxima lie close to the physically imposed upper bound, a type HI 
distribution of the extremes may be expected, but when the observed extremes fall well short of their 
upper limit, they may appear to be unbounded above. For short duration rainfall this may be interpreted 
as being caused by changes in the structure of convective storms as we pass from the lesser to the greater 
extremes.
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Appendix 1 — Plotting positions on extreme value probability paper
Intuitively, one expects a return period of about M to be associated with the largest of a series of M 

observations. This thinking is expressed by ascribing a cumulative probability p to the mth ranking 
observation of

P = m
M+l (Al)

This formula was first suggested by Weibull (1939) and was popularized by Gumbel (1958). The data 
used in this paper were plotted according to the relation

m-0.31 
M+0.38 (A2)

This equation was first proposed by Beard (1943) and has been widely used in the Meteorological Office 
following its adoption by Jenkinson (1969).

If 100 years of data are available then to the first ranking observation is attributed a return period of 101 
years by equation (Al) but 145 years by equation (A2). The difference between the two is essentially the 
difference between the mean and the median.

If 1000 years of data are available then the event with a return period of 100 years may be 
approximated by the value of the 10th ranking observation. 1'he distribution in time of these 10 largest 
events is not uniform. Their separation is bounded below by one and so a positively skew distribution 
emerges in which the median separation is less than the mean. Thus, while the mean separation of the 10 
largest events will be 100 years the median separation will be less than this. Now the largest event in 100 
years of data lies close to that whose median recurrence interval is 100 years. It can be shown that the 
mean return period of such an event is 145 years; this is the result given by equation (A2).
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It can now be seen that it is the skewed distribution of the separation of the most extreme events that 
causes the largest observation in M to have a return period greater than M. The Weibull formula will 
only be correct if the largest events are uniformly distributed in time. An excellent review of plotting 
positions in general is given by Cunnane (1978) who recommends the use of the relation

p =
M+ 0.2

The differences in the plotting positions given by the above equations are generally small except for the 
largest extreme. In the case of a set of extremes which fitted the type I distribution, use of the Weibull 
plotting positions result in a slight 'type II' appearance of the observations with the position of the 
largest event having the greatest error.

Appendix 2 — Data
A = Maximum temperatures in June at Ivigtut (°C) — Fig. 1.
B = Maximum temperatures in January at Oxford (°F) — Fig. 5.
C = Maximum temperatures in August at Santander (°C) — Fig. 6.
D = Annual maximum gusts at Progreso (m s ~') — Fig. 9.
E = Maximum temperatures in January at Aber (°F) — Fig. 12.
F = Maximum temperatures in June at Teigarhorn (°C) — Fig. 13.
G = Annual maxima of mean hourly wind at Durham (m s~') — Fig. 10.
H = November maxima of mean hourly wind at Durham (m s~') — Fig. 10.
I = Annual maxima of mean hourly wind at Scilly (m s~') — Fig. 11.
J = Annual maxima of temperature at Oxford (°F) — Fig. 15.
K = Annual maxima of temperature at Worthing (°F) — Fig. 15.
L = Annual maxima of temperature at Portland Bill (°F) — Fig. 15.
M = Annual maxima of temperature at OWS 'J' (°C) — Fig. 15.
(Bracketed figures are estimates.)
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	Year 
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

A 17.4 19.6 21.5 20.0 19.0 18.8 18.0 19.2 18.5 13.5 18.0 16.6 18.3 20.5 15.2 21.3
B 46 53 54 54 55 53 56 55 47 53 51 55 55 55 52 52 52 54 51 56

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
A 21.2 20.7 17.4 16.1 21.9 18.0 23.0 20.0 16.9 19.9 21.0 20.6 20.6 19.1 18.4 19.4 17.4 17.8 22.2 17.7
B 52 51 53 54 51 53 50 55 54 53 52 53 54 54 55 56 52 55 50 53
J 89 84 84 85 81 92 79 84 85 79
K 81 78 78 77 77 79 76 80 81 74
L 74 75 79 73 78 75 73 71 74 74 76 72

	1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
A 17.3 19.9 18.9 14.1 30.1     16.6   19.4 15.2 13.7 18.6 20.2 17.4 21.4   20.0 21.7 16.1
B 55 51 52 55 52 57 52 55 52 55 55 57 54 52 55 53 55 56 53 58
C 30 31 27 38
D 17.2 25.6 17.8 24.4 19.4 19.4 16.1 19.4 18.9 23.3
E 60 60 54 56 63 61
F 16.8 20.3 17.8 23.3 25.2 19.9 17.5 21.5 20.2
I 30 26 30 29
J 95 87 83 87 82 83 89 84 86 79 89 86 93 86 85 85 80 87 87 89
K 88 84 79 78 77 77 79 78 79 76 87 78 86 75 80 83 78 82 77 83
L 83 79 74 76 74 74 70 73 70 68 81 73 83 68 75 78 70 76 73 74

	1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
A 19.4 20.2 18.2 16.5 19.4 21.1 16.0 17.4 18.4 16.1 18.6 17.3 17.6 18.0 19.3 16.2 23.1 19.6 19.2 21.0
B 52 55 53 54 54 57 53 54 55 51 48 50 55 56 50 57 56 57 53 54
C 26 32 28 26 26 27 35 23 24 25 24 23 40 30 26 30 31 29 24 27
D 19.4 22.2 27.8 23.3 22.2 22.2 22.2 33.3 20.6 22.8 22.8 19.4 21.1 20.1 18.9 22.2 21.1 34.0 32.0 48.0
E 51 57 56 55 53 57 58 57 57 56 51 52 57 57 52 55 56 56 56 61
F 20.3 23.6 22.1 23.9 20.6 27.8 20.9 22.7 30.5 22.2 25.7 18.7 19.7 23.0 18.0 17.3 17.0 18.1 22.0 16.0
G 18 15 20 18 17 20 18 19 17 21 22 20 20
H 14 14 20 13 12 16 16 9 13 14 15 13 14
I 24 23 22 26 29 27 23 25 29 24 23 21 27 25 29 31 26 22 25 26
J 75 95 89 86 86 83 87 84 84 85 89 88 92 87 84 84 90 90 89 86
K 77 80 81 82 84 81 77 83 82 80 83 83 80 81 80 76 90 88 81 81
L 74 75 78 80 80 71 74 72 75 73 70 74 67 76 69 (72) (80) (77)    
M 17.2 18.3 16.7
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	1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 

A 21.7 18.6 20.0 16.5 20.5 19.8 19.6 17.8 18.0 18.8
B 53 52 55 56 53 54 57 55 52 54 53 55 41 54 53 54 55 55 56 51
C 30 29 35 29 29 25 30 26 28 34 30 25 23 34 27 27 25 30 24 25
D 42.0 38.0 17.0 41.0 32.0 44.0 36.0 36.0 31.0 19.4 16.7 18.9 19.4 18.3 22.8
E 53 53 54 57 57 56 58 65 55 58 55 55 48 57 55 57 57 55 58 58

F 17.5 16.6 18.6 18.7 18.1 19.2 17.7 16.2 17.5 24.1 17.0 17.9 22.2 18.0 17.0 14.3 16.5 18.0 15.2 16.2
G 17 16 18 19 18 21 20 20 17     22 15 19 21 19 21 23 15 24
H 14 16 15 18 8 18 12 9 14   11 12 14 14 18 16 13 15 14 24
I 28 23 25 31 28 25 22 26 25 23 23 29 29 21 27 28 23 22 24 24
J 82 89 90 83 87 82 86 80 91 82 87 77 81 87 81 80 83 89 88 88

K 76 82 80 75 84 77 82 77 82 80 79 73 80 78 73 81 79 82 80 78
L   (76) 76 71 76 70 74 70 77 78 71 70 73 77 70 77 71 75 73 75
M 17.2 18.3 16.8 17.2 20.5 17.3 18.2 17.8 19.5 17.7 17.2 17.8 16.0 18.7 19.2 18.7 16.9 20.5 16.4 17.5

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

C
E
F
G
H
I
J
K
L

28
65
15.5
18
15
20
84
82
79

28
56
19.5
20
20
24
77
79
76

32
56
15.0
19
19
24
85
85
79

27
58
16.2
18
14

26
77
78
75

28
58
15.5
17
13
25
91
85
80

30
55

19
13
24
94
91
87

24
54

17
13
24
80
82
77

24
52

18
17
25
80
74
70

27

16

31
85
77
74

30

24
83
76
72

23

74 
M 17.0 18.4 17.3 16.0
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Forecasting urban minimum temperatures from rural observations

By J. Roodenburg
(Royal Netherlands Meteorological Institute, de Bill)

Summary
A regression formula has been derived from which the nocturnal minimum temperatures in an urban area may be computed 

from meteorological variables observed at a nearby airport.

1. Introduction
Many branches of economic activity take an interest in reliable minimum temperature forecasts, 

especially in an era of increasing energy costs.
For the heavily industrialized and densely populated conglomeration of Rotterdam a minimum 

temperature forecast is issued every late afternoon valid for the next night.
Until recently, the approach followed by the Regional Weather Office at nearby Zestienhoven 

('Sixteen Farms') Airport was to adapt subjectively the official forecast from the Central Weather Office 
at de Bilt. Often this led to disappointing results, mainly for two reasons:

(a) in the Netherlands, as probably almost everywhere, minimum temperature forecasts traditionally 
have been verified against observations from well-exposed rural stations, and

(b) no objective or semi-objective method existed as to how the forecast issued centrally should be 
adapted in order to yield reliable results for an urban site.

The present paper presents a statistical method that includes several simple meteorological variables; 
as such it is an extension of earlier work done in England (Gordon et al., 1969), in which noon 
temperatures only were taken into account.

2. Geographical description and data
Fig. 1 shows a sketch of the Rotterdam residential and business area (shaded), the industrial and 

harbour area (hatched) as well as the location of the urban site (encircled cross). Zestienhoven Airport is 
shown in the upper left corner.

The urban minimum temperatures were taken from a thermograph placed in a Stevenson screen in a 
70 m2 garden. The garden is enclosed by buildings on three sides, the fourth side faces the river Maas 
about 300 metres away.

There is some doubt as to the representativeness of these temperatures, but as no other data were 
available, representativeness had to be assumed.

All other meteorological information was taken from the records of Zestienhoven Airport; the period 
covered comprises January 1971 up to December 1973 inclusive. The period July 1980- June 1981 was 
used as independent material.

All minimum temperatures in this paper refer to the period 1800 - 0600 GMT.
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Figure 1. Plan of conglomeration of Rotterdam with urban site (encircled cross) and airport indicated. Shaded: residential and 
business area. Hatched: industrial and harbour area.

3. A 'first guess' urban minimum temperature
Without clouds, without advection and with neglect of the effect of heat absorbed during daytime, the 

minimum temperature would solely depend on the maximum temperature of the previous day, the 
period of time available for cooling and the atmosphere's transparency to long-wave radiation. The 
latter factor strongly depends on the atmosphere's water vapour content. It seemed a sensible first step, 
therefore, to link the minimum temperature to some combination of an afternoon temperature and a 
moisture parameter. This combination would at the same time reflect the length of the cooling period, 
since high afternoon temperatures and short nights go together. Gordon et al. (1969) essentially 
followed the same train of thought.

The sum of temperature and dew-point, observed at Zestienhoven Airport at 1500 GMT (henceforth 
referred to as SUM) was chosen on the following grounds:

(a) both temperatures are readily available in operational surroundings,
(b) 1500 GMT is normally close to the time at which the maximum temperature occurs,
(c) the dew-point gives an indication of the availability of moisture in the lower layers of the 

atmosphere, and
(d) if SUM is kept constant, various combinations of temperature and dew-point lead to 

approximately the same potential wet-bulb temperature (0W) as is easily demonstrated on a 
thermodynamic diagram.
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As 0 W is conservative for adiabatic processes, it acts as an airmass identifier which thus, in a broad 
sense, also applies to SUM. Consequently, SUM should, under the assumptions mentioned above, be 
well correlated with the subsequent minimum temperature and thus provide a 'first guess'. The next step 
would be to apply corrections to this first guess in accordance with the actual (or forecast) deviations 
from these assumptions.

4. Systematic errors in the first guess minimum
A regression equation was derived to obtain the first guess urban minimum temperature:

f = -0.33 + 0.4395C/M (1)

where f is calculated temperature. The correlation coefficient (r) was 0.947, the root-mean-square 
(r.m.s.) error was 1.74 °C. This result is somewhat better than that achieved by Gordon et al., who in 
rural surroundings obtained r = 0.89 and r.m.s. error = 2.3 °C. As the variability of minimum 
temperature is known to be much higher in rural than in urban areas (Bohm and Gabl, 1978) this is not 
surprising.

Application of equation (1) to independent material (July 1980 - June 1981, every tenth day) yielded 
Fig. 2. Scatter is considerable. This was to be expected because the ideal no advection and no cloud 
conditions, assumed in the preceding section, are seldom met in nature. Moreover, the thermal inertia of 
a large built-up area was not accounted for (Oke and Maxwell, 1975).

0 -

15 °C

Figure 2. f, minimum temperature calculated from equation (1), versus T, the observed minimum temperature.
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In order to gain appreciation of the influence of cloud amount and wind speed Figs 3 and 4 were 
drawn up. They depict the average departures < f - T>, in which Tis the observed urban minimum 
temperature, as a function of cloud amount (oktas) and wind speed in five groups: ^3 kn, 4- 6,7-10, 
11-16 and 17 - 21 kn respectively. Fig. 3 clearly shows that the calculated minimum temperature is on the 
average too warm on clear nights and too cold on cloudy nights. Cloud amounts were taken from the 
0300 GMT observations made at Zestienhoven. Likewise Fig. 4 indicates that the calculated 
temperature is too high on nights with little wind and vice versa. Again the 0300 GMT Zestienhoven 
observations were used.

The influence of wind direction is demonstrated in Fig. 5. Here relative cumulative frequencies have 
been plotted of deviations from the calculated minimum temperature in excess of 1.5 °C. It can be seen 
that the number of too warm forecasts grows rapidly with wind directions between 010 and 100 degrees. 
The number of too cold forecasts shows a similar behaviour with winds between 200 and 290 degrees. 
Furthermore it was found that for any direction there was a seasonal variation as well. Fig. 6 gives 
average deviations for nine direction groups for February and August. Notwithstanding the fairly large 
scatter around the straight lines (obtained by linear regression), the seasonal influence is unmistakable.

5. Results of a multiple regression analysis
From the observations in the preceding section it was clear that more variables than SUM had to be 

considered as potential predictors. Apart from cloud cover and wind the seasonal effect, as illustrated by 
Fig. 6, would also have to be accounted for.

1,0 —

r=0.89

-1.0- 6 8

N (oktas)

Figure 3. Average deviations from f as a function of cloud cover.
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1.0

r=0.98

-1.0 - 

Figure 4. Average deviations from f as a function of wind speed.

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

wind direction

Figure 5. Relative cumulative frequencies of deviations in excess of 1.5 °C in relation to wind direction (top curve: ftoo warm, 
bottom curve: t too cold).
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Figure 6. Average deviations from f for nine direction sectors for February and August.

The wind data were partitioned into three direction groups: 010-100, 200-290 degrees and remaining 
directions and into five speed groups: ^6 kn, 7- 10, 11 -16, 17-21 and 22 or more kn. If the wind speed 
was six knots or less, the direction was neglected. The groups into which the 0300 GMT wind fitted were 
assigned a value of 1, the remaining groups a value of 0.

To correct for the seasonal influence, after some experimenting, the best fit (in a least-squares sense) 
was obtained by a variable S, where

S = sin {(m - 4.5)2 vr/12}

where m is the number of the month (January = 1, etc.)
Submission of the complete data-set (January 1971-December 1973) to a forward stepwise 

regression scheme gave the results listed in Table I. It is clear from Table I that the first four variables 
noticeably contribute to the reduction of variance. Therefore only these variables were retained in the 
regression analysis. The following equation resulted:

f=0.62 + 0.365t/A/+ 1.73S + 0.17W- 1.067. .. .. .. (2)

(r = 0.964, r.m.s error = 1.43 °C; see Table I for the meaning of the various symbols.)
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It is interesting that wind speed does not appear as an independent variable in equation (2) despite the 
effect demonstrated in Fig. 4; this is because wind speed and cloud cover are correlated to such an extent 
that only the latter is picked out by the regression analysis.

Table I. Description and performance of variables

Symbol Description

SUM Temperature + dew-point
(1500 GMT)

S Sinj(m-4.5)27T/12} 
N Cloud amount (oktas)

Y2 Wind direction between 010°
and 100° 

Kj Wind direction between 200°
and 290°

B6 Wind speed 22-26 kn 
B2 Wind speed < 6 kn 
fi. Wind speed 17-21 kn 
53 Wind speed 7-10 kn 
£„ Wind speed 11-16 kn

* As observed at 0300 GMT; if yes: 1, if no: 0.

Value assigned

As observed

Depending on month 
As observed at 0300 
GMT

Correlation 
coefficient

94.7

85.2
-1.2

-6.0 

8.4

-3.9 
11.7
-8.0 

2.2
-11.0

Total explained 
variance (%)

89.6

90.9
92.2

92.9

93.0

93.1
93.1
93.1
93.1
93.1

6. Performance of the equation
Equation (2) was applied to independent material (July 1980 - June 1981), i.e. observed values were 

used. The results have been listed in Table II. In operational practice, however, cloud amount as well as 
the sector from which the wind will blow at 0300 GMT has to be estimated some 12 hours earlier. After 
inserting forecast values into the equation, this effect proved to be quite small (bracketed figures in Table 
II).

Table II. Monthly averaged errors* (°C) using observed and forecast values (bracketed) for N and Y2.

January
February
March
April
May
June
July
August
September
October
November
December

* Calculated from t - T.

Mean error
0.05 ( 0.00)

-0.01 (-0.23)
-0.74 (-0.85)

0.35 ( 0.24)
0.25 ( 0.17)
0.32 ( 0.34)
0.00 (-0.05)

-0.67 (-0.57)
-0.14 (-0.23)

0.11 ( 0.21)
0.15 ( 0.02)
0.17 ( 0.00)

Mean absolute error
1.18 (1.15)
1.19 (1.21) 
1.41 (1.46) 
0.98 (1.14) 
1.28 (1.14) 
0.97 (1.02) 
0.79 (0.82) 
1.23 (1.27) 
0.83 (0.84) 
0.92 (1.05) 
1.27 (1.18) 
0.94 (0.95)

Root-mean-square error
1.38 (1.46) 
1.40 (1.47) 
1.77 (1.77) 
1.23 (1.46) 
1.56 (1.41) 
1.29 (1.24) 
1.09 (1.14) 
1.51 (1.55) 
1.01 (1.06) 
1.12 (1.23) 
1.54 (1.46) 
1.09 (1.12)

Verification of the forecasts issued during the months January-March in the years 1971-73, when no 
objective method was available, gave the average monthly errors displayed in Table III. Comparison of 
Tables II and III makes it clear that equation (2) performs satisfactorily.
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Table HI. Monthly averaged forecast errors* (°C).

January
February
March
Calculated from T fcst - T.

Mean error
-1.67
-1.72
-2.13

Mean absolute error
2.08
2.05
2.43

Root-mean-square error
2.74
2.55
2.77

7. Sources of errors
There are several sources of errors that affect the performance of equation (2). The rather heavy 

reliance on the representativeness of the afternoon temperature and dew-point certainly is a weak spot. 
A frontal passage after 1500 GMT may bring in an airmass with entirely different properties. 
Fortunately, this does not happen often in the temperate climate of western Europe. When it does, the 
forecaster may be able to adjust the equation by using, as input, temperature and dew-point of the new 
airmass.

Showers occurring shortly before 1500 GMT may temporarily alter temperature and dew-point 
considerably, thus leading to an erroneous outcome.

The data set that was available for the present investigation contained only three winters, all of which 
were rather mild. Therefore, the number of days with snow cover were far too few to warrant any 
conclusions. It is highly likely, however, that on such days the urban minimum temperature will be 
underestimated (Chandler, 1965).

Finally the water surface temperatures of the river Maas and the North Sea (at 25 km to the west) may 
exert an influence. It is believed, however, that only in cases of extremely high or low water surface 
temperatures will this influence be noticeable in too cold and too warm forecasts respectively.

8. Conclusions
It has been shown that there exists a strong relationship between the sum of temperature and dew- 

point, observed at Zestienhoven Airport at 1500 GMT, and the subsequent minimum temperature at a 
site in the Rotterdam urban area. Further refinement could be achieved by taking into account some 
simple meteorological variables, as well as a correction factor to eliminate seasonal influence. The 
resulting regression equation performs satisfactorily and may be regarded as a useful forecasting tool.
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Notes and news

Mr T. Nagle receives his farewell presentation from the Director of Services, Mr F.H. Bushby.

The Principal, Mr S.G. Cornford, makes a presentation to Mr T. Nagle on his retirement.



108 Meteorological Magazine, 111, 1983

Retirement of Mr T. Nagle
On 30 September the Office bade farewell to Tom Nagle at a gathering in the College at Shinfield Park. 

In his ten years as bar steward at the College Tom probably became better known personally to more 
meteorologists throughout the world than any meteorologist. Indefatigable, cheerful and with 
knowledge, skill and style born of his West End training and experience, he was absolutely the right man 
for the job.

The evening was a happy beginning to retirement after 60 years at work. On behalf of the whole Office 
a presentation was made by the Director of Services, Mr F. H. Bushby, and, on behalf of all past and 
present members of staff and courses, by the Principal, Mr S.G. Cornford.
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