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An assessment of seasonal predictability using Atmospheric General
Circulation Models

R.J. Graham, A.D.L. Evans, K.R. Mylne, M.S.J. Harrison and K. B. Robertson
Meteorological Office, UK

Summary

Seasonal predictability is investigated using a 15-year set of four-month-range, 9-member ensemble
integrations from AGCMs involved in the European project, PROVOST. The integrations were performed using
prescribed ideal (observed) Sea Surface Temperatures (SST), and skill attained (referred to as “potential skill)
therefore represents an estimated upper bound on skill achievable with current models using predicted SST. Most
analysis is presented for the UK Met. Office Unified Model (UM), the ECMWF T63 model (referred to as T63)
and an 18-member multiple-model ensemble (JT2) constructed from these individual models. The benefits of
higher-order multiple-models (employing all 4 participating PROVOST AGCMs) are also investigated. Evaluation
is focused on four assessment regions; the tropics, the northern extratropics, Europe and North America. A variety
of skill measures are used, with emphasis on assessment of probabilistic skill for the basic events: 3-month-mean
850 hPa temperature above/below normal; 3-month precipitation accumulation above/below normal. A summary
of main results is provided below.

Potential skill: All skill measures for month 1-3 850 hPa temperature and precipitation calculated for
the entire tropical and northern extratropical regions indicate that, while skill is highest in the tropics, skill is also
available over the northern extratropics for all three models (UM, T63 and JT2) in all seasons. Scores for the
northern extratropics are highest in spring (MAM). Scores for precipitation are generally lower than for 850 hPa
temperature, however there is evidence of substantial potential for rainy season predictions in some tropical
regions. Over Europe and North America skill scores for 850 hPa temperature are (for at least one of the UM,
T63 and JT2 models) comparable to those of the northern extratropics in all seasons. Peak skill occurs over
Europe in MAM (as found for the northern extratropics). In contrast peak skill over North America occurs in
DJF, apparently as a result of enhanced predictability of the DJF PNA pattern during ENSO events. In non-ENSO
years skill over Europe and North America is similar, suggesting that the greater predictability often attributed
to the North American region relative to Europe may apply only during ENSO events. Skill for months 2-4 is
generally lower than for months 1-3, though there is evidence that during ENSO events levels of skill in the first
three months are maintained into the second three months. Potential skill is also found for precipitation over
Europe and North America, with the exception of JJA and SON over Europe when scores appear similar to those
available from climatology.

Skill prediction: ENSO forcing has a marked global impact on model predictability. Centres of
predictability in the tropical Atlantic and Indian Ocean regions in non-ENSO years are found to transfer to the
East Pacific during ENSO events. Largest ENSO-related skill enhancements over North America are found in
DJF and over Europe in the following (post-ENSO peak) MAM season. Ensemble spread appears a useful
indicator of ensemble-mean skill in some seasons over Europe and North America. Thus prospects for skill
prediction appear promising, perhaps using strategies which combine information on both the state of ENSO and
ensemble spread.

Benefits of multiple-model ensembles: Multiple-model ensembles enhance prediction capabilities, allowing
the strengths of the individual AGCMs to be exploited without extensive a priori calibration of each model. The
multiple-model ensembles frequently provide a filter for the more skilful individual model (the identity of which
varies with season and region). The key factor determining the skill of the multiple-model appears to be the skill
of the most skilful component ensemble and does not appear strongly connected with the increased ensemble size.

Use of persisted SST: Tests indicate that a substantial proportion of the skill achieved using observed
SST is retained using persisted SST anomalies from the month preceding the initial date of the integration,
indicating that use of persisted SST anomalies is a viable method for real-time seasonal prediction, at least for
ranges of up to one season ahead.

User value: A methodology for linking technical forecast quality with financial value for users has been
outlined using the Relative Operating Characteristic (ROC) and the user cost/loss matrix. Examples indicate
promising potential for user value of seasonal predictions not only over tropical areas, but also in extratropical
areas such as Europe. There is evidence that probabilistic predictions provide potential value for a greater range
of applications than do deterministic predictions.

KEYWORDS: Seasonal predictability AGCM ensembles  Skill prediction  Multiple-models
User value



1. Introduction

The scientific basis for seasonal prediction stems primarily from evidence that the atmosphere’s lower
boundary, particularly the Sea Surface Temperature (SST), influences weather regime frequency
statistics (Palmer and Anderson, 1994) - and consequently the seasonal-mean weather conditions. The
SST field itself evolves slowly compared with individual synoptic-scale weather systems, and is often
relatively predictable (at least in the tropics) - thus representation of the SST evolution in Global
Circulation Models, so-called dynamical seasonal prediction, provides a potential means of generating
forecasts of seasonal-average weather. This paper describes investigations to evaluate that potential.

The work has been performed as part of the recent European project, PROVOST (PRediction Of
climate Variations On Seasonal and inter-annual Timescales) which has provided an extensive
simulation dataset that expands in a number of ways on those previously used. Briefly, the dataset
(described in Section 2) comprises 4-month-range, 9-member ensemble AGCM integrations run over
ideal (observed) Sea Surface Temperatures (SST), for all four seasons over the 15-year period 1979-
93. The period contains 5 El Nifio Southern Oscillation (ENSO) events, allowing assessment of the
impact of ENSO on predictability. Moreover, integrations were repeated at four European centres
using different AGCMs, allowing opportunities for comparing model performance and for assessing
the potential performance benefits from combining predictions from different models. Here we
describe research performed at the UK Meteorological Office (UKMO) as part of the PROVOST
project. The key objectives and scope of the study are expanded below.

1) Assessment and comparison of AGCM "potential " skill.

A main objective is to obtain estimates of the upper-bound on skill (referred to as “potential” skill)
achievable using coupled Global Circulation Models (CGCMs) by measuring the skill obtained when
uncoupled AGCMs are forced with observed (i.e. perfect predicted) SST. Empbhasis is placed on
assessment and comparison of the UKMO Unified Model (Cullen, 1991) and the ECMWF T63
ensembles (hereafter referred to as the UM and T63 ensembles). The purpose of the intercomparisons
is to gain insight into the potential enhanced capability available through combining the strengths of
two or more AGCMs. Potential skill is evaluated on a global scale and for all four seasons with
emphasis on the tropics, northern extratropics, Europe and North America.

Initial investigations were performed to assess the systematic AGCM errors in the PROVOST
simulations. It was found that although, for all models, biases may be large relative to the climate
variability in some regions/seasons, an a posteriori linear correction for the bias resulted in promising
levels of overall skill. In this paper we therefore focus on verification of the bias-corrected simulations.
A discussion of the model biases themselves is not presented.

it) Assessment of the prospects for skill prediction

Large amplitude warm/cold SST events associated with the El Nifio/La Nifia phases of ENSO (EI Nifio
Southern Oscillation) in the tropical Pacific may, through persistent thermal forcing on the atmosphere,
give rise to enhanced predictability in some regions. Thus “windows of opportunity”, when seasonal
predictions might be expected to have relatively high skill, may occur for some regions/seasons - and
may be identifiable in advance. To investigate the impact of ENSO forcing on predictability, the
distribution of skill between the 5 ENSO years (El Niiio; 1982/83, 1986/87, 1991/92 and La Niiia;
1984/85, 1988/89) and 10 non-ENSO years is investigated. Hereafter in this paper we will refer to
warm SST events as PW (Pacific Warm), cold events as PC (Pacific Cold) and both cold and warm
events collectively as PC/W, to emphasise that it is specifically the presence (or otherwise) of SST
anomalies in the tropical Pacific SST that is of interest.

The degree of spread in the ensemble solutions has been used with some success as a predictor of skill
in medium-range ensemble integrations (see e.g. Molteni et al. 1996); low spread ideally associating



with high ensemble-mean skill. Here we investigate whether ensemble skill/spread relationships are
also present at the seasonal range. The impact of PC/W events on the ensemble skill/spread
relationship is also examined.

iii) Assessment of the benefits available from multiple-model ensembles

Studies of medium-range prediction have shown that multiple-model ensembles, comprising a
combination of members run with different AGCMs, provide significant performance benefits relative
to the component individual ensembles (e.g. Evans et al., 1998). Here we investigate whether such
benefits extend to the seasonal range. Analysis is focused on a joint 18-member ensemble (referred
to as JT2) constructed by combining the UM and T63 ensembles; however higher order multiple-
models, comprising three and four of the PROVOST AGCMs are also evaluated. Benefits from
combining models in this way derive potentially from both the inclusion of complementary predictive
information (Brown and Murphy, 1996; Evans ef al., 1998), and also, in the case of ensembles, from
the increased ensemble size. The factor providing the greatest benefit, i.e. model combining or
increased ensemble size, is discussed.

iv) Assessment of skill available using persisted SST anomalies for boundary forcing

Extensive hindcast validation of coupled Global Circulation Models (CGCMs) is currently restricted
by the relatively short (3-D) ocean data record, making validation of such models for operational use
difficult. In contrast, the relatively long-term archives of SST analysis (e.g. Rayner et al. 1996;
Reynolds and Smith 1994) may be used to run hindcasts for validating prediction systems using
persistence of SST anomalies (SSTA) for boundary forcing. Prescribed forcing from persisted SSTA
is likely to be a competitive (and cheap) option, at least for one season ahead, because of the usual
relatively slow evolution of the SST field. Here we test the viability of using persisted SSTA for
operational real-time prediction by comparing skill from hindcasts against the skill benchmarks
obtained from the "perfect-SST" PROVOST simulations.

v) Evaluation of the potential value of seasonal predictions to users

For operational seasonal prediction to be a viable concern, it will be necessary to establish that
potential customers will be able to extract financial benefit from the forecasts, given the levels of
technical skill that are available. To this end we outline a methodology for estimating user value. The
method is based on the user cost/loss matrix associated with the outcome of probabilistic and
deterministic predictions of specified weather events.

2. Experimental details

2.1 The PROVOST simulations

The PROVOST simulations are used to assess potential AGCM skill. They comprise 4-month
ensemble integrations for each season in the 15-year period December 1979 to March 1994. The 4-
month integration periods were specified as: March to June (MAMJ - northern spring); June to
September (JJAS - northern summer); September to December (SOND - northern autumn); and
December to March (DJFM - northern winter). Each season was simulated with 3 different AGCMs;
the UKMO Unified Model (UM) run at climate resolution (3.75° long., 2.5° lat., 19 levels); the
ECMWE T63 L31 model (referred to here as T63) and the Météo-France ARPEGE T42 L31 model
(referred to as AP1). A fourth set of integrations were run, for the winter season only, by Electricité
de France (EDF) using the ARPEGE model at T63 L31 truncation (referred to as AP2). The UKMO
integrations were made using version 3.4 of the UM with HADAM2b physics; the performance of this
version of the model has been discussed in Hall er al. (1995).

Integrations with each model were made in 9-member ensembles initialised with the 12 UTC analyses



from the ECMWF Re-Analysis (ERA - Gibson er. al. 1997) on the 9 consecutive days before each
season. Observed values of Sea Surface Temperature (SST) and ice cover, corresponding to a
“perfect" prediction of SST and ice cover, were used for lower boundary forcing, with values updated
at 5-day intervals during the integration. The observed SSTs and ice cover were obtained from the
UKMO Global sea-Ice and Sea Surface Temperature (GISST) analyses (Rayner et al. 1996) up to
October 1981 and the Reynold’s OI analyses (Reynolds and Smith 1994) for the remaining period.

The multiple-model configurations studied are an 18-member combination of the UM and T63
ensembles (referred to as JT2), a 27-member combination of the above two models and the AP1
(referred to as JT3) and a 36-member combination of all four models (referred to as JT4, and available
for winter simulations only).

Simulated monthly and seasonal averages are derived from daily model values, valid at 12 UTC. In
order to correct (a posteriori) for model bias, simulated anomalies are calculated by subtracting the
model climate (defined over all 9 ensemble runs and all 15 years) from the individual ensemble fields,
while the observed anomalies are derived from the ERA 15-year climatology.

2.2 AGCM hindcasts using persisted SST anomalies

Hindcasts experiments have been performed for twelve of the PROVOST DJF and MAM periods
(1982-1993), for the UM only, using persistence forecasts of SST (rather than observed SST) to force
the model lower boundary. The persistence SST forecasts are produced by adding one-month SSTA
from November (DJF hindcasts) and February (MAM hindcasts) to the GISST or Reynolds OI
climatological SST fields. The evolution of sea-ice is represented in the following way; where there
is open sea initially, ice forms if SST,;,+SSTA falls below -1.8°C (personal communication, Davey).
Thus a warm SST anomaly delays, while a cool anomaly hastens, the formation of sea-ice.

2.3 Verification
Assessments have been performed for 850 hPa temperature and precipitation using a variety of skill
measures. However, emphasis is given to assessing potential probabilistic skill for the following events;

- 3-month mean 850 hPa temperature above/below normal,
- 3-month mean total precipitation above/below normal,

where we consider chiefly the 3-month mean over the first three months of the simulations.

Temperature and rainfall are selected for evaluation because of their interest to a wide range of users.
Note that 850 hPa temperature anomalies may generally be considered a proxy for surface temperature
anomalies. It is recognised that to be of benefit to many applications, skill at predicting higher
threshold events on these variables (rather than just the sign of the anomaly) will need to be proven.
However, evaluation for "above/below" events is considered a necessary first step - and skill at this
level may be of practical use to some users. In addition to the event-based verification, conventional
evaluations (e.g. anomaly correlation) of ensemble-mean 850 hPa temperature are also presented. Four
main assessment areas are employed; the tropics, 30°N to 30°S; the northern extratropics, 20°N to
80°N; North America, 130°W to 60°W, 30°N to 70°N and Europe, 12.5°W to 42.5°E, 35°N to 75°N
(Fig. 1).

Both the PROVOST simulations and the hindcasts are verified using the ERA dataset - both for 850
hPa temperature and precipitation. ERA precipitation is based on the accumulation over a 24-hr
forecast run from the ERA analyses. The use of model-based precipitation analyses is not ideal, for



obvious reasons, but should be sufficient to provide large-scale estimates of potential skill for
“above/below” events.

In this study, output from the T63, AP1 and AP2 simulations, archived at ECMWEF, were interpolated
onto the UM model grid (3.75° long., 2.5° lat.) prior to analysis.

3. Assessments of potential skill

3.1 Skill assessments for 850 hPa temperature

In this section we present verifications of the simulated anomalies in average 850 hPa temperature over
the first three months of the PROVOST integrations. Results from a number of different skill
diagnostics are compared with the aim of building confidence in generalised assessments of skill.
Probabilistic skill is assessed using the Relative Operating Characteristic (Stanski ez. al. 1989) and
verification of the most probable anomaly sign (referred to as COMPAS scores - see Section 3:122).
Deterministic (ensemble-mean) skill is evaluated using temporal correlation and spatial anomaly
correlation scores. For brevity, discussion is focused on results from the UM simulations, with
comparisons between the UM, T63, and multiple-models (JT2, JT3 and JT4) provided in summary
form.

3.1.1 Probabilistic skill

The Relative Operating Characteristic (ROC) for a specific event is expressed in the form of a curve
plotting hit rates against false alarm rates for the event over a range of forecast probability thresholds.
The probability thresholds considered are, nominally, 0%, 20%, 40%, 60% and 80%. In practice the
thresholds are defined according to the numbers of ensemble members which predict the event;
threshold definitions for the 9-member ensembles are given in Table 1a, with an analogous procedure
applied for the multiple-model ensembles. Note that the hit and false alarm rates, for each probability
threshold, are defined as proportions of the observed frequencies of the event and non-event
respectively (Table 1b). ROC evaluations of the PROVOST simulations for the four assessment regions
have been constructed by calculating hit and false alarm rates over the spatial/temporal domain
represented by all grid points in the region and all 15 PROVOST years.

For UM MAM simulations of the event 850 hPa temperature below normal, hit rates exceed false
alarm rates for all threshold probabilities (20%, 40%, 60% and 80%) of the event in all four
assessment regions (Figs 2a-d), indicating that the ensemble has skill in detecting the event both in
tropical and extratropical regions. Skill is greatest in the tropics (Fig. 2a) where the hit rate/false alarm
rate ratios are largest. Skill over Europe (Fig. 2¢) is generally comparable to that of both the northern
extratropics as a whole (Fig. 2b) and is somewhat greater than found for North American region (Fig.
2d).

Note that the greater the skill of the ensemble, the more the ROC curve must bow up towards the top
left corner; the point (0,1) corresponding to perfect deterministic skill (i.e. all members correctly
predict the event over all forecasts), and points on the diagonal corresponding to no skill (i.e. skill is
no better than that available from a climate or random forecast). Thus the area under the ROC curve
provides a useful overall index of skill; a value of 0.5 (the area under the diagonal) or less indicating
no skill, and a value of 1 indicating perfect deterministic skill. The area under the ROC curve will be
referred to hereafter as the ROC score. ROC scores for the tropics, northern extratropics, Europe and
North America (Figs 3a-d) are 0.7, 0.61, 0.63 and 0.58 respectively. ROC scores for the event, 850
hPa temperature above normal, are identical to those for the below normal event (because the events
are complementary) and are not shown.



Seasonal differences in ROC scores, and differences in performance of the UM, T63 and JT?2
ensembles are compared in Figure 3. For all three ensembles, the ROC score exceeds the 0.5 threshold
for skill in all four regions and for all seasons (except for the T63 SON simulations over Europe).
Thus potential skill is available for all four seasons both in the tropics and in extratropical regions,
including Europe and North America. Little skill variation with season is evident in the tropical region
(Fig. 3a) with all three ensembles achieving ROC scores of order 0.7. In the northern extratropics (Fig.
3b) the ROC scores for all seasons/models are lower than in the tropics, at order 0.6. There is
evidence, most notably in the T63 simulations, of a spring (MAM) maximum and autumn (SON)
minimum in skill. Brankovi¢ et al. (1994) have also found skill in the northern extratropics a
maximum in spring (based on a 5 year set of 3-member ensemble mean simulations). Note that of the
three ensemble configurations, the JT2 ensemble achieves the best overall performance, achieving in
each season of both regions a ROC score equal to or better than that of the better individual model

(the UM appears better in the tropics, while the T63 has the better performance in the northern
extratropics).

Seasonal and model differences in ROC score are more pronounced in the regional areas of Europe
and North America (Figs 3c&d). Over Europe the ROC score for all three ensembles is at a maximum
in spring (MAM) and a minimum in autumn (SON) - as found for the northern extratropics. In
contrast, peak scores for North America, in all three ensembles, occur in the winter (DJF) season.
Enhanced skill over North America in winter may reflect higher predictability in winters with PC/W
events (see Section 4). The season with lowest skill over North America differs between the models
(summer for the UM; autumn for the T63).

Comparisons of individual model performance indicate that the UM performs better over Europe, while
the T63 is more skilful over North America. The better model in each region achieves ROC scores
comparable to those obtained for the northern extratropics (e.2. MAM over Europe and JJA over North
America (Figs 3c&d)), indicating potential gains in capability from the use of more than one AGCM
in an operational environment. Note that the JT2 ensemble appears to act as a filter for the more
skilful individual model, and thus provides a means of exploiting the strengths of each model. Even
where differences in the ROC score between models is relatively large (see again MAM over Europe,
JJA over North America (Figs 3c&d)), the value achieved by the Joint JT2 system is similar to that
obtained by the more skilful model. The main exception being the autumn season over Europe, where
ROC score for the T63 simulation is below the 0.5 threshold for skill.

A corresponding analysis, including all 4 PROVOST individual models and the multiple-model
combinations JT2, JT3 and JT4 is provided in Fig. 4 for simulations over Europe and North America.
When individual model skill is at similar levels the multiple-models provide improved skill (e.g. JJA
simulations over Europe, Fig. 4a), which may derive both from the presence of additional models and
from the increased ensemble size. However, the most striking benefit provided by the multiple-model
ensembles is the skill filtering property in regions/seasons when skill with the individual models varies
widely, in this respect the benefits noted for JT2 are usefully extended by the JT3 and JT4 ensembles.
Note, for example, the DJF simulations over North America (Fig. 4b) for which each multiple-model
(JT2, JT3 and JT4) consistently matches the skill of its most skilful individual component model; T63
for JT2, AP1 for JT3 and AP2 for JT4 - resulting in best overall skill (out of the multiple-models) for
JT4. Similar results are found for the DJF simulations over Europe (Fig. 4a), where the higher skill
of the UM and AP1 models is matched by the JT4 ensemble, despite relatively lower skill from the
T63 and AP2. The fact that JT4, a 36-member ensemble, provides similar skill to the best 9-member
individual ensemble clearly indicates that the increased ensemble size plays only a small role in
producing the relatively high skill of the JT4 - the key element in determining the skill of the multiple-
model appears to be the skill of the most skilful component ensemble. Of course, it may be possible
to duplicate the skill filtering effect with fewer than 9-members of each individual ensemble. These

-



two examples show that the relative skill of individual models may differ markedly with season and
region and that the multiple-model technique can usefully exploit the strengths of all individual
models. Moreover, because of its skill filtering properties, the multiple-model improves potential
capability without the need for a priori identification of the strengths of the individual component
models.

Global spatial plots of ROC score, generated by obtaining ROC curves for each model grid point from
the 15 available simulations, are provided for the UM simulations in Figures Sa-d. The plots give
further insight into the spatial variation of skill, though, because of the smaller sample size (15),
individual values should be treated with caution. ROC scores exceed the 0.5 threshold for skill over
many parts of the globe (shading breaks in at 0.55 on Fig. 5). Consistent with the regional analysis,
high ROC scores are most widespread in the tropics where the ensemble simulations frequently reduce
to a single deterministic solution (e.g. consistent indication of the event in all 9 ensemble members)
and maximum deterministic skill over the 15 year period is approached or achieved in many areas.
Marked regional variations in ROC score are evident both in the tropics and extratropics, with the
regional assessment areas (particularly North America) encompassing regions of widely different skill.
In both the tropics and extratropics ROC scores are generally highest over the oceans and lowest over
continental interiors.

Although ROC scores in the tropics are generally relatively high, scores fall below 0.55 in some
regions. Striking examples, when ROC scores are below 0.55 over a substantial area, may be seen over
the West Pacific in MAM and JJA (see e.g. Fig. 5b (JJA) when the minimum extends into parts of
Indonesia). The implication is that, in this region, the model is unable to resolve above and below
normal seasonal average 850 hPa temperature events, despite provision of observed SST. A similar
minimum is evident in ROC scores obtained with the T63 (not shown). Regions of relatively low score
may be the result of local deficiencies in the model atmospheric response to SST - indicating
deficiencies in the parameterisation of heat transfer processes (e.g. convection). In contrast to the West
Pacific, the East Pacific region shows a much more consistent coverage of relatively high ROC
scores, indicating a more satisfactory model response.

Correspondence of high ROC scores with regional weather regimes may be noted in some areas. For
example highest ROC scores (exceeding 0.9) occur over India in JJA (Fig. 5b) - indicating that best
skill for temperature coincides with the peak months of the south-west monsoon. In contrast highest
ROC scores over Indochina and south-east Asia occur in DJF and MAM (Figs 5d&a, respectively),
indicating that, for this region, best skill is found during the north-east monsoon.

Over Europe, highest scores tend to be concentrated in northern and western regions; in winter (Fig.
5d), for example, peak scores are found north of 60°N and also over the western Mediterranean area,
with a distinct minimum over central areas. Over North America the higher scores are located over
southern, western and northern continental fringes. Note that ROC scores over the North American
interior are frequently below 0.55, indicating lower skill than over much of western Europe (notably
in spring, Fig. 5a). Scores are relatively low over much of extratropical Asia, with scores above 0.55
most widespread east of 90°E and peak values occurring over the Pacific rim.

3.1.2 Verification of the most probable anomaly sign

A lower order verification (relative to the ROC score) of the probability distribution may be obtained
by verifying the most probable anomaly sign, i.e. the sign indicated by the majority of ensemble
members (e.g. 5 or more for the 9-member ensembles). The number of times the most probable
anomaly sign is correct may then be calculated over all 15 PROVOST years for each season. This
measure of skill will be referred to as the COMPAS (COrrect Most Probable Anomaly Sign) score.
One advantage of the COMPAS score is that it provides an event-based verification that is readily



interpreted by non-specialists.

An example of this diagnostic is provided in Fig. 6 which shows the distribution of COMPAS scores
obtained with the UM for MAM simulations of 850 hPa temperature anomalies. The distribution of
COMPAS scores is well correlated with the corresponding ROC scores (Fig. 5a). Scores are highest
and most widespread in tropical regions - where areas with frequencies exceeding 11 (out of 15) are
substantial, and peak scores exceed 13. (Scores equal to or exceeding 11 may be considered significant
at about the 95% level or greater, since the chance probability, assuming a binomial distribution, is
~6%.) Consistent with the ROC analysis, areas with significant COMPAS scores (i.e. 11 or more) are
less widespread in the extratropics. However, scores exceed 11 over a number of regions including
parts of western Europe and North America. COMPAS scores obtained with the T63 and JT2
ensembles (not shown) show similar large-scale features to those obtained with the UM.

The percentage geographical area for which the COMPAS scores exceed the 95% significance level
is compared for all four seasons and three ensembles in Figs 7a-d. Highest coverage of significant
skill, of order 35%, is found in the tropics (Fig. 7a). Peak coverage of skill over the northern
extratropics (Fig. 7b) is found in spring (MAM) at order 25%, with a minimum in autumn (SON) at
order 15%. Areal coverage of significant COMPAS skill appears relatively low over Europe in DJF
(Fig. 7c) despite relatively high ROC scores (Fig. 3c). This latter result is consistent with the local
concentration of higher ROC scores over north-western Europe and the Mediterranean (Fig. 5d)
discussed previously. Over North America the areal coverage of significant COMPAS skill is highest
in MAM (Fig. 7d), though the overall ROC score is highest in DJF (Fig. 3d).

Comparison of Figures 7c&d gives a further indication that useful complementary information exists
in the UM and T63 performances over Europe and North America. Greater coverage of COMPAS skill
is obtained with the UM over Europe and with the T63 over North America. Skill coverage is
generally lower in the JT2 model; a result which arises because small displacements in the location
of skill peaks between individuals models lead to a spatial smoothing of the JT2 COMPAS scores, and
consequently to lower coverage above the specified threshold. Thus for some purposes, selection of
the better individual model for each region is an alternative to model combining. Note however that,
in contrast to the multiple-model method, strategies for exploiting complementary model information

that are based on model selection would require a priori calibration of the strengths and weaknesses
of the individual models.

3.1.3 Temporal and spatial correlation of the ensemble mean

The ensemble-mean field represents the first moment of the probability distribution and its correlation
with the observed field gives an indication of basic model skill, which may be contrasted with the
event-based probabilistic verification of the previous sub-Sections. The distribution of point
correlations of UM ensemble-mean and observed 850 hPa temperature fields is provided in Figures
8a-d. The significance of the correlations has been estimated using a Monte-Carlo technique to
estimate the probability of achieving equivalent correlations by chance (500 correlations were
calculated, each after randomly scrambling the yearly order of the ensemble-mean values). Correlations
are plotted only when they are significant at the 90% level or higher. As found for the ROC score and
COMPAS score assessments, skill is best in the tropics where the correlation coefficient (CC)
frequently exceeds a value of 0.6, with local peaks in excess of 0.8. Significant correlations are also
present in the extratropics, though with lower CC values of order 0.4 with peaks to 0.6. In most
regions/seasons significant correlations of the ensemble mean correspond well with regions of high
ROC score (Figs 5a-d) and COMPAS score (Fig. 6 - MAM only). However there are some exceptions,
notably in summer over Europe (Fig. 8b) where the CC indicates little significant skill, in contrast to
the ROC score (Fig. 5b) which suggests a local peak in probabilistic skill in western regions (see end
of this section for a discussion).



Average spatial anomaly correlation coefficients (AC scores) of ensemble mean values over the four
assessment regions are provided for the UM, T63 and JT2 ensembles in Figures 9a-d. The averages
are over the 15 PROVOST years (14 for T63 and JT2 in DJF) and are calculated using the Fisher z-
transform method. AC scores are positive in all seasons and all regions, except for T63 autumn (SON)
simulations over Europe. AC scores differ from zero with high levels of significance (from a t-test)
in the tropics and northern extratropics in all seasons and with all three ensembles (when significance
exceeds a threshold of 95% or 99%, the threshold value is plotted above the bars). Over North
America significant AC scores are obtained in all seasons with all three ensembles, with best
performance from the T63. Over Europe significant AC scores are obtained with at least one model
in all seasons (all three ensembles in MAM; T63 only in JJA; UM and JT2 in SON and DJF). The
latter result indicates that, as an alternative to multiple-model methods, selective use of two (or more)
AGCM s can enhance prediction capabilities, provided the strengths and weaknesses of the individual
models are established.

Seasonal and model differences in mean AC scores show broad similarities with the results of the ROC
analysis. In particular skill scores are highest in the tropics (Fig. 9a - average AC score of order 0.4 -
0.5), where seasonal and model differences are small; in the northern extratropics (Fig. 9b) all three
ensembles indicate best skill in MAM (AC scores are of order 0.2-0.3); over Europe skill is most
consistent over the three ensembles in MAM and DIF, with scores similar in both periods, and
comparable to the northern hemispheric values; over North America all three ensembles indicate best
skill in DJF.

Benefits from the JT2 ensemble are evident in the tropics (Fig. 9a) and over Europe (Fig. 9¢c) where
the AC scores obtained exceed or are similar to those of the better individual model (except for JJA
over Europe). In particular the JT2 achieves a score in SON over Europe similar to that of the UM
(and significant at the 99% level) despite the negative correlation obtained with the T63 ensemble.
Similar benefits are not evident over the North American region (Fig. 9d) where the better individual
model performance obtained with the T63 ensemble is not matched by the JT2.

Although, as described above, ROC and AC scores give similar results in most cases, different results
are found for some seasons/regions. For example, the UM AC score over Europe in SON is
comparable with that obtained for DJF and MAM (Fig. 9c), whereas the ROC score indicates a
seasonal minimum in UM skill for SON (Fig. 3c). Another discrepancy occurs for the JJA period, for
which a marked minimum in AC score occurs over Europe (Fig. 9¢, and also for the point correlations
in Fig. 8b) which is not matched with a corresponding minimum in the ROC score (Figs 3c&5b).
Differences in AC and ROC skill assessments may be expected, since the former is a measure of the
phase correspondence between two fields while the latter measures skill for threshold values in the
field. Differences may also rise through the greater information content of the probabilistic format.
Ensemble members with positive correlations are present in all seasons and all years, including years
in which the ensemble mean is negatively correlated (Fig. 10). Thus years with zero or negative AC
score may still contribute to positive probabilistic skill. A notable example is DJF 1989/90 (Fig. 10d),
for which the majority of members are positively correlated (best member approaching a value of 0.8)
while the ensemble mean is negatively correlated. For the case of average JJA skill discussed above,
note that 5 of the 15 years have negative ensemble-mean AC scores (Fig. 10b), however in each of
these years the ensemble contains members that are positively correlated, sometimes with relatively
large coefficients (e.g. 1980, 1981 and 1984). Thus there is information regarding the potential for
probabilistic prediction, which may contribute to a higher ROC score, that is not present in
verifications of the average ensemble-mean anomaly correlation coefficient.



3.2 Skill assessments for precipitation

For reasons of brevity, we restrict diagnosis of skill for precipitation to results obtained with the ROC
analysis. ROC curves for UM MAM simulations of the event 3-month mean total precipitation below
normal are provided in Figures 11a-d (ROC scores for the complementary event “above normal
precipitation” are identical and are not shown). Skill above that of a random or climate forecast is
evident in all four regions (i.e. ROC scores exceed the 0.5 threshold). Highest scores are found for
tropical regions (0.62). The score for Europe (0.55) is comparable to that of North America (0.54) and
the northern extratropics as a whole (0.56). Hit rates exceed false alarm rates for all probability
thresholds in the tropics; however, in the northern extratropics and two sub-regions hit rates and false
alarm rates at the 20% and 80% thresholds are similar (intersections lie close to the "no-skill"
diagonal). In all regions (and seasons, see below) the ROC score is lower than for 850 hPa temperature
(compare Figs 2a-d). A lower level of predictability for precipitation is to be expected, since its

production is sensitive to a greater range of "chaotic" processes than act on the 850 hPa temperature
field.

Seasonal differences in ROC score for precipitation, and differences in performance of the UM, T63
and JT2 ensembles are compared in Figures 12a-d. Little skill variation with season is evident in the
tropical region (Fig. 12a), with all three ensembles achieving ROC scores of order 0.6. In the northern
extratropics (Fig. 12b) the ROC scores for all seasons/models are lower than in the tropics, at order
0.55, with an indication of enhanced skill in DJF and MAM relative to JJA and SON. As noted for
the 850 hPa temperature simulations, the JT2 ensemble achieves the best overall performance,

obtaining in most seasons of both regions a score similar to or better than that of the better individual
model.

Differences in performance between seasons and models are more pronounced over Europe and North
America (Figs 12c&d). In both regions ROC scores are highest in spring and winter, with values
comparable to the northern hemispheric values. Over Europe (Fig. 12¢) scores in winter and spring
are generally similar, while over North America (Fig 12d) DJF appears the season of highest skill (as
found for 850 hPa temperature). In both regions scores for JJA and SON are below the hemispheric
values, notably over Europe where for both seasons scores fail to exceed the 0.5 threshold for skill
in two of the three ensembles. On average there is little difference in the performance of the UM and
T63 ensembles. Note, however that, with the exception of the relatively low skill seasons (JJA and
SON) over Europe, the ROC score achieved by the JT2 ensemble exceeds or is similar to that obtained
by the more skilful individual model.

Global spatial plots of ROC score are provided for the UM simulations in Figures 13a-d. To reduce
“noise" in the observed and simulated precipitation fields, both have been smoothed over 3x3 grid-
point boxes (7.5°lat. by 11.25° long.) prior to calculation of the ROC curves. The distribution of skill
is broadly similar to that found for 850 hPa temperature (c.f. F igs Sa-d), however skill coverage is
generally lower, particularly at higher ROC scores (e.g. 0.8 and above). As for 850 hPa temperature,
highest scores (exceeding 0.9 in places) occur in tropical regions. However, scores greater or equal
to 0.55 (scores exceeding 0.5 indicate skill) are present over many parts of the extratropics with
notable peaks in some regions (e.g. over north-western Europe in MAM).

In some tropical regions high ROC scores (order 0.9) correspond with the local wet season, indicating
substantial potential for seasonal rainfall prediction. Examples are north-east Brazil in MAM (Fig. 13a,
relatively high ROC score values are also present over parts of the tropical north-east coast in JJA
(Fig. 13b) and DJF (Fig. 13d)); equatorial Africa (notably the Guinea coast) in JJA (Fig. 13b),
implying model skill in simulating the average activity/location of the ITCZ; and the Indian sub-
continent in JJA (ROC score ~0.7) - implying skill in simulating average monsoon rainfall in this
region. Evidence of potential model skill in these regions has led to production of experimental real-
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time predictions (see e.g. Harrison er al., 1997a&b and Evans et al., 1998a). Skill, albeit at a lower
level (ROC scores ~0.6-0.7), also appears present for the East Asian south-west monsoon in JJA over
Indochina and southern China (Fig. 13b). Over Malaysia and Indonesia highest ROC scores are found
for JJA and SON, perhaps indicating better skill with rainfall associated with the south-west monsoon
(May to September) than that of the north-east monsoon (November to April). Relatively high ROC
scores are present over parts of Australia in all seasons. However, simulation of the wet season over
tropical northern Australia (DJF) appears relatively unskilful (Fig. 13d). Other tropical regions with
relatively high ROC scores include parts of Central America and the Caribbean, for which ROC
scores are relatively high over much of the year.

Marked regional and seasonal variations in ROC score are also present in the extratropics. Over North
America highest scores are found over southern and western regions, with the notable exception of
DJF when relative high scores (order 0.7) are also present over central and north-western regions. Over
Europe, as noted above, highest scores (order 0.8) are found in north-western regions (northern UK
and Scandinavia) in MAM. The caveat that these scores are based on a small sample should be
emphasised, however they serve to indicate where regional enhancements in skill may be expected.

4. Prospects for skill prediction

Although 15-year average ensemble mean AC scores (Fig. 9, 850 hPa temperature) are below values
usually considered useful for medium-range NWP (a threshold of 0.6 is frequently quoted for
instantaneous fields), particularly skilful years are present in the timeseries (Fig. 10). In MAM and DJF
(Figs 10a&b), for example, AC scores exceed an (arbitrarily selected) value of 0.5 in 4 and 6 years
respectively. However, the presence of such skilful years is only of value if the occurrence of
relatively high skill can be predicted in advance. In this section we examine the prospects for skill
prediction. We first consider the impact of large amplitude PC/W events on global-scale predictability,
secondly we consider the value of both PC/W events and internal ensemble spread as predictors of
skill over North America and Europe. Analysis is restricted to 850 hPa temperature.

4.1 The impact of PC/W events on predictability for SON, DJF and MAM

To assess the global impact of PC/W events on seasonal predictability we first use the COMPAS score
introduced in Section 3.1.2. COMPAS scores have been calculated separately for the 5 DJF periods
with PC/W events; 1982/3, 1986/7, 1991/2 (PW - El Niiios) and 1984/5 and 1988/9 (PC - La Niiias),
and for the 5 SON/MAM periods preceding/following these DJF periods when substantial SST
anomalies are also present (Fig. 14). Note, however that SST anomalies are also substantial in two
SON periods (1985 and 1987) that are not classed as pre El Nifio or La Niiia. It was found that
removing these years from the non-PC/W subset made little difference to average UM anomaly
correlation scores for non-PC/W years, and on this basis - although SST anomalies are relatively high -
these two SON periods were retained as non-PC/W seasons. The JJA period was not included in the
analysis, because SST anomalies in JJA are usually of relatively smaller magnitude (e.g. as in 1986
when there was a transition from PC to PW) and because association of a single JJA season with each
PC/W event is less straight forward (i.e. SST anomalies may be of similar magnitude in JJA periods
prior and post the DJF peak).

The response to PC/W events, as measured by the COMPAS score, was found to be similar for the
UM, T63 and JT2 ensembles, thus for brevity we refer here only to the UM response. To standardise
the COMPAS scores in the 5 PC/W and 10 non-PC/W periods, the score is assigned a significance
value, defined as the complement of the probability of achieving an equivalent score with a random
forecast (assuming a binomial distribution). For example, the probability of a random forecast
achieving the correct anomaly sign in all 5 PC/W years is 0.03, thus a COMPAS score indicating all
5 PC/W years correct is assigned a significance value of 0.97. It should be recalled that although the
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5 PC/W events covered (for all four seasons) by the PROVOST dataset represents an increase on the
number available to previous numerical studies of predictability, the sample size is nevertheless
relatively small and results are therefore tentative.

Marked differences in UM COMPAS score significance (hereafter COMPAS significance) are apparent
between PC/W years and non-PC/W years in all three (SON, DIJF and MAM) periods (compare upper
and lower panels of Figs 15-17), indicating that PC/W forcing has a marked global impact on
predictability. Considering first the non-PC/W years in the tropics, the main centres of predictability
appear located over the equatorial tropical Atlantic in SON (Fig. 15, lower panel), over the Indian
Ocean/South-east Asia/West Pacific region in DJF (Fig. 16, lower panel) and distributed more evenly
across the tropical oceans in MAM (Fig. 17, lower panel). During PC/W events the above sequence
appears disrupted, with the main centre of predictability located over the East Pacific/northern South
America/northern tropical Atlantic region in all three seasons, with little evidence of the centres of

predictability found over the equatorial tropical Atlantic (SON) and Indian Ocean (DJF) in non-PC/W
years.

Examples of the impact of PC/W forcing on predictability in the extratropics may be seen for both the
North American and European regions. COMPAS significance reaches the 95% level over substantial
parts of north-western North America in PC/W DJF periods (Fig. 16), compared with non-PC/W years
when significance values are rarely greater than 80% - suggesting enhanced predictability of the
Pacific North American pattern in PC/W winters. Barnett ef al. (1997), also find higher predictability
of the winter PNA during strong tropical Pacific SST events. Enhanced predictability in PC/W DJF
periods and following MAM periods is also suggested for Mexico and the southern states of the USA,
notably in MAM (Fig. 17). Little difference in predictability between PC/W and non-PC/W years is
evident over Europe in SON and DJF. However, enhanced predictability in PC/W years is indicated
for MAM simulations over mainland Europe, for which COMPAS significance at the 95% level is
most widespread following a PC/W peak (compare upper and lower panels of Fig. 17).

In comparing levels of skill over Europe and North America it is interesting to note from Figure 16
that predictability over North America and Europe in DJF appears similar in non-PC/W years (lower
panel - coverage of COMPAS significance exceeding 80% is small in both regions), whereas
predictability is somewhat greater over North America in PC/W years (upper panel). The enhanced
skill over North America in PC/W DJF periods (which appears related to greater predictability of
PNA) will impact on the skill evaluations over all 15 years presented in Section 3, and may in part
explain why best skill for this region is found in DJF, in contrast with Europe (and the northern
extratropics as a whole) for which best skill is found in MAM.

In SON (Fig. 15) the main PC/W impact indicated for the North American region is higher
predictability over the extreme north-east of North America in PC/W years (upper panel). Predictability
over Alaska in this season appears relatively high in both PC/W and non-PC/W years (consistent with
high ROC scores in this region, Fig. 5c). For the European region the main suggested impact is
enhanced predictability over the high latitude North Atlantic (over and to the north of Iceland) in non-
PC/W years (Fig. 15).

[t is interesting to consider Figures 15-17 in terms of the temporal changes in predictability across the
three periods. In PC/W years (top panels) the region of highest predictability over the tropical east
Pacific in SON spreads eastward by DJF to parts of northern South America and the tropical Atlantic.
Between DJF and MAM there is a marked increase in predictability over parts of Europe and North
Africa (upper panels) that is less evident in non-PC/W years (lower panels) - suggesting a further,
north-eastward, translation of predictability. The region of predictability centred over the western
Mediterranean in MAM is particularly suggestive of a north-westward extension of predictability
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evident over the northern tropical Atlantic in DJF. Note also the increase in predictability over
southern Africa across the three periods, reaching a maximum in MAM.

A further assessment of the impact of PC/W events on UM predictability over Europe and North
America is provided using anomaly correlation scores (Figs. 18&19). Scores for months 2-4 of the
simulations, in addition to months 1-3 are also considered. Consistent with results from the COMPAS
significance analysis, enhancement of UM month 1-3 AC scores during PC/W years peaks in DJF
over North America and in MAM over Europe (Figs 18a&b). Over Europe (Fig. 18a) the AC scores
in PC/W years increase throughout the SON-DJF-MAM period (order 0.1, 0.3 and 0.4 respectively),
while the score for non-PC/W years remains relatively constant (at order 0.2). Note that in MAM the
average score in PC/W years (order 0.4) is significantly different from zero (at the 95% level) while
the average for non-PC/W years is not significant. The only other AC score (over both PC/W and non-
PC/W years) significantly different from zero over Europe occurs for non-PC/W SON seasons. Note
that significance is not always preserved when the sample is divided into PC/W and non-PC/W years.
For example, the 15-year average score for UM DIJF simulations over Europe is significant at the 95%
level (Fig. 9c), however averages over the PC/W and non-PC/W sub-samples are not found significant,
Fig. 18a).

Over North America (Fig. 18b) the AC score in PC/W seasons increases from order 0.3 in SON to
a maximum (of order 0.5) in DJF, in both periods the score is significantly greater than zero (at the
95% and 99% levels, respectively). In contrast the AC score for non-PC/W years is of order 0.1-0.2
(and not significant) in all three periods. The average anomaly correlation for PC/W seasons is lowest
in MAM, when scores are similar to those of non-PC/W years (order 0.2). This is in direct contrast
to the European area, where MAM appears the period of maximum enhancement from PC/W forcing
(Fig. 18a). Note that (as indicated from the COMPAS analysis), skill over North America and Europe
is similar in non-PC/W DJF periods (AC scores are in fact slightly better over Europe), but greater
over North America in PC/W DIJF periods (compare Figs 18a&b). The greater predictability often
attributed to the North American region relative to Europe would thus appear to apply during PC/W
DIJF events only.

AC scores for months 2-4 of the UM simulations are provided for Europe and North America in Figs
19a&b respectively. There is an indication that while average skill for months 2-4 in non-PC/W years
decreases relative to months 1-3, average skill in PC/W years is maintained into the later period.

Corresponding results from the T63 and Joint JT2 model are similar in most respects to those
presented above for the UM and are therefore not shown. In particular all three ensembles indicate best
skill enhancement in PC/W years over North America in DJF and over Europe in MAM.

4.2 Relationship between ensemble spread and ensemble-mean skill

Prediction of model skill may also be approached through the relationship between ensemble spread
and the skill of the ensemble mean. For a given case, the spread of ensemble members about the
ensemble mean is a measure of the sensitivity to initial conditions, and thus should allow assessment
of the intrinsic predictability; low spread ideally associating with high ensemble-mean skill. In this
section we evaluate ensemble skill/spread relationships for simulations over Europe and North
America. In order to investigate possible links between ensemble spread and PC/W events, emphasis
is given to analysis of the seasons for which PC/W events appear to have most impact, i.e. MAM over
Europe and DJF over North America.

4.2.1 Europe
Scatterplots of ensemble-mean anomaly correlation and ensemble spread (defined as the average,
Fisher-z transformed, anomaly correlation of the ensemble members with the ensemble mean) for
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MAM and DJF simulations of 850 hPa temperature over Europe are provided in Figs 20&21 for the
UM, T63 and JT2 ensembles. A measure of ability to distinguish relatively skilful from unskilful
predictions is provided by comparing the total entries in the diagonal quadrants with the total in the
off-diagonal quadrants (here the quadrants are constructed using the ensemble median values of AC
skill and spread). A positive skill/spread correlation, and thus potential for skill prediction, is indicated
if entries are maximised in the diagonal quadrants. The linear correlation is also provided; however,
because of the sensitivity of linear correlation to outlying points, the non-linear measure described
above is preferred. Years corresponding with PC/W events are indicated with symbols, and the identity
of other individual years is denoted with letters.

For MAM simulations, the UM ensemble (Fig. 20a) shows clear potential for distinguishing relatively
skilful and unskilful predictions. A total of 11 simulations fall in the diagonal quadrants representing
correct assessments of ensemble-mean relative skill, and 2 fall in off-diagonal quadrants, representing
incorrect assessments. Hereafter we express this measure of the skill/spread correlation as the ratio
“"diagonal entries/off-diagonal entries", i.e. in the above example, 11/2; when diagonal entries are
greater/fewer than the off-diagonal entries we refer to positive/negative correlation. Note that the total
of correct and incorrect assessments may vary because simulations with skill or spread equal to the
median value (of which there may be more than one) are not counted.

Recall that for Europe MAM is the season for which AC scores are most enhanced, on average, during
PC/W events. It is interesting, therefore, to compare AC scores for individual PC/W and non-PC/W
years. Of the four UM simulations (Fig. 20a) with highest AC scores (1980, 1987, 1989 and 1990
all have scores of order 0.6 or above) two are in PC/W years (1987 and 1989). The simulation in
PC/W year 1992 also has above median skill (and has the fifth highest AC score). However, the
presence of a PC/W event does not guarantee skill, with below median scores obtained in the PC/W
years 1983 and 1985, the score in 1985 being amongst the lowest (order -0.2) achieved in all years.
Conversely, relatively high scores are achieved in two non-PC/W years (1980 and 1990). Note that
the three PC/W simulations with above median skill are also associated with below median spread,
while the two with below median skill are associated with above median spread. Thus there is an
indication that ensemble spread may be useful for discriminating PC/W years with likelihood of either
relatively high or low skill.

In contrast to the UM, the T63 MAM simulations (Fig. 20b) show a negative skill/spread correlation
(4/8). However, the enhancement of AC scores in PC/W years appears somewhat more consistent than
for the UM - with 4 of the 5 simulations in these years achieving above median skill (compared to
3 out of 5 for the UM). Note that the JT2 ensemble (Fig. 20c) retains much of the ability for skill
prediction exhibited by the UM simulations, achieving a skill/spread correlation of 9/3.

Figures 20a-c may be used to indicate potential strategies for skill prediction in an operational
environment. For illustration we assume a policy of issuing forecasts only in years when skill
prediction strategies indicate a relatively skilful forecast; and assess the strategy on the number of
forecasts correctly/wrongly identified as skilful and the number correctly/wrongly rejected as unskilful.
Four potential strategies using PC/W impact and skill/spread correlation may be defined and are
denoted here S1, S2, S3 and S4.

S1: PC/W impact, i.e. issue forecasts in all years with PC/W events.

S2: ensemble spread, i.e. issue forecasts only in years when the spread is lower than a threshold value.
For illustration, the median value of spread is used as the threshold.

S3: the union of S and S2, i.e. issue forecasts in all PC/W years and also in any year when ensemble
spread is below threshold.

S4: the intersection of S1 and S2, i.e. issue forecasts only in the subset of PC/W years when the
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ensemble spread is below the threshold value.

For the UM, strategies S2 and S4 appear optimal for MAM (Fig. 20a). Adopting S2 (low spread only)
would result in six issued forecasts. Of these six forecasts; five would have above median anomaly
correlation (i.e. above ~0.2 in this case) with two particularly skilful forecasts (the PC/W years 1987
and 1989); one would be particularly unskilful (1991); and two skilful forecasts would be rejected
(1980 and 1990). Strategy S4 (PC/W year and low spread) is a more cautious approach resulting in
only 3 issued forecasts (1987, 1989 and 1992); however all three forecasts would have above median
skill. Such a cautious approach may be optimum for some applications. In contrast, strategy S1 (PC/W
years only) would result in 5 issued forecasts only 3 of which (the same 3 as for S4) would have
above median skill, and strategy S3 (PC/W year or low spread) would result in the issue of 2 more
forecasts than strategy S2 (in 1983 and 1985), both of which would have below median skill.

For the T63 (Fig. 20b), strategies S2 and S4 do not perform well because of the negative skill/spread
correlation; S2 achieves only 2 skilful forecasts out of 7 issued, while S4 achieves 2 skilful predictions
out of 3 issued). However, strategy S1 (PC/W years only) performs relatively well, achieving 4
relatively skilful forecasts out of the 5 issued. The above results confirm expectation that the optimum
strategy for skill prediction will vary between AGCMs.

Positive skill/spread correlations are found in DJF simulations in all three ensembles (Figs 21a-c). For
the UM (Fig. 21a), the skill/spread correlation obtained for DJF (8/6) is lower than that for MAM
(11/2), while for the T63 the correlation for DJF (also 8/6) is higher than for MAM (4/8).
Considerable benefits are obtained with the JT2 ensemble which achieves the highest skill/spread
correlation of 10/4 (Fig. 21c). Note that although the median AC score is lower for JT2 compared with
the UM and T63, the average score over all years is similar (Fig. 9c). Moreover, it is apparent from
Figs 21a-c that the simulations correctly identified as skilful by the JT2 ensemble, have scores that are
similar to or higher than the simulations correctly identified as skilful by the UM and T63 ensembles.
Thus the average skill of the "issued" forecasts is enhanced in the JT2 ensemble.

Average skill enhancement in PC/W years over Europe is less evident in DJF than for MAM in the
UM ensemble (Fig. 18a). The lower impact is evident in Figs 21a, with AC scores in PC/W years
spread across the range of skill. There is no evidence of a strengthening of the skill/spread correlation
in PC/W years as found for UM simulations in MAM.

A further result evident from Figs 2la-c is the distinct clustering of the DJF simulations into two
groups, one with relatively high skill and one with relatively low skill (this effect is particularly
evident in the JT2 simulations). Reasons for the apparent bimodal distribution of skill are not explored
here but may, for example, be connected with possible lower/higher predictability associated with
high/low frequency of blocking regimes (and thus might be related to the phases of the North Atlantic
Oscillation). Note also that the predictable and unpredictable years are generally the same for each
model; with performance in 10 of the 14 simulations in agreement; the exceptions being 1988 and
1992 (skilful UM, unskilful T63) and 1987 and 1991 (skilful T63, unskilful UM).

The skill/spread correlations found for all four seasons over Europe are summarised in Table 2. For
the UM, correct skill assessments exceed incorrect assessments in all seasons except SON, while for
the T63 a positive skill/spread correlation is found only for DJF. Note that benefits to the skill/spread
correlations are provided by the JT2 ensemble; positive correlations obtained with the UM (the better
overall individual model in this case) are improved in JJA and DJF, and a high correlation (9/3) is
maintained in MAM despite the negative T63 correlation.
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4.2.2 North America

Skill/spread correlations for MAM over the North American region are negative with all three
ensembles (Figs 22a-c and Table 3), with values of 6/7, 6/7 and 4/7 for the UM, T63 and JT2
respectively. This is in contrast to the promising skill/spread correlations found (with the UM and JT2)
for MAM over Europe. The simulations in PC/W years appear to be predominantly of low spread
(notably in the T63 and JT2 simulations, Figs 22b&c), but there is a wide variance in AC scores in
these years. For DJF (Figs 23a-c), however, a positive skill/spread correlation of 8/6 is achieved by
both the UM and T63 models, with a notable improvement to 10/4 achieved with the JT2 ensemble.
Over North America average skill enhancements during PC/W years are a maximum in DJF (see e.g.
Fig. 18b), and indeed AC scores in all PC/W years are close to or above the median value in all three
ensembles (Figs 23a-c). The consistently high AC scores found in PC/W years for DJF results in good
performance of the S1 skill prediction strategy (issue forecasts in PC/W years only). For all three
ensembles, the S1 strategy would capture 5 of the 11 predictions with positive AC scores and correctly
reject the 3 years with particularly poor predictions (1979, 1980 and 1981 - correlations of order —0.2
or below). Note, however, for the T63 the S3 strategy (PC/W years or low spread) gives better
performance than S1, capturing 8 of the 11 simulations with AC score better than 0.2 while still
successfully rejecting the remaining 3 years with negative AC scores. The S3 strategy with the UM
and JT2 models is less successful; the number of skilful forecasts issued is increased by 2 (1987 and
1989) but at the expense of not rejecting all of the simulations with negative AC scores (e.g. low skill
UM simulations for 1979 and 1981 are not rejected (Fig. 23a)).

The skill/spread correlations found for all four seasons over North America are summarised in Table
3. Positive skill/spread correlations are obtained with all three ensembles in DJF and JJA with the best
correlation achieved in both periods by the JT2 ensemble. Note that MAM is the only season in which
all three ensembles have negative correlations.

Comparison of Tables 2&3 indicates that the UM achieves better skill/spread correlations over Europe,
while the T63 performs better over North America. In both regions benefits to the skill/spread
relationship are available from the JT2 ensemble. The JT2 improves the skill/spread correlation in 4
of the 6 cases (considering Tables 2&3 collectively) for which at least one individual ensemble
achieves a positive skill/spread correlation, and achieves a similar positive correlation in one of the
remaining 2 cases (MAM over Europe).

5. Use of persisted SST anomalies for lower boundary forcing

Real-time seasonal forecasting requires a forward projection of the SST evolution. The SST prediction
may be supplied either through a coupled ocean/atmosphere model or by a "two-tier" system in which
independent forecasts of SST are used as prescribed forcing to AGCMs. One relatively cheap option
for the two-tier system is to use a persistence forecast of SST, in which SST anomalies (SSTA) over
a period preceding the initial time of the forecast are persisted throughout the integration. In this
section we compare skill obtained using persisted SSTA from the month preceding the initial time,
with the skill obtained using observed SST (i.e. as evaluated for the PROVOST simulations). Details
of the method used to produce the persistence SST forecasts are given in Section 2.2. The comparison
has been performed for 12 of the 15 PROVOST MAM and DJF periods for 850 hPa temperature and
precipitation using the ROC score discussed in Section 3.

In the tropics ROC scores obtained using persisted SST anomalies are consistently lower than, but
nevertheless comparable with, the “perfect” SST skill bound provided by the observed SST runs
(Table 4a). Scores with persisted SST are depressed by no more than 5%, and are above the 0.5
threshold for skill for both 850 hPa temperature and precipitation. For the northern hemisphere (Table
4a) and the European and North American regions (Table 4b), results are mixed, with scores obtained
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using persisted SST equivalent or even higher in about half the observed/persisted pairs (note that in
DJF persisted SST scores are equivalent or higher in 5 out of 6 pairs). Differences (positive or
negative) are mainly small, except for Europe in MAM for which the ROC score for 850 hPa
temperature drops from 0.59 (observed SST) to 0.46 (persisted SST). Case study investigations of
individual JJA and SON seasons indicate that skill with persisted and observed SST are comparable
regardless of the season. :

The skill comparisons of Tables 4a&b are for a 12 year sample (1982-1993) which includes 5 MAM
and DJF seasons with PC/W events (see Section 4.1). In the tropics, where SST forcing dominates
predictability (see e.g. Brankovi¢ and Palmer 1999 - this volume), we may expect greater than average
percentage skill reduction in PC/W years if anomalies in the SST field develop rapidly after the
forecast is initialised. However, lower than “average” skill reduction may be expected in non-PC/W
years. In the extratropics Brankovi¢ and Palmer (1999) note that the attribution of predictability to
either SST forcing or atmospheric initial conditions is difficult, the dominant factor varying with
region. Thus the lack of a consistent “winner” between observed and persisted SST in the northern
extratropics and European and American sub-regions may be part due to lower sensitivity to SST, and
part due to the sufficient accuracy of persistence SST forecasts in most years.

With the above caveats, the accuracy of persisted SST anomalies at least up to one season ahead
appears, on average, sufficient to achieve skill approaching the potential estimated upper bound (with
current AGCMs). We can conclude that use of persistence forecasts of SST as forcing to AGCM
ensemble integrations appears a competitive (and cost effective) method for real-time seasonal
forecasting, at least for a range of up to one season ahead.

6. User value of seasonal predictions

In this Section we develop a methodology for assessing the user value of forecasts, following and
extending the work of Murphy (1994, 1997), and apply it to investigate the potential value of
dynamical seasonal predictions over Europe. Table 5 gives the cost/loss matrix for a user wishing to
act on predictions of an adverse weather event. Each of the four contingencies in Table 5, hit, miss,
false alarm or correct rejection is associated with a financial impact, or loss; denoted here by L,, L,,
L, and L, respectively, and explained in Table 5. For convenience the losses are measured relative to
the ‘normal’ loss associated with a correct rejection (i.e. the event is not forecast and is not observed,
so that L. =0), however results obtained without this assumption are identical. The frequency of the
four contingencies must be established (through "track record" validation of the prediction system) for
a range of forecast probability thresholds on the event. For any one probability threshold, these
frequencies are denoted here by A (hit), m (miss), f (false alarm) and ¢ (correct rejection). The
expected mean expense (MEy) of taking action when the forecast probability exceeds a given threshold
is thus,

MEfx =th +mL”l +ﬂ,f €))
Note that h, m, f and ¢ are related to the hit rates and false alarm rates of the ROC verification method

(Table 1b) by,

h=0HR; m=0(1-HR); f=(1-0)FAR; c=(1-0)(1-FAR),
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where o is the overall frequency of the event. Thus the ROC method provides an ideal technical
validation of the prediction system for use in estimating forecast value. Note also that the definition
of the mean expense (1) is an extension of previous definitions in that it allows the loss associated
with a hit to differ from that associated with a false alarm, rather than assigning a single loss value
(equal to the cost of protection) to both contingencies. If L, = Ly, then (1) reduces to the simpler form
(see e.g. Richardson (1998)). The extended definition allows representation of financial benefits that
may result from actions taken on advance warnings of an event which later occurs (i.e. a hit). Such
benefits may offset expenditure on protection. For example, protective action for a farmer might
include switching part or all of a planned seed crop to one more suited to the probable expected

seasonal conditions. Resulting high yields from the new crop if the event occurs may offset the
additional expenditure incurred.

The value of the forecast system may be defined as the saving the user can expect compared to the
expected mean expense incurred when no forecast information is used. With no forecast the user has
two options, either always take protective action or never protect. Which of these options is preferable
depends on the climatological frequency of the event, 0. Never protecting will incur a mean expense

of oL, , while always protecting will incur oL,+(I-0)L. Thus the mean expense based on
climatological information only is:

ME =min(oL,, , oL,+ (I-0)L;)
In financial terms the value of the forecast system is thus given by:
V=ME€1 st MEﬁ

When value is used as a verification tool it is convenient to scale it relative to the maximum possible
value which may be obtained by following a perfect forecast system, in which case protective action
is only taken when the event occurs, with no misses or false alarms. The mean expense for a perfect
system is ME,=oL,, and the scaled value is given by:

ME -ME
pre cl fx
ME -ME
cl P

This scaled value thus has a maximum value of 1 for a perfect system. For a forecast system that is
no better than climate V=0; note however that there is no lower bound, and for forecasts with low hit

rates or high false alarm rates (large m or f), or when large losses are associated with misses and false
alarms (L, or L), V may be negative.

Forecast value may be evaluated in this way for a range of forecast probability thresholds of the event
and value plotted as a function of the threshold. In this way the user may select the probability
threshold that provides the greatest value. Two examples based on the ROC verifications of the
PROVOST simulations presented in Section 3 are provided in Figure 24. The weather event considered
is spring (MAM) 850 hPa temperature above normal over Europe, each example shows potential value
obtained with different sets of user losses as might pertain to two differing user applications. Value
obtained from both probability forecasts and from deterministic forecasts based on the ensemble mean
are considered for the three ensembles UM, T63 and JT2. The cost/loss matrix for the example of
Figure 24a is defined as L, =1, L,, =4 and L, =4. The derivation of the loss values will in general
be complex and depend on details of the user sensitivity and planned response to each of the four
contingencies. For a simple interpretation, however, we may assume in this example that, on forecasts
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of an "adverse" weather event, the user spends 4 units on protection, a sum equivalent to his loss in
the event of a miss, and that financial benefits in the event of a hit offset expenditure on protection
by 3 units. Figure 24a shows that, with these loss estimates, potential model skill is indeed sufficient
to obtain value. Highest value in this case, equal to approximately 12.5% of the value of a perfect
forecast system, is achieved by the ensemble means of both the UM and JT2 ensembles, and also the
JT2 with a probability threshold of 60%. In this case the T63 ensemble achieves about 7.5% with a
60% threshold, but the ensemble mean only about 3%.

Note that for the example in Figure 24a the cheapest option based on climatology is to never protect -
thus the value curves approach zero as the threshold probability for protection approaches unity and
the forecast advice tends to "never protect" (i.e. the same guidance provided by climatology). For the
example in Figure 24b, the loss associated with false alarms (L, ) has been reduced to 2 units. The
reduction in the cost of false alarms means that the cheapest climatological option changes from never
protecting to always protecting, and the overall structure of the probability value curves changes. The
curves are now constrained to zero at probability threshold 0% (i.e. forecast advice is to always protect
- the same guidance obtained from climatology). Comparison of Figures 24a&b shows the strong
sensitivity of potential forecast value to the user losses, for example the threshold of 60% probability
which gave maximum value in the first example (Fig. 24a) now gives negative value, while maximum
value in the second example (Fig. 24b) is achieved with a threshold of 20%. Note that while in the
first example maximum value is similar or greater with probabilistic information than with the
ensemble mean, in the second example positive value is available only from the probability forecasts.
This result demonstrates that issuing predictions probabilistically is likely to extend the range of
applications that can extract value from the forecasts.

The above examples demonstrate that there is potential for user value from seasonal predictions over
Europe. For optimum value close cooperation between forecast supplier and user appears necessary.
For example the supplier will need to investigate model performance for meteorological events which
are both relevant to the user and feasible on the seasonal timescale. While the user may need to revise
and adapt the cost/loss estimates (e.g. through changed responses to the four contingencies) to make
the most of the forecast system performance.

The above examples were deliberately chosen to demonstrate potential value over seasonal predictions
in the extratropics. Clearly, potential value will be at greater levels in tropical areas where model skill
is at a higher level. Making use of a similar method, with user supplied values for the cost/loss table,
Harrison and Graham (personal communication) have estimated the value of model seasonal rainfall
predictions over the southern African region to be at least of order US$10°® - $10°, corresponding to
a cost/benefit ratio over regional investment of order 20-200.

7. Summary and conclusions

Seasonal simulations from the 15-year PROVOST database have been analysed to assess the potential
skill of 9-member ensemble integrations of the UK Met. Office Unified Model (UM) and the ECMWF
T63 model for seasonal prediction. A joint 18-member ensemble (the JT2 ensemble), produced by
combining all members of the UM and T63 ensembles, and higher-order multiple-model ensembles
employing all four participating PROVOST models, have also been assessed. The ensembles were
integrated using observed (“perfect” predicted) SST to force the lower boundary, and the skill attained
therefore represents an upper bound with the AGCMs employed. For the UM ensembles, skill
achieved using observed SSTs was compared to that obtained when observed SSTs are replaced with
a persistence forecast of SST based on SST anomalies from the month preceding the forecast initial
time. The comparisons provide an assessment of the viability of persisted SSTs for real-time
prediction.
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All skill measures calculated for the entire tropical and northern extratropical regions indicate that,
while skill is highest in the tropics, skill is also available over the northern extratropics with all models
in all seasons. Skill is present for both 850 hPa temperature and precipitation, though skill for the
latter is generally at a lower level than for the former. Nevertheless, there is evidence of substantial
potential for rainy season predictions in some tropical regions. In both the tropics and extratropics,
highest skill tends to be centred over oceanic regions and lowest skill over continental interiors. Best
skill in the northern extratropics is found in the spring (MAM) season for both 850 hPa temperature
and precipitation.

Over Europe and North America skill is highest in DJF and MAM, when skill scores over both regions
are comparable (apart from T63 AC scores which are considerably higher over North America than
over Europe), and similar to northern hemispheric values. Peak skill occurs over Europe in MAM, as
found for the northern extratropics. In contrast peak skill over North America is found in DJF,
apparently as a result of enhanced winter predictability of the PNA mode during PC/W events. Skill
in JJA and SON is generally below hemispheric values for both regions, most notably for precipitation
over Europe (when ROC scores are close to the 0.5 threshold for skill). Spatial variations of skill
within the assessment regions, both for 850 hPa temperature and precipitation, indicate that over
Europe highest skill tends to be concentrated in northern and western regions; while over North
America highest levels of skill are located over southern, western and northern regions. ROC scores
indicate that skill over the North American interior is frequently lower than over much of western
Europe.

Performance differences between the UM and T63 models are more pronounced over the regional
areas of North America and Europe, the UM generally achieving better scores over Europe and the
T63 achieving better scores of North America. Thus useful complementary skill is present between
the individual models which could be exploited in an operational environment. In these regions the
skill filtering property of the JT2 ensemble provides substantial benefits, achieving ROC scores similar
to or better than the more skilful individual model, even when skill differentials between the individual
models are relatively large. Benefits from the JT2 ensemble are less apparent for the AC skill scores,
but notable improvements are found in some seasons. Higher order multiple-models (JT3 and JT4)
show further improvements over JT2. The skill of the multiple-models appears to be mainly a function
of the skill of the most skilful component ensemble, rather than being principally related to the
increased ensemble size. An important benefit of the multiple-model method is that it allows improved
potential capability without the need for a priori identification of the strengths of the individual
component models, as would be needed, for example, if a strategy of choosing the best model for each
region were adopted.

PC/W events in the tropical east Pacific are found to have a marked global impact on model
predictability. Results with the UM indicate a transfer of centres of predictability located over the
tropical Atlantic and Indian Ocean in, respectively, the SON and DJF periods of non-PC/W years, to
the tropical east Pacific in both the SON and DJF periods of PC/W years. In the northern extratropics
an eastward transfer of enhanced predictability throughout the SON, DJF and MAM period is
suggested, with the largest enhancement occurring over North America in DJF, apparently as a result
of increased predictability of the PNA pattern, and over Europe in MAM. In non-PC/W DJF periods
skill over Europe and North America is similar, suggesting that the greater predictability frequently
attributed to the North American region applies mainly to DJF periods with PC/W events. In non-
PC/W years skill over North America and Europe is generally lower for months 2-4 than in months
1-3, however in PC/W years skill for months 1-3 appears maintained into the month 2-4 period.

Ensemble consistency also provides useful information for skill prediction in most seasons. Of the
individual models best skill/spread correlations for Europe are obtained with the UM which achieves
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positive (non-linear) skill/spread correlations in all seasons except SON. In contrast, the T63 has the
better skill/spread performance over North America, achieving positive correlations in all seasons
except MAM. In most seasons of both regions the JT2 ensemble brings substantial improvements to
the skill/spread correlations attained with the individual models.

Skill prediction strategies using combinations of PC/W impact and skill/spread correlation were
illustrated using the 15 year sample of the PROVOST dataset. Prospects for the development of both
cautious and adventurous strategies appear promising. However, choice of the optimum strategy
appears dependent on the prediction model used, the region and the season. Application of the
strategies will therefore require calibration of the model skill/spread characteristics and response to
PC/W events for all regions of interest.

Comparisons of integrations using persisted SST anomalies and observed SST as boundary forcing
indicate that, on average, a substantial proportion of the skill achieved using observed SST is retained
using persisted SST anomalies, both in the tropics and in the extratropics (though there may be local
variations in the proportion of skill retained). Thus the use of persistence forecasts of SST appears a
viable method for real-time seasonal forecasting, at least for a range of one season ahead.

For future development of operational seasonal prediction it will be crucial to establish the levels of
technical skill (i.e. as measured using skill scores) required in order for seasonal predictions to be of
value to users. A methodology for linking technical forecast quality with financial value for users has
been outlined using the Relative Operating Characteristic (ROC) and the user cost/loss matrix.
Examples employing an assumed user cost/loss matrix indicate promising potential for user value of
seasonal predictions not only over tropical areas, but also in extratropical areas such as Europe.
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Fig. 1 The European (12.5°W to 42.5°E, 35°N to 75°N) and North American (130°W-60°W, 30°N to
70°N) assessment regions.
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Fig. 2 Relative Operating Characteristic (ROC) curves for UM MAM simulations of the event 850 hPa
temperature below normal over a) tropics, b) northern extratropics, ¢) Europe, d) North America. The
curves are constructed from hit and false alarm rates (see Table 1b for definitions) at four thresholds
on the forecast probability of the event (20%, 40%, 60% and 80%, as indicated on panel (a)). The
curve is bound by the points (0,0) and (1,1) which correspond respectively to the false alarm and hit
rates achieved through never and always forecasting the event. The areas under the ROC curve (the
ROC score) are provided and give an overall measure of skill.
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Fig. 3 ROC scores (area under the ROC curve) for the event 850 hPa temperature below normal. ROC
scores for the event 850 hPa temperature above normal are identical. Results are for; UM = UKMO
Unified Model ensemble, T63 = ECMWEF T63 ensemble and JT2 = a combination of the UM and T63
ensembles.

a) tropics, b) northern extratropics, ¢) Europe, d) North America.
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Fig. 4 As for Fig. 3 but for all four participating PROVOST models (hatched bars) and the multiple-
model configurations JT2, JT3 and JT4 (solid bars).

UM = UKMO Unified Model,

T63 = ECMWF T63,

AP1 = Météo-France ARPEGE T42 L3I,

AP2 = the ARPEGE T63 L31 (run at Electricité de France (EDF) - DJF only),

JT2 = UM+T63 (18 members),

JT3 = UM+T63+AP1 (27 members),

JT4 = UM+T63+AP1+AP2 (36 members, DJF only).
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Fig. 6 Spatial plot of COMPAS scores (see text for description of the COMPAS diagnostic) for UM
MAM simulations of 850 hPa temperature anomaly. Shading breaks in at a frequency of 8 (the
average frequency of a random forecast), with darker shading thresholds at 11 and 13. Probabilities of

achieving scores above threshold values by chance are; 8 or more, 50%; 11 or more, 6%; 13 or more,
0.4%.
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Fig. 7 Percentage area for which the COMPAS score equals or exceeds a value of 11 (indicating
significance at 95% level or higher - see text) for UM, T63 and JT2 simulations of 850 hPa
temperature. DJF values for T63 and JT2 have been scaled to adjust for calculation over 14 years
rather than 15 years (as for the UM). The scaling factor used was the ratio of the UM percentage area
obtained using 15 years to that obtained using 14 years.

a) Tropics, b) northern extratropics, ¢) Europe, d) North America.
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Fig. 9 Average anomaly correlation of ensemble-mean and observed 850 hPa temperature for the UM,
T63 and JT2 ensembles. Averages are over the 15 year period (14 years for T63 and JT2 DJF

simulations) and are calculated using the Fisher z-transform method. When significance with which the
average is different from zero exceeds a threshold of 95% or 99%, the threshold value is plotted above

the bars.

a) tropics, b) northern extratropics, ¢) Europe, d) North America.
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Fig. 10 Annual anomaly correlations coefficients for the 9 UM ensemble members for simulations of
850 hPa temperature over Europe (1979-93). Each stem and whisker plot indicates median, quartile
and extreme values. Ensemble mean values are shown as solid triangles.

a) MAM, b) JJA, and (on following page) c¢) SON, d) DJF.

Note for DJF (d), the year refers to the December of the period, i.e. 79 = DJF79/80.
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winter Seasonal Forecast AC of T850 over Europe (35— 75N,12.5W —42.5E)

UKMO ENSEMBLE quartiles and ranges and Ensemble means
15 —year (1979~ 93) Model and observed climates
Month 13 (DUF)
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Fig. 10 (cont)
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Figs 11a-d As Figs 2a-d, but for precipitation.
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Figs 12a-d As Figs 3a-d, but for precipitation.
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Fig. 14 Monthly mean SST anomalies (deg K) from 1979 to 1993 avera
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Fig. 15 Spatial plots of COMPAS score significance for UM simulations of 850 hPa temperature
anomaly for:

upper panel; the 5 PROVOST SON periods with PC/W events (SON periods selected precede the DJF
SST peak, see text for details).

lower panel; the 10 PROVOST SON periods with no PC/W event.

The COMPAS score significance is derived by assigning a significance value, defined as the
complement of the probability of achieving an equivalent score with a random forecast. For PC/W
years, darkest shading corresponds to regions where the most probable anomaly sign is correct in all 5

years (probability by chance = 0.03, thus significance = 0.97). For non-PC/W years darkest shading
corresponds to 8 correct simulations out of 10 years.
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Fig. 16 As Fig 14, but for,
upper panel; the 5 DJF periods with PC/W events
lower panel; the 10 DJF periods with no PC/W event.
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Fig. 17 As Fig. 14, but for,

upper panel: the 5 MAM periods with PC/W events (MAM periods selected follow the DJF SST peak,

see text for details).

lower panel; the 10 MAM periods with no PC/W event.
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Fig. 18 Average anomaly correlation of UM month 1-3 simulations of 850 hPa temperature for PC/W
(bars labelled "PCW") and non-PC/W (bars labelled "NON") SON, DJF and MAM periods (see text
for definition of PC/W and non-PC/W seasons). When significance (from a t-test) with which the
average is different from zero exceeds a threshold of 95% or 99%, the threshold value is plotted above

the bars.

a) Northern Hemisphere; b) North America.

Figs 19a&b As Figs 17a&b, but for UM month 2-4 simulations.



Lo s e B

UKMO.
Europe T850 Months 1-3 spring (MAM)
21) 10 1 5
08 b e
064 L
0.4 i -
it A ¢
§ 004
-02] )
-0 4 1
-0
-0 SSC= 044
-] 6 1

UKMO.
Europe T850 Months 1-3 winter (DJF)
a)
a3 é < 4
06 b |d ¢
04 h
024
§ 0.04 - &
-024
-04] Go
~064
-08f SSC= 040
-1.04 4 3

00 01 02 03 04 05 0§ 07 08 09 10
SPREAD CORRELATION

Awgs Otges o Ome Mo

79 b:80 81 d:82 e84 £85 g:88 h90 (91 3

ECMWF. :
T850 Months 1-3 spring (MAM)
b u
osf 4 = 2
051 :f, O e
04
o2l R
§ 00 =
-02f
284 “io 18
081
08 SSC= -14
-of 2 4
00 01 02 03 04 05 05 07 08 09 10
SPREAD CORRELATION

Aiggs Otess %17 Qo9 Yiow
79 b:80 cB1 d82 €84 £85 88 h90 191 |3
UK+ ECMWF.
c) T850 Months 1-3 spring (MAM)

104
08 1 b °e) 4
06! o
04 =
C
5 02 §=
g oo
-02] .
= i
04 3 i
-06]
-osf SSC= 0.36
-0 O 2
0:0 &‘ 0‘2 0:3 0:4 0‘5 0?6 0:7 0‘3 0?9 1:0
SPREAD CORRELATION

Ly Owes ®wer Omee "o
479 b0 CA1 062 e84 £85 g:88 h90 (91 &3

Fig. 20

00 01 02 03 04 05 05 07 08 09 10
SPREAD CORRELATION

Ao Ot %193 O1om ®1om

79 b80 1 d:83 e85 A7 89 h:90 k32 |93

ECMWEF. 5
T850 Months 1-3 winter (DJF)
b)) i
g B
04 o
021 <
g o -
-0.4 g a -
081 .
-0.84 SSC= 0.12
“Aofiid 3
00 01 02 03 04 05 05 07 08 09 10
SPREAD CORRELATION
Ao Ot ®1986 1988 %ot
&79 b:60 cB1 ¢:83 e85 £67 @89 h90 E92 S
UK+ECMWFE
T850 Months 1—3 winter (DJF)
6) 4
a2 1 5
061 g e
041 h
= 024
2 _22 B
=0.47 eg
~061
-0t SSC= 0.58
- S 2
00 01 02 03 04 05 05 07 08 09 10
SPREAD CORRELATION

Ao Ot ®wss O 1ees ¥ieat
479 b:60 ¢81 &:83 085 £87 989 hi90 £92 |83

Fig. 21

Fig. 20 Scatterplots of ensemble-mean skill (defined using anomaly correlation) and ensemble spread
(defined as the average, Fisher z-transformed, anomaly correlation of the ensemble members with the
ensemble mean) for month 1-3 MAM simulations of 850 hPa temperature over Europe,

a) UM, b) T63, ¢) JT2.

The total entries in the diagonal quadrants (constructed using the ensemble median values of AC skill
and spread) are given. Years corresponding with PC/W events are indicated with symbols, and the
identity of other individual years is denoted with letters. The linear skill/spread correlation (SSC) is

also provided.

Figs 21a-c As Figs 20a-c, but for DJF.
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Figs 22a-c As Figs 20a-c, but for MAM over North America.

Figs 23a-c As Figs 20a-c, but for DJF over North America.
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Fig. 24 Potential value (V) of month 1-3 MAM simulations of 850 hPa temperature above normal over
Europe with user losses of,

a)L, = l,L =4,L,=4

b)L, = =4 L =2

Plotted curves show the potential value of probabilistic predictions at thresholds of 0%, 20%, 40% ...
100%, while horizontal lines labelled EM show corresponding potential value of deterministic
predictions based on the ensemble mean, for three ensembles UM (red), T63 (green) and JT2 (blue).



