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ABSTRACT

A series of numerical simulations of steady and time-dependent thermally-stratified flow in a
rotating, cylindrical fluid annulus were carried out, including cases of both steady (axisymmetric
and 3D waves) and time-dependent (periodically vacillating) flows. A range of different numerical
advection schemes were used for the representation of heat transport, including a conventional con-
servative Eulerian scheme and three different variants of a (fully 3D) semi-Lagrangian scheme. The
resulting simulations were compared both with each other, and with high precision measurements
of velocity, temperature and total heat transport in the laboratory. In all cases considered, the
fully Eulerian simulations gave good quantitative agreement with the laboratory measurements,
provided somewhat finer spatial resolution was used than in earlier studies. The performance of
the semi-Lagrangian scheme was found to be quite strongly sensitive to the spatial interpolation
algorithm. A basic tensor cubic scheme generally produced good simulations of steady 2D and
3D flows, although the somewhat more accurate tensor quintic scheme (which is also more expen-
sive) appeared to offer some detectable improvements in accuracy and performance in some cases.
A split cubic scheme (which is computationally cheaper but much less formally accurate) gave
generally poor results'in practice, and is not recommended. A general problem was encountered,
however, with all the semi-Lagrangian schemes in simulating a transition to the highly baroclinic
time-dependent amplitude vacillating flow regime, for which all the schemes exhibited an apparent
spurious stability. This result suggests a possible generic problem with semi-Lagrangian schemes,

which should be considered further before their widespread adoption in operational models.



1. INTRODUCTION

The accurate and efficient representation of advection is a key element in any numerical model of
fluid motion, since this gives rise to some of the principal sources of nonlinearity in a fluid system.
The requirement to employ schemes which provide the maximum computational efficiency without
unduly sacrificing accuracy, stability or conservation properties is of particular concern in the design
of models for weather and climate prediction, for which attainment of maximum spatial resolution

for a given computational cost is given a high premium.

In the latter context, discretization schemes based on a semi-Lagrangian treatment of advection
have received considerable attention during the past 10-15 years, since they offer the prospect of al-
lowing significantly larger timesteps (with no significant loss of formal accuracy) than corresponding
Eulerian schemes, whose timestep length is generally limited severely by considerations of stability
(see Staniforth & Coté (1991) for a recent review). Such advantages may be further enhanced by
the use of a semi-implicit treatment of time-integration (Robert 1981,1982), and this combined
approach has been taken up by an increasing range of atmospheric models in recent years. Most
applications to date have been in grid-point models, ranging from early three time-level shallow-
water models (Robert 1981, 1982; Staniforth & Temperton 1986), two time-level shallow-water
schemes (e.g. Temperton & Staniforth 1987; Purser & Leslie 1989; McDonald & Bates 1989; Coté
& Staniforth 1990), and various forms of baroclinic primitive equation grid-point model (e.g. three
time-level schemes by Robert et al. (1985); Tanguay et al. (1989); and two time-level schemes e.g.
by Leslie & Purser (1991); McDonald & Haugen (1992); Bates et al. (1993)). Recent developments
have also included applications to non-hydrostatic models (Tanguay et al. (1990); Golding (1992)),
and to spectral models (Ritchie (1991); Williams & Olsen (1994); Ritchie et al. (1994)). Of par-
ticular interest in the present context is that a similar scheme is currently under consideration for
incorporation into the next generation of numerical weather prediction and climate models at the

UK Meteorological Office (Cullen et al. 1994).

The essence of the semi-Lagrangian approach to representing advection may be summarised
as follows (in a three time-level form for illustration, though the equivalent two time-level scheme
is described e.g. by Staniforth & Co6té 1991). An advection problem may be written in the general

form

o —6x1) = 5(x,1 )
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where D /Dt is the Lagrangian derivative (0/9t + v.V) which follows the motion in a velocity

field v(x,t), F(x,t) is the field being advected and G(x,t) and S(x,t) represent source terms. F'
is represented on a specified Eulerian grid, fixed in space, and the procedure seeks to compute the
appropriate value of F' on this grid at a future time ¢+ 6t, given F' and v at times ¢ and ¢t — §t. Since,
apart from source terms G and S, F' is conserved following the flow, the trajectory of each point
on the grid is integrated backwards in time to its location at ¢ — é¢, termed the departure point
Xq = X(t — 6t). The source terms S and G are then interpolated in space either onto the mid-point
of the trajectory x, or to xq, F' is interpolated onto x4, and Eq (1) is integrated forwards in time

to t + 6t as

F(x,t + 6t) = F(xa,t — 6t) + 26t[(G(xa, t — 6t) + G(x,t + 6t))/2 + S(%Xm, )] (2)

where xp, is often taken to lie at (x 4+ xq)/2. Critical elements of the procedure, therefore,
typically involve (a) determination of the departure points x4, and (b) spatial interpolation of
the field F' and source terms to x4 and/or xn,, all to sufficient accuracy to preserve the main

characteristics of the process.

Various procedures involving differing combinations of iteration and interpolation have been
suggested for (a) (e.g. Robert 1981, McGregor 1993), while (b) is generally implemented using
cubic or higher order interpolation schemes (linear interpolation is not sufficiently accurate, e.g.
see Williamson & Rasch (1989)), though at some significant penalty in computational complexity
and cost. An important question is the extent to which compromises may be made, especially in
the design of (b), to achieve savings in computer time and storage (since fully 3D tensor forms of
cubic and higher order interpolators may entail many operations per grid-point). Some studies,
for instance, have suggested the use of split (2 or 3 x 1D) interpolation as a way of reducing the
computational cost (by as much as a factor ~ 3, e.g. see Bates 1984; Golding 1992), though with
some sacrifice of formal accuracy. Other uncertainties concern (i) the representation of boundary
conditions, especially for limited area models and in the vicinity of orography, and (ii) the role
and significance of conservation properties. Semi- Lagrangian schemes do not, in general, possess
formal conservation properties which are analogous to those of many Eulerian schemes. While the
consequences of non-conservation in semi-Lagrangian advection are generally taken to be modest
and largely benign, the absence of such properties is a matter of some concern, especially where
such schemes are used for long-term climate studies or for the advection of tracers which interact

with parametrization schemes.



The verification and validation of any advection scheme is a further issue of some importance,

and forms a key element of the work described herein. Model validation is traditionally carried
out by either (a) performing a range of idealized numerical experiments, typically entailing the
advection of blobs or patches of a passive tracer across a domain by a known (simple) velocity field,
or (b) full implementation of the scheme in question into an operational atmospheric model. In the
latter case, the performance of the model is assessed, often somewhat subjectively, by comparison
between case study simulations and corresponding atmospheric observations. In the case of (a),
gross problems associated e.g. with dispersive phase errors are given clear prominence, usually by
choosing tracer distributions with unrealistic and pathological properties such as sharp gradients
and corners, though the actual consequences of such errors in practical simulations of dynamical
phenomena is often obscure. In the case of (b), although the realism of the problem is guaranteed,
the validation is often rendered uncertain because of inadequacies in the observational data and
initialisation procedures, and because of uncertainties in the parametrization of unresolved physical
processes. For such purposes, the real atmosphere may simply be too complicated and difficult to

observe for the performance of conclusive tests.

In the present work, therefore, we make use of a laboratory system to provide the relevant
cases to be used for the validation of simulations using a number of semi-Lagrangian advection
schemes of current meteorological interest. The flow observed when a cylindrical annulus of liquid
is rotated about its axis of symmetry and subject to differential heating at the sidewall boundaries
is well known to exhibit a wide variety of flow regimes involving fully- developed manifestations of
baroclinic instability (e.g. Hide & Mason 1975). Through careful control of the experimental pa-
rameters, flow regimes with differing degrees of spatial and temporal complexity may be obtained,
and characterised to high precision in measurements of flow velocity, temperature and heat trans-
fer. Such flow regimes are sufficiently close in behaviour to the large-scale atmosphere to obtain
circulations which pose similar dynamical challenges to a numerical model to those obtaining in
the atmosphere itself, but without many of the complex and uncertain physical ‘forcing processes’
which complicate the validation process of atmospheric simulations. The level of experimental con-
trol and measurement precision may also be sufficient to enable a conclusive test of a numerical
model to be carried out under realistically valid conditions appropriate to a real fluid system (cf

James et al. 1981; Hignett et al. 1985 - hereafter referred to as H85).

Section 2 describes the experimental system, while Section 3 outlines the model formulation and
the various schemes to be implemented for the advection of temperature. Section 4 introduces the
particular flow cases to be used to test the various types of advection schemes. The main results of

both 2D axisymmetric and fully 3D semi-Lagrangian simulations are presented in sections 5 and 6.



Some concluding remarks are offered in section 7, together with some recommendations concerning

the implementation of semi-Lagrangian advection schemes in the light of the results obtained.

2. THE LABORATORY BENCHMARK

(a) Apparatus

The experimental systems used in the present study comprise essentially the same two rigs as
described by H85, though with some minor changes of instrumentation. Both annuli have the same
dimensions and used the same working fluid, but were of differing construction and instrumentation.
Velocity measurements were made in one rig (System A) via a particle-tracking method at five
levels in the vertical spanning the entire depth of the apparatus, by illuminating a suspension of
neutrally-buoyant polystyrene beads of approximate diameter 400-600 xm from the side through
thin horizontal transparent inserts, and observing their horizontal motion using a CCTV camera
mounted in the rotating frame. A second annulus (Rig B) was designed to measure temperatures
within the flow (at an array of copper-constantan thermocouples, regularly-spaced in azimuth at
mid-height and mid-radius), and to measure the total heat transport across the annular domain by

a form of time-resolved calorimetry.

The details of the apparatus construction are given in H85, and the main parameters are
shown in Table 1. A schematic diagram of the velocity measurement apparatus is reproduced in
Fig. 1. The inner and outer boundaries comprise smooth brass cylinders, whose temperatures
are maintained by circulating water (at a closely maintained initial temperature) through spiral
channels adjacent to each sidewall at flow rates ~ 50 cm® s~1. The horizontal boundaries consisted
of insulating acrylic surfaces in contact with both surfaces of the working fluid. Wall temperatures
were maintained stable to typically +0.01 K, with vertical variations of less than 2 % of the total
temperature contrast in the system except at the outer wall of Rig A, where variations up to % 3.5
% were obtained. The annuli were levelled to within 10~* radians and centred on turntables with
long term stability of around 1 part in 10*. Heat transport measurements were made in the way
described by Hignett (1982) and H85, from the temperature rise and flow rate of water circulating

through the inner cylinder.

The working fluid was a mixture of glycerol in water (roughly 17 % by volume), whose density

was adjusted to render the polystyrene beads used for flow visualisation and velocity measurement

6



neutrally-buoyant at approximately 20 °C. The main properties of this fluid, which was essentially

the same in all cases as used in the ‘main comparison’ of H85, are summarised in Table 1.

(b) Data acquisition and analysis

(i) Temperature measurements. These were carried out as described by H85, indeed several of the
cases to be used here for the model verification were taken from the the same study. Temperatures
were measured at mid-level and mid-depth from a ring of 32 thermocouples, equally-spaced in
azimuth. Fourier analysis of these measurements enables the amplitude and phase of each azimuthal
harmonic of the temperature field to be obtained at regular intervals. Time-averaged spectra and

time- variations in wave amplitudes were obtained in the manner described by H85.

By careful calibration of the temperature and flow rate sensors, heat transport could be mea-
sured to an absolute precision of around + 2 %. The design of the coolant system, with fairly high
flow rates and small volume of the spiral channels adjacent to the sidewalls, resulted in a relatively
short time-constant (~ 10-20 s) for the heat transport measurements, so that variations of heat

transport e.g. during a vacillation cycle, could be measured.

(ii) Velocity measurements. The velocity measurement approach is essentially non-intrusive,
in contrast to the temperature measurements, and therefore very suitable for quantitative compar-
isons with numerical simulations which do not contain mechanical obstacles. Horizontal velocity
measurements were made at heights in cm above the base of 1.6, 4.3, 7.0, 9.7 and 12.4, in images
which typically contained between 150-400 particles. The main difference between the methods
adopted here and those of H85 are in the analysis of the velocity fields. In the present work, veloc-
ity measurements are processed to represent each component of the field as an azimuthal Fourier
series, in which the horizontal spatial variation of each zonal wavenumber m component is expressed

as a function of the form

um,n(T, 0) = Umn(b/'r)l/2 sin nmx eimo (3)

(where z = (r —a)/(b—a)) and each complex coefficient U,, ,, is computed from the set of raw
measurements via a least-squares method (Bell 1984; Bell & Jackson 1985). This approach offers
several advantages over the earlier methods used by H85 in using a set of radial eigenfunctions

which are mutually orthogonal, and therefore amenable to fitting to a well-posed unique solution.
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3. NUMERICAL MODELS AND ADVECTION SCHEMES

(a) Baseline model

The main model used for the baseline simulations is essentially the same as used by H85. It solves
the non-hydrostatic Navier-Stokes equations for the baroclinic flow of a Boussinesq liquid, together
with corresponding continuity and thermodynamic equations, in cylindrical annular geometry on a
rotating reference frame, the details of which may be found in H85. The model equations include
representations of the reduced gravity and centrifugal terms, and temperature variations of density,
molecular viscosity and thermal diffusivity are represented via simple quadratic functions to a

precision of better than 1%.

Boundary conditions correspond to rigid, non-slip, isothermal sidewalls at 7 = a, b and rigid,
non-slip insulating endwall boundaries at z = 0, D, constituting an idealisation of the actual ex-
perimental system. The finite difference structure of the model resembles the Arakawa C grid in
the horizontal, with similar staggering in the vertical. A stretched mesh is used in the r and 2
directions, in order to resolve economically Ekman and thermal boundary layers adjacent to the
end- and side-walls. In contrast to H85, however, the present work employs a range of resolutions
from (16 x 16 x 64) points in (7,2,60) up to (32 x 32 x 128) points in the 3D model, and up to
(64 x 64) points in (r,2) in the 2D axisymmetric version of the model. Fig. 2 shows a typical grid
for the ‘standard resolution’ adopted in the present work of (24 x 24) points in (r, z) and 64 points

in 6.

The finite difference schemes employed were conventional conservative Eulerian methods which
are formally second-order accurate on the non-uniform grid. The Piacsek & Williams (1970) scheme
is used to represent advection of momentum, while advection of heat uses a flux form (Arakawa
1966, hereafter referred to as scheme E(A)), ensuring global conservation respectively of kinetic
energy and mean temperature. Time integration uses a conventional leapfrog scheme with a Du
Fort-Frankel representation of the diffusion terms, with smoothing applied every 21 timesteps. The
pressure field at each timestep is determined from the solution of a Poisson equation, via a direct

method due to Farnell (1980).
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(b) Semi-Lagrangian variants

In the present work, a central objective was to evaluate several forms of semi-Lagrangian advec-
tion scheme in the simulation of baroclinically unstable flow, with particular emphasis on (a) the
importance of formal accuracy in the interpolation procedure, (b) conservation and transport prop-
erties, and (c) the representation of the baroclinic conversion in the energy budget (especially since
semi-Lagrangian schemes do not generally satisfy formal conservation relationships). Since most
of these objectives can be addressed within the context of heat transport, we have conducted a
series of simulations in which a semi-Lagrangian advection scheme has been substituted for the
Arakawa scheme in the advection of temperature in the model outlined above, whilst leaving the
representation of momentum advection (and of molecular thermal diffusion) unchanged. Although
this approach precluded evaluating the schemes at large Courant numbers, it enabled the model
development to proceed without the extra coding complexities associated with the implementation

of semi-Lagrangian advection of momentum in a vector form (e.g. Bates et al. 1990).

A range of schemes was implemented, sampling the set of schemes currently being considered
by the UK Meteorological Office. The determination of the departure points xq was carried out
fully in 3D using the direct method of McGregor (1993), in which terms in the Taylor expansion
were retained up to O(At?). Various approaches toward interpolation were investigated, including
the split form suggested by Bates (1984) and Golding (1992). In this approach (designated hereafter
‘scheme C’), the problem is approximated as a sequence of two or three 1D interpolations, with
a corresponding reduction in computation time by a factor ~ 3 over the full tensor product form
in this part of the code, though the accuracy of the interpolation is also reduced, with uncertain
consequences. Also included are full 2D and 3D versions of the cubic-Lagrange (‘scheme A’) and
quintic-Lagrange (‘scheme B’) tensor product forms, which were investigated in order to evaluate

the importance of interpolation accuracy on the performance of the model.



4. TEST CASES AND BASELINE SIMULATIONS

In the following sections, we describe the particular cases of baroclinic flow in a rotating annulus
which were selected for validation of the various simulations, and present results from high resolution
simulations using the baseline Eulerian model described above for initial comparison. The rotating
thermally-driven annulus is well known to exhibit a rich variety of different flow regimes, depending
upon the imposed experimental conditions (mainly 2 and AT'), ranging from steady axisymmetric
flows to highly complex and disordered irregular regimes akin to ’geostrophic turbulence’ (e.g. see
Hide & Mason 1975). For the present purposes, it was considered desirable to choose a range of
flows which were sufficiently complex and nonlinear to form a challenging test to the numerics, but
not too complex in time and space to allow clear quantitative comparisons between simulations

and experiments without requiring precise initialisation of simulations.

Earlier work (H85; White 1988) had suggested that even simulation of the axisymmetric regime
was far from trivial if close quantitative agreement between simulation and experiment was required,
particularly with regard to quantities such as the Nusselt number (a dimensionless measure of total

heat transport, defined as

Nu = Htot/Hcon, (4)

where H;,; is the total heat transported through a cylindrical surface in the annulus and H,,,
is the heat transport which would be transported by thermal conduction alone in a material with
the same thermal conductivity as the working fluid). In 3D, the accurate simulation of a steady,
regular wave was chosen as the first test case and, for ease of comparison with previous work, the
case studied by H85 was selected. Finally, it was noted by H85 that the transition from a steady
wave to a periodic ‘amplitude vacillation’ as 2 is reduced had proved difficult for their generation
of (relatively low resolution) model, and they were only able to obtain successful simulations of
a very low wavenumber (m = 2) vacillation. Attempts to simulate a comparable transition from
m = 3 had not met with success, despite clear evidence for the existence of such a transition in
the laboratory. The transition to m = 3 amplitude vacillation was therefore considered a suitably

challenging test case with which to evaluate a range of numerical schemes.
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(a) Azisymmetric flows

Despite its simplicity, the steady axisymmetric flow regime at relatively low rotation rates has
proved surprisingly difficult to simulate in quantitative detail, particularly with regard to the heat
transport. White (1988) showed a range of simulations, using a version of the present Eulerian
annulus model but without a stretched grid, which were able to capture the basic structure of the
zonal and meridional circulation and temperature fields, but were subject to the development of a
spurious roll-like instability near the inner cylindrical sidewall, especially at very low or zero Q. This
appeared to produce a minor perturbation in the flow structure in this region but, around Q = 0,
had a strong effect on the total heat transport, increasing the Nusselt number in the simulations
by around 50% compared with laboratory measurements. It was only in simulations at very high
spatial resolution (> 64 x 64 points in (r,2)) that this instability was sufficiently suppressed to

result in a slow convergence towards the measured value of Nu.

In the present work, therefore, we consider as our baseline Eulerian simulations a sequence
of axisymmetric runs at a resolution of 64 x 64 points in (r,2) with a stretched mesh. The latter
proved significant in helping to suppress (though not entirely eliminate) the spurious roll instabilities
more effectively than in the simulations with an evenly-spaced grid, and showed good convergence
towards the laboratory measurements of Nu. Fig. 3a shows the effect of increasing resolution on
the simulated Nusselt number for the baseline model with a stretched mesh at a typical value of
Q = 0.3 rad s~*, with the laboratory measured value shown for comparison. The values of Nu in
the simulations are always greater than the laboratory value, but have clearly saturated by around
a resolution of (48 x 48) points to a value which lies within the error band of the laboratory

measurement.

The variation of Nu with € is illustrated in Fig. 3b, showing the characteristic decrease in
Nu with © within the axisymmetric regime (cf Hide & Mason 1975; Hignett 1982) from around
11.5 at = 0.0 to 10.0 at © = 0.5 rad s~1. The full resolution numerical simulations reflect this
trend quite well, to within the experimental error except at very low rotation rates. The latter
exception is almost certainly associated with the mild development of spurious roll-like instabilities,
as mentioned above (White 1988), which enhance the effective heat transport even at the highest
accessible resolution. The final values of Nu for a series of cases from Q = 0.1 - 0.5 rad s, also
simulated at a resolution of (64 x 64) points in (7, 2), are tabulated in Table 2, and show close

agreement with the laboratory values to within their absolute uncertainty (~ + 2.5%).

The azimuthal velocity fields for two typical rotation rates are shown in Fig. 4, in which frames

11
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(c) and (f) were obtained from laboratory measurements using the particle-tracking system (Rig
B). The vertical levels at which the velocity profiles were measured are indicated at the side of each
frame. Frames (a), (b), (d) and (e) of Fig. 4 show the corresponding simulated fields of 7" and v at a
resolution of (64 x 64) for comparison. Velocity structures are in quite good qualitative agreement,
showing the concentration of the prograde zonal jet towards the top of the inner cylinder, though
this is more pronounced in the simulation. This may reflect the limited resolution of the velocity
measurements and the assumed truncation of the interpolating functions (in which n is arbitrarily
restricted to n < 6; see Bell 1984). The simulated zonal jets are generally somewhat stronger
than in the measurements by around 10%, which is somewhat greater than the uncertainty on
the laboratory measurements themselves (around + 5%). This would appear to suggest that the
horizontal thermal gradient in the interior of the flow is somewhat too strong, and indicative of
some residual deficiencies in the representation of total heat transport. The representation of the
boundary conditions as perfectly conducting sidewalls and thermally insulating endwalls may also
be somewhat questionable at this level of precision (see also (b) below). Some evidence of spurious
roll instabilities is evident in Fig. 4(a) and (b) as a corrugation of the 7' and v contours near the
inner cylinder, and appear to be a fairly common occurrence in simulations at low rotation rates.
The effects of these rolls are relatively weak in this simulation, however, and do not appear to
influence the quantitative features of the flow too much. We may conclude, therefore, that the
baseline simulations provide a reasonably accurate simulation of the laboratory system, though

seem to require quite high spatial resolution to achieve full convergence.
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(b) Steady regular waves

The simplest non-trivial three-dimensional flow useful for trial simulation in the rotating annulus
is the steady wave, obtained as the initial baroclinic instability of the axisymmetric flow state
reaches a stable equilibrium at moderate values of rotation rate and thermal contrast (Hide &
Mason 1975). For the present purpose, we choose to use the case used by H85 in their comparison
of laboratory measurements with a lower resolution version of the present Eulerian model, at AT
= 4.0 K and Q = 1.0 rad s, for which a well-proven set of experimental data exist on the thermal
and velocity structure of the flow and the heat transport (and a new and more extensive set of

velocity measurements was acquired specifically for the present study).

Fig. 5 shows a series of horizontal streamfunction fields from velocity measurements in the
laboratory (computed using the method of Read 1991) alongside horizontal sections of pressure
obtained from a simulation using the Eulerian model at a resolution of 24 x 24 x 64 points in
(r,2,0). The model is clearly seen to capture many details of the flow structure at each level, showing
also that the pressure field acts as a very good approximation to the horizontal streamfunction in
this highly geostrophic flow. The high degree of quantitative agreement between simulation and

measurement (to a precision better than + 5%) is further evident in Figs 6-8.

Fig. 6 shows a comparison of the measured time-averaged temperature amplitude spectrum
(obtained by Fourier analysis of thermocouple measurements at mid-height and mid-radius) and
volume- and time-averaged kinetic energy spectrum (obtained from horizontal velocity measure-
ments) with the equivalent quantities from the simulation. Agreement between the temperature
amplitudes of the dominant mode (m = 3) and its harmonics is generally good, though the simula-
tion indicates a slightly larger amplitude (by around 5-10%) for the m = 3 and m = 6 components
than the laboratory measurements, and somewhat smaller amplitudes at high wavenumbers. Non-
harmonic components are generally much smaller in the simulation, almost certainly because of the
relatively high level of measurement noise in the laboratory. Similarly, kinetic energy spectra show
reasonable agreement for the main harmonic components and azimuthal-mean flow (with a general
trend for the simulations to underestimate kinetic energy densities), but non-harmonic components

in the laboratory are dominated by noise.

The spatial structures of the mean zonal flow are shown in Fig. 7 and those of the m = 3 and
m = 6 velocity components are illustrated in Fig. 8, both of which show radial profiles at each of
the five levels measured in the laboratory. The m = 3 and m = 6 components clearly agree to ~

10% over almost the whole of the domain measured in the laboratory, while the mean zonal flow
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exhibits a clear double-jet pattern at each level, characteristic of other studies of the steady wave

regime in this kind of system (H85), with agreement in magnitude to ~ 5% throughout.

Other quantities amenable to quantitative comparison include the mean Nusselt number. Some
significant disagreement between the laboratory measurement of 9.20 + 0.18 and the numerical
simulation was reported by H85, who obtained a value of 10.45 £ 0.01 evaluated at each sidewall in
a simulation with somewhat coarser resolution (16 x 16 x 64) than in the present work. In our case,
however, disagreement is actually somewhat worse with respect to the laboratory measurement,
with a value of 10.89 & 0.02 at both sidewalls (although the system had not fully settled to its final
state after 1000s of simulation, but showed a damped oscillatory behaviour apparently converging
upon the value given above). This discrepancy was also noted by H85, though they did not offer any
clear explanation. It is perhaps noteworthy, however, that the thermal diffusivity of the working
fluid in the experiment does not differ strongly from that of the perspex used for the endwalls
(Kperspez =~ 1.1 x 1073 cm? s~1), with the possible result that the endwalls do not act quite like
a perfect insulator. The quantitative impact of this on the effective radial heat transport should

perhaps be investigated further in future work.

Wave pattern drift rates were also discussed by H85. In the present simulation, the m = 3 wave
component was observed to have a drift frequency of 7.40 x1073 rad s~!, which compares quite well
with the laboratory value of 7.8 x 1073 rad s~! with a repeatability spread of around 10 %, and
that of the earlier (low-resolution) simulation of H85, indicating that our baseline model provides

a good overall simulation of the regular steady wave flow for comparison with other methods.
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(¢) Transition to periodic amplitude vacillation

As the rotation rate is reduced from the steady wave state, the regular steady wave in the laboratory
is typically observed to undergo a bifurcation to a time-dependent state in which the amplitude
and drift rate of the dominant wavenumber m component and its harmonics exhibit a periodic
modulation, often termed ‘amplitude vacillation’ (Pfeffer et al. 1980; Hignett 1985). The strength
of this modulation and its period gradually increase as £ decreases, until the flow gives way to a
relatively steady flow with dominant wavenumber m — 1. Recent work also suggests that the final
transition may be preceded by a more complex multi-mode regime in which both m and m — 1
components are present and interact in a chaotic nonlinear mode competition (e.g. Read et al.

1992).

H85 reported a successful simulation of m = 2 amplitude vacillation using their low resolution
model, though were unable to simulate the equivalent behaviour at m = 3. Upon integrating the
current baseline model at the same resolution while gradually reducing Q2 from the steady wave state
discussed in Section 4b, the model retained a roughly steady m = 3 state well beyond the value of
Q at which the laboratory flow was observed to make its transition to m = 2 via a large-amplitude
vacillation. It was only upon reaching a critical value of around © = 0.70 rad s=! (corresponding
to a value of thermal Rossby number © = gaATD/[Q%(b — a)?® ~ 1.06) that the simulated flow
began to exhibit a discernible amplitude vacillation. When 2 was further reduced to 0.65 rad s~!

(© ~1.23) the flow made a rapid transition to a steady m = 2.

When the present baseline model was run at higher resolution, however, a different (and more
realistic) behaviour was observed. Fig. 9 shows the mean volume-integrated kinetic energy per
unit mass and its standard deviation as a function of the thermal Rossby number ©, obtained from
measurements of velocity in the laboratory and from a baseline simulation at a resolution of 24 x
24 x 64 points in (r, 2, 6) averaged over time intervals of 1500s. The laboratory measurements show
an rms spread of around + 5 % in the total kinetic energy for all values of © < 0.675, representing
the overall level of measurement uncertainty on this quantity. Pronounced amplitude oscillations
with a period of ~ 190s set in around © =~ 0.7, at which point the rms variation increased to around
+20%. The strength of the oscillations continued to increase, and the period lengthened slightly,
as © was increased further, reaching ~ +60% of the mean value of 14.6 cm® s=2 and a period of
= 240s around © = 0.87 before the m = 3 component collapsed and was then replaced by a strong

steady m = 2 flow.

The corresponding simulation reflected several aspects of this qualitative progression quite
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well, and exhibited the onset of a periodic amplitude vacillation around € = 0.85 rad s~! with
a period of 190 +3 s. The strength of this vacillation increased steadily as © increased, and the
period lengthened to around 230s at £ = 0.775 rad s~!. The simulation did, however, retain the
m = 3 flow somewhat beyond the limiting value of 2 indicated by the laboratory results, and did

not make the transition to m = 2 until Q = 0.725 rad s~ (© =~ 0.988).

(d) Convergence of solutions?

The extent to which the simulated flow converges towards the actual flow in the laboratory with
increasing spatial resolution is a question which should not be overlooked. The results presented
above do suggest a noticeable improvement in the (already quite good) agreement between simula-
tion and measurements obtained by H85 for axisymmetric and steady wave flows, by improving the
spatial resolution from (16 x 16 x 64) to (24 x 24 x 64). This is particularly significant for simulating
the onset and behaviour of m = 3 amplitude vacillation, which the lower resolution model fails to

capture.

Some caution should be exercised, however, in extrapolating this apparently optimistic trend
towards even higher resolution. The present baseline model has also been run at a resolution of
(32 x32x128) under similar conditions to the sequence of simulations described above. In this case,
the model produced no steady state, even at Q = 1.0 rad s, but produced a sustained amplitude
vacillation at all the rotation rates investigated (1.0 > Q > 0.775 rad s!), although the rms
strength of this vacillation (£ 1.4 cm® s72) at Q = 1.0 rad s~! was almost indistinguishable from
that due to measurement uuncertainties in the laboratory data. The magnitude of this vacillation
was, however, consistently at a significantly higher level than in the laboratory at Q > 0.9 rad
s~1. The baseline simulations presented above should therefore be treated with some caution as
representing the fully converged numerical solution appropriate to this problem. Further progress
towards a conclusive assessment of the ultimate convergence of our baseline model must await
the possibility of simulations at even higher resolution, which were beyond the capabilities of our

present systems.
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5. SEMI-LAGRANGIAN SIMULATIONS: AXISYMMETRIC FLOWS

In the following sub-sections we examine a series of simulations of axisymmetric flows using a range
of different advection schemes for the temperature field, mainly at a resolution of (24 x 24) and
for each of the five rotation rates considered in Section 4a. The semi-Lagrangian simulations are
compared with each other and with the Eulerian model at the same resolution, and with the full

resolution Eulerian model and laboratory measurements discussed above in Section 4a.

(a) Bi-cubic interpolation in 2D

In the first series of semi-Lagrangian simulations, we consider cases using full 2D tensor interpolation
(scheme A). A range of resolutions were investigated, from (16 x 16) up to (48 x 48) in a stretched
mesh. Fig. 10 shows some representative temperature fields at two values of Q (0.1 rad s~!; Figs
10(a)-(d), and 0.5 rad s~%; Figs 10(e)-(h)) at a resolution of (24 x 24). Figs 10(a) and (e) show
the simulations using scheme A, while simulations using the Eulerian scheme E(A) at the same
resolution and rotation rates are shown in Figs 10(d) and (h). Both scheme A and E(A) show no
tendency for the spurious roll instabilities which were found in the high resolution E(A) simulation
in Fig. 4(a), and produce results which, at first sight, look closely similar. Strong convective
overshoot features are evident near the sidewall thermal boundary layers, especially at Q = 0.1
rad s™1, and relatively weak thermal gradients occur near the top of the domain. Differences are
apparent in the detailed form of the overshoot features, and more especially, in the vicinity of the
lower Ekman layer, where a greater number of temperature contours appear to extend outwards
from the inner wall with scheme A than with the E(A) simulations. There is also a slight indication

of enhanced vertical and horizontal thermal gradients in the interior of the scheme A simulations.

The latter point is borne out by a comparison of the corresponding zonal velocity fields. Both
scheme A and E(A) simulations show essentially the same qualitative features in v as was found
in the high resolution E(A) runs in Fig. 4, though with some differences in magnitude. The
velocity fields from scheme A were quite closely similar to those in Fig. 4(b) and (e), but were
approximately 1-2% larger in amplitude, and hence were around 10-12% larger in amplitude than
the laboratory measurements. The lower resolution E(A) simulations, however, produced zonal jets
which were consistently around 20-30% weaker than those from scheme A, and hence around 10-
15% weaker than the laboratory measurements under the same conditions. Scheme A simulations
at higher resolution tend to show even stronger zonal jets, indicating a consistent trend towards

overestimating horizontal thermal gradients.
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The Nusselt numbers for the various axisymmetric simulations at this resolution are sum-
marised in Table 3, and show some consistent trends between the different numerical schemes. For
each of the semi-Lagrangian simulations it was necessary to examine the Nusselt numbers evalu-
ated at the two sidewall boundaries separately (as indicated in Table 3) since, in contrast to the
E(A) simulations, some significant differences were apparent. In the case of scheme A simulations,
differences between Nu(r = a) and Nu(r = b) were no more than around =+ 4% of the mean value
at a resolution of (24 x 24), though this did vary somewhat with resolution. This almost certainly
reflects small systematic departures from perfect conservation of heat in the simulations, since the
basic form of scheme A does not satisfy formal any conservation relationship, again in contrast to
the Eulerian E(A) scheme which conserves T' at second order accuracy. The mean values of Nu for
scheme A are generally 2-3% larger than for the E(A) simulations at the same resolution, which
are themselves consistently around 1-2% larger than the corresponding laboratory measurements.
The scheme A results are mostly within the 2.5% uncertainty of the laboratory measurements of
Nu, indicating that scheme A shows a slight tendency to overestimate the advective heat transport,

especially in the vicinity of the outer wall.

(b) Bi-quintic and split cubic schemes

In order to assess the sensitivity of the axisymmetric semi-Lagrangian simulations to the method
of interpolation, two other parallel series of simulations were carried out using a full quintic tensor
product scheme (scheme B) and the more economical split 2 x 1D approach suggested by Golding
(1991; scheme C). The temperature fields from these simulations at a resolution of (24 x 24) are
shown in Figs 10(b) and (f), and (c) and (g) respectively. The quintic scheme evidently produces
fields which are consistently almost indistinguishable from scheme A, and show little or no sensitivity
to the interpolation used at the boundaries. The split scheme C, however, shows some clear
differences which indicate a significant degradation in the performance of the scheme in comparison
with any of the others. The simulation at low rotation rate (Fig. 10(c)) is clearly subject to a
quite severe boundary layer instability near the inner cylinder, which renders the flow unsteady and
has a strong effect on the isotherm structure throughout the flow. The simulation at 0.5 rad s~!
is significantly improved, but shows some marked differences in isotherm structure from schemes
A and B in the vicinity of the lower Ekman layer, around which the static stability is noticeably

reduced with scheme C.

As one might expect from the above, the Nusselt numbers for scheme B simulations are closely

similar to those from scheme A, differing by at most 0.2%, and indicate that the improved formal
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accuracy of the quintic interpolation offers little quantitative advantage over scheme A in these
cases. This is not the case for the split scheme C, however, which shows much larger differences in
Nu between the inner and outer sidewall at this resolution. The spurious difference in Nu between
sidewalls is a strong function of resolution for all schemes, but especially for scheme C. Fig. 11
shows the effect of varying resolution with scheme C from (16 x 16) to (48 x 48), indicating that
at the highest resolution the two sidewalls are apparently in balance to around the uncertainty in

the laboratory measurements of Nu.

6. SEMI-LAGRANGIAN SIMULATIONS: REGULAR BAROCLINIC WAVES

In the following sub-sections we examine a series of numerical simulations of the 3D cases outlined
in Section 4, using the various semi- Lagrangian schemes discussed above. Section 6a discusses
the simulation of an m = 3 steady wave using the tri-cubic scheme A for temperature advection
and compares the results with corresponding laboratory measurements and the Eulerian E(A)
simulations presented in Section 4. In Section 6b we consider the effects of replacing the semi-
Lagrangian scheme with either scheme B or C, and in 6c we examine attempts to simulate the

transition to m = 3AV as  is reduced using all three semi-Lagrangian schemes.

(a) Steady m = 3 flow with tri-cubic scheme A

The model version using scheme A for temperature advection in all three dimensions was used to
simulate a regular, steady m = 3 baroclinic wave flow at AT = 4.0 K and Q = 1.00 rad s™%, with
otherwise identical parameters to the baseline E(A) simulations described in Section 4(b) and at a
resolution of (24 x 24 x 64) points in (r,2,0). The 2D axisymmetric scheme A model was run to
a steady state under identical conditions and resolution to provide an initial flow. The resulting
temperature field was then perturbed with a weak m = 3 pattern plus a localised perturbation,
and the full 3D scheme A model was run for a further 1000s with a timestep of 0.02s. During this
period, the m = 3 perturbation grew and the flow equilibrated, and settled to an approximately

steady state dominated by an m = 3 pattern which drifted in a prograde sense around the annulus.

(i) Temperature €& KE spectra. The structures in velocity of the equilibrated flow pattern
were largely similar to those obtained in the E(A) simulations shown above in Section 4, and we
concentrate here upon the details of the simulated temperature field. Fig. 12a shows a composite of
temperature amplitude spectra obtained at mid-height and mid-radius, as in Fig. 6a, showing the

time-averaged wave amplitude spectra obtained from all the semi-Lagrangian simulations together
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with the laboratory measurements and results from the E(A) (24 x24x64) simulation. Like the E(A)

simulation, scheme A is seen to produce a temperature field comprising m = 3 and its harmonics,
with very weak amplitudes in other components. The amplitude of the dominant harmonic (0.278
K) is around 0.015K larger than the corresponding laboratory value, and around 0.005K smaller
than the E(A) simulation at the same resolution. This is in contrast to the (16 x 16 x 64) E(A)

simulation of H85, who obtained an amplitude ~ 0.03K smaller than the laboratory case.

The m = 6 component with scheme A is significantly larger than the laboratory measurements
by a factor ~ 2, which is even greater than that obtained by the E(A) simulations (although H85
obtained fairly close agreement at their resolution), whereas at m = 9 all simulations seem to be in
close agreement (to within the measurement uncertainty of 0.004 K) with the laboratory. For all
higher harmonic components, however, both E(A) and scheme A simulations all seem to produce
significantly lower amplitudes than in the laboratory (although the amplitude of m = 15 is rather

close to the measurement noise level, and therefore quite uncertain).

In contrast, the kinetic energy spectrum from the scheme A simulation is in quite good quanti-
tative agreement overall with the laboratory spectrum (Fig. 12b), especially for harmonic compo-
nents m = 6, 9 and 12, for which discrepancies are only around =+ 0.07 cm® s™2 or around 0.3% of
the energy of the dominant m = 3 component. Very little energy appears in the non-harmonic com-
ponents. The dominant wavenumber m = 3, however, is apparently significantly underestimated

(11.9 cm® s~2 compared with 17.3 cm® s~2 in the laboratory).

Some possible reasons for significant discrepancies between laboratory measured temperature
amplitude spectra and numerical simulations were discussed by H85. These included the possibility
that the presence of the thermocouple ring might displace the location of the equivalent flow
regime in parameter space, or that small errors in the positioning of the thermocouple ring might
lead to significant systematic measurement errors in the presence of strong spatial gradients of
temperature. The latter positioning errors would also lead to spurious spreading of amplitude into
the non-harmonic components at amplitude levels comparable with the systematic errors in the
main harmonics, though this does not seem to be strongly apparent in the spectra shown in Fig.
12. Assuming that most of the discrepancies are indeed a real effect, the main reason for them is
most likely to derive from the properties of the numerical scheme itself. In this case, results would
suggest that the semi-Lagrangian scheme tends to produce a slightly enhanced dominant component
in temperature, a substantially enhanced first harmonic and broadly realistic amplitudes in the
higher harmonics, though the kinetic energy response by the model is broadly consistent with the

laboratory measurements apart from the dominant harmonic itself. This is in contrast to the E(A)
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scheme, which results in a slightly larger dominant component in 7" and a weaker first harmonic

(though both are still significantly enhanced relative to laboratory measurements) at comparable

resolution.

(i) Temperature fields Significant differences between the various numerical schemes are also
apparent in the detailed structure of the simulated temperature fields within the wave. This
is particularly apparent close to the critical level in the flow, where nonlinear effects associated
with strong advection are especially significant. In the case of baroclinic waves in the rotating
annulus with rigid, non-slip boundaries, the critical level is close to mid-height, around which one
might expect to see evidence of filamentation and phenomena akin to vortex roll-up during the

development and equilibration of the wave (e.g. see Bell 1994).

Figs 13a-c show the mid-level temperature field as simulated by the E(A) models at resolutions
of (16 x 16 x64), (24 x 24 x64) and (32 x32x 128). The high resolution field (Fig. 13c) clearly shows
the presence of filamentary structures being drawn out of the thermal boundary layer adjacent to
the inner sidewall and wrapping up into a ‘cold pool’ in the trough of each wave lobe. The equivalent
structure is also apparent in the corresponding temperature field from the scheme A model shown
in Fig. 13d, but at the standard resolution, and shows a distinct ‘hook-like’ feature extending
outwards from the inner cylinder in the direction of the prevailing flow, though with less clear
evidence for a well-developed ‘cold pool’. A similar feature is also evident in the E(A) model at the
standard resolution (Fig. 13b), but in this case the filamentary structures near the inner sidewall
are somewhat more ‘smeared out’ and with some grid-lengthscale roughness in the field in the
vicinity of the very strong thermal gradients near the inner cylinder itself. Such effects are even
more apparent in the low resolution E(A) simulation (Fig. 13a), in which the filamentary structure
is strongly ‘smeared out’, presumably by the effects of numerical diffusion (since all models use the
same explicit molecular diffusion coefficients). On this basis, at least, the semi-Lagrangian scheme
A would appear to show some significant advantages in representing thermal structures due to

advection more faithfully at a given resolution than the comparable Eulerian scheme.

(i41) Nusselt numbers. The Nusselt numbers obtained by the scheme A model in the present
regime are i)resented in Table 4, together with comparable values obtained using the other schemes.
As was found for the axisymmetric flows, some significant differences occur between Nu evaluated
at the inner and outer sidewalls for all the semi-Lagrangian schemes, though the difference is no
greater than + 2% for scheme A. The mean value of 11.37 is around 23% greater than the measured
value of 9.2, and approximately 6% greater than the high resolution E(A) simulation, indicating

a slight tendency, as found for the axisymmetric model, for scheme A to produce more vigorous
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advective heat transport than for the E(A) scheme.

(iv) Energetic conversion rates. A further key property of the different numerical schemes is
their effect upon the energetic exchanges within the simulated flows. In the present cases, this
is of particular importance with regard to the conversion from potential energy to eddy kinetic
energy, which is essentially determined by the vertical advection of temperature. In the present
set of models, we make use of a form of energy budget deriving from that developed by James
et al. (1981), in which the rate of change of the kinetic energy K,, of each zonal wavenumber m

component (integrated thoughout the annular domain) is treated separately according to

%'2=Pm+Nm—Dm (6)

where P, represents the conversion of potential energy to kinetic energy at wavenumber m by

convective overturning and sloping convection and is given by

D b
P, = —2nga / / (Wi Ty, + wy, Ty )rdrdz (7
0 a

(where ()* denotes the complex conjugate), Dy, represents the dissipation of kinetic energy
by viscosity and N,, results from nonlinear interactions with other wavenumbers. In the case of
interactions involving the zonal mean m = 0 components, N,, effectively represents the barotropic
conversion rate to eddy kinetic energy at wavenumber m. For the present purposes, we choose to
divide the analysis so as to distinguish only between the zonal mean m = 0 component and all
the waves, and obtain the latter by summing each term over 1 < m < Myqe, Where Mmpqz is the
maximum zonal wavenumber corresponding to the Nyquist frequency of the discretized zonal grid.
The resulting simplified energy budget is essentially equivalent to the one developed by Williams

(1971) in the context of his simulations of baroclinic annulus waves in a Boussinesq liquid.

The results of such an analysis for the various simulations of steady m = 3 flow are summarised
in Table 4, which lists the principal azimuthal mean and ‘eddy’ components of kinetic energy and
conversion terms, averaged over the last 1000s of each simulation. The energy budget for each
component in terms of the net kinetic energy tendency is found to balance to a high degree of
precision (better than 1%), indicating that the analysis provides a good representation of the

overall energetics of each quasi-steady flow. The eddy baroclinic conversion P,,s¢ in the Eulerian
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E(A) simulations typically corresponds to a growth rate for eddy kinetic energy of around 0.17
s~1, though the magnitude of the term depends somewhat on the spatial resolution. The results in
Table 4 show a general trend towards increased values of P,,,5¢ as resolution increases, which is also
correlated with increased values of K,,5o and Ky, though P, appears to decrease with increased
resolution. The baroclinic conversion strongly dominates over the ‘barotropic’ conversion Ny_,, by
a factor ~ 6, which is consistently positive (i.e. with waves gaining kinetic energy at the expense
of the zonal flow) in all simulations, while the viscous dissipation terms Dy and D,,~q adjust
to compensate for other changes in the overall budget. The semi-Lagrangian scheme A simulation
exhibits values of kinetic energy and conversion terms which are generally intermediate between the
Eulerian E(A) results at resolutions of (24 x 24 x 64) and (32 x 32 x 128) respectively, except that
Pp5o is actually greater than for any of the Eulerian simulations. This would appear to reflect
the enhanced level of activity in the temperature field produced by semi-Lagrangian advection,
suggesting an enhancement of baroclinic activity by around 5-7% in the scheme A simulations over

the corresponding Eulerian scheme.

(b) Steady waves: Tri-quintic and split cubic schemes

Two other cases were investigated at the same nominal point in parameter space as in (a) above,
using both the semi-Lagrangian schemes B and C. Both cases were initialised as for scheme A from
axisymmetric flows, each obtained from equilibrated simulations using the equivalent 2D models.
Both cases resulted in an equilibrated quasi-steady flow dominated by a slowly-drifting m = 3

pattern.

The composite mid-radius/mid-height temperature spectrum (FIg. 12a) indicates that scheme
B generates an even larger amplitude in the dominant wavenumber than for any other scheme,
with a mean amplitude of 0.302 K; some 14% larger than the laboratory value. The first harmonic
in the scheme B simulation is also very large, being around 2.5 times as large as found in the
laboratory. The higher harmonics, however, are rather smaller in amplitude and, as found above
for the E(A) and scheme A simulations, are generally smaller than the laboratory values. The
spectrum from scheme C is rather different from the others, in having significant amplitude in the
non-harmonic components (even compared with the laboratory measurements), suggestive of much
stronger sideband activity than for any of the other simulations. This is also evident in the other
components of the flow field, which show significant departures from three-fold rotational symmetry
in the flow patterns from this simulation. The amplitude of the m = 3 component is around 20-30%

smaller than in any of the other simulations and ~ 12% smaller than the laboratory value, while
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the higher harmonics are only a little smaller than the other simulations and comparable with the
laboratory amplitudes (except for m = 6, for which the laboratory value seems remarkably small

in comparison with all the simulations).

The mid-level temperature structures for the scheme B and scheme C simulations are shown in
Figs 13e and f respectively. Significant differences between these two simulations and the previous
scheme A and E(A) cases are clearly apparent, especially in the region near the inner cylinder. The
scheme B simulation shows a pronounced ‘hook-like’ structure drawn out from the inner thermal
boundary layer, which is apparently in equilibrium as the wave drifts around the annulus, and
which is marginally stronger than the equivalent feature produced by scheme A (cf Fig. 13d). In
scheme C, this effect seems to have gone one stage further, in that the filament is drawn out of the
inner boundary layer, around the trough of the wave, and almost returned to the inner cylinder
at the other side of the wave lobe, enclosing a distinct temperature maximum close to the vertex
of the trough itself. This would seem to indicate that both scheme B and scheme C result in an
enhanced level of advective activity compared with scheme A and the E(A) schemes, with scheme

C showing the strongest effect.

This apparent enhancement of advective transport is further apparent in the Nusselt numbers
for these simulations, at least for the inner cylinder (see Table 4). The values of Nu for scheme
B at both inner and outer cylinders agree to within +3%, with a mean value which is marginally
greater than for scheme A. For scheme C, however, there is a considerable discrepancy between
the two sidewalls, which significantly exceeds that expected from the axisymmetric cases at this
resolution (see Fig. 11), about a mean value of around 10.1. This would seem to indicate that
complex three-dimensional structure further degrades the accuracy of the scheme C simulation, at

least regarding global heat transport.

The overall levels of kinetic energy in the scheme B simulation are generally greater than
for scheme A (see Table 4), though are still somewhat less than found in the laboratory velocity
measurements. In scheme C, however, the levels of eddy kinetic energy are considerably smaller,
though the m = 0 component is larger. The eddy baroclinic energy conversion rate Ppso for
scheme B indicates rather more vigorous release of potential energy with this scheme than for
either of the other semi-Lagrangian simulations, while scheme C seems to produce the weakest
level of baroclinic conversion (both P, and P,) overall. As in the E(A) simulations, barotropic
conversions (Ny_,,) are consistently positive in all three cases, and around 0.5 cm® s~3, indicating
that the waves have some mixed baroclinic/barotropic character at this parameter range though

are predominantly baroclinic.
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(¢) Transition to m = 3 amplitude vacillation?

As described above, as 2 is decreased, the steady wave flow in the laboratory is observed to undergo
a bifurcation to a periodically-modulated oscillatory state with a period of around 200s, and this
behaviour was broadly simulated quite well by the E(A) model, provided the spatial resolution
was adequate. Attempts were therefore made with all three semi-Lagrangian schemes to try to
emulate this experiment by conducting a series of long simulations in which each model version
was run for an interval of 1000-2000s at a given value of €2, and then Q was successively reduced
and the simulation continued for a further period using the endpoint of the previous segment of the
simulation as its initial state. This series of experiments was carried out until 2 reached a value of
0.75-0.70 rad s~*, which was well beyond the point at which the laboratory flow made a transition

o = 2:

Despite ensuring that the flow was perturbed after each reduction in €2, one of the most
remarkable results of this series of experiments was that none of the three semi-Lagrangian schemes
resulted in any significant level of amplitude vacillation, even down to the lowest values of Q2
investigated. Scheme B did show the onset of some weak time—dependeﬁce around Q = 0.775 rad
s~1, though this was only really apparent in the higher harmonic components and had an unrealistic
period of only ~ 100s. A weak hint of a similar kind of fast but very weak oscillation also became
apparent in the scheme A simulation, but only at the lowest values of €2, while the scheme C
simulation showed a strong tendency for the emergence of strong sideband activity (i.e. in m = 2

and m = 4) as  was reduced.

The overall results of this series of experiments are summarised in Fig. 14, which shows the
time-averaged levels of m = 3 kinetic energy and their standard deviations in the simulated flows
from schemes A-C, together with the equivalent data from the sequence of laboratory measurements
over the same range of ©. All three semi-Lagrangian simulations were found to retain a quasi-
steady m = 3 flow well beyond the point where both the laboratory flow and the medium and
high resolution E(A) simulations developed a strong periodic vacillation, though at varying levels

of mean kinetic energy in the m = 3 component.

Although the flow did experience some perturbation each time 2 was reduced, the possibility
was considered that the flow in all the semi-Lagrangian simulations had settled into a spurious
metastable steady state which might coexist with a more realistic periodically-modulated flow
state outside a limited ‘basin of attraction’. Accordingly, an experiment was run at Q = 0.80 rad
1

87" in which the initial state was taken from the medium resolution E(A) simulation close to the
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maximum of an amplitude vacillation cycle, and the scheme A model was subsequently integrated

until transients had apparently decayed. In practice, the large-amplitude periodic modulation
present in the E(A) simulation decayed away rapidly (within one vacillation period or so), to be
replaced eventually by a fast, weak oscillation in zonal harmonics m > 9 (see Fig. 15a). This
oscillation was not present in the original scheme A simulation (cf Fig. 15b), suggesting the
coexistence of at least two attracting solutions at this point in parameter space, although neither of

which seem to bear much resemblance to the corresponding flow actually observed in the laboratory.

7. DISCUSSION

In the work presented above, we have carried out a series of careful comparisons between sev-
eral variants of semi-Lagrangian advection schemes applied to thermal advection, corresponding
simulations using a more conventional Eulerian scheme, and verifying measurements in the labo-
ratory. The cases investigated have ranged from simple steady, axisymmetric flows, steady regular

equilibrated baroclinic waves, and a bifurcation sequence to a periodic time-dependent flow.

(a) Azisymmetric flows.

In the case of steady axisymmetric flow, the basic bi-cubic scheme A produced results which com-
pared well both with the Eulerian E(A) simulations and with laboratory measurements, though did
show a general trend towards enhanced levels of transport compared with both E(A) simulations
and experiments. This would appear to suggest a significant systematic bias in the semi-Lagrangian
family of schemes towards overestimating transport at around the 10% level, though there may be
grounds for suspecting some additional contributing factors arising from the idealisation of the
insulating boundary conditions in all the models. The improved formal accuracy of the bi-quintic
scheme B resulted in values of Nu which appeared to show some improvement upon scheme A, which
were also reflected in cleaner morphology in the temperature fields. Overall, however, scheme B did
not seem to offer many strong practical advantages which would justify its additional computational
expense, at least for the steady flows investigated. It was clear, however, that the reduced formal
accuracy of the split cubic scheme C did result in serious quantitative and qualitative degradation
of almost all simulations unless the model was run at much higher spatial resolution than for the
other schemes. This would clearly seem to undermine the apparent economical advantage of this

scheme in most practical situations.

The spurious apparent departure from proper conservation of heat in all three semi-Lagrangian
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schemes evidently leads to a number of artifacts, including the appearance of significant differences

in Nusselt number at the two sidewalls, though does not otherwise seem to result in serious conse-
quences for the long- term stability of the simulation. The apparent departures from conservation
could be improved by running the model at higher spatial resolution, though again at some in-
creased computational cost. It would be of some interest in further work to investigate the effect of
modifying the scheme A to force conservation, e.g. along the lines suggested by Priestley (1993),
to see whether such a device is sufficient to recover global conservation properties characteristic of

the present Eulerian E(A) simulations.

(b) Steady waves.

All schemes investigated seemed to be capable of producing reasonably successful quantitative
simulations of the main comparison case of steady, regular baroclinic wave flow, at least at the
‘standard resolution’ adopted here of (24 x 24 x 64). Both the tensor-product semi-Lagrangian
schemes (A and B) appeared to generate higher levels of eddy kinetic energy and temperature
amplitudes than any of the E(A) simulations, though all simulations seemed to be slightly deficient
with respect to eddy kinetic energy (though, somewhat surprisingly, not with respect to temperature
amplitudes, where scheme B produced unrealistically large amplitudes of the m = 3 and m = 6
components of the temperature spectrum). The split-cubic scheme C produced rather smaller levels
of eddy kinetic energy than either of the tensor-product schemes, compatible with its relatively
small baroclinic conversion rate compared with schemes A and B. The baroclinic conversion rates
for all the semi-Lagrangian schemes, however, were found to exceed the conversion rates in the
E(A) models, even though the latter produced levels of EKE which were scarcely different from
those with schemes A and B. This appears to result from a balance with relatively smaller eddy

dissipation rates in the E(A) simulations, though the detailed reasons for this are not clear.

The general tendency for enhanced levels of heat transport in all the semi-Lagrangian schemes
was apparent in the simulated Nusselt numbers, which were generally greater for schemes A and
B than for any of the E(A) simulations. Discrepancies between the two sidewalls were most pro-
nounced for scheme C, for which the additional complexity of the three-dimensional flow lead to
an increased difference between Nu at » = a,b compared with the axisymmetric model. Again,
departures from formal conservation did not appear to result in serious problems for the long-term
stability of the simulation. The improved formal accuracy of the quintic interpolation scheme of-
fered a marginal improvement on model performance, but this advantage was not compelling at

moderate resolution. At low resolution, however, it was clear that the split scheme C was in se-
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rious trouble, and failed to converge to a realistic flow state for spatial resolutions coarser than

(24 x 24 x 64), regardless of timestep.

(¢) Time-dependent flows and spurious attractors?

The most remarkable result from the present series of simulations was the clear failure of any of the
semi-Lagrangian schemes to capture the transition from steady to periodically vacillating m = 3
flow as §2 was reduced. This was made even more remarkable, given the evident success of the E(A)
model in showing quite good quantitative agreement with the experimental behaviour, including
the parametric conditions for the onset of vacillation, vacillation frequency etc., provided the spatial
resolution was sufficient. The detailed reasons for the failure of the semi-Lagrangian simulations
to capture this phenomenon are not clear, though it is perhaps significant that the amplitude
vacillation phenomenon is highly baroclinic, and therefore quite sensitive to the representation of
heat transport in the model. Its occurrence is also found experimentally to be sensitive to the
Prandtl number of the fluid (Jonas 1981), being less prevalent in fluids with lower Prandtl number.
This may be significant if numerical diffusion plays a role in the simulations, in which case one might
speculate that our use of semi-Lagrangian advection for temperature only may modify (perhaps

reducing?) the effective Prandtl number for the flow.

The appearance of spurious stability or instability in numerical models of nonlinear systems
is increasingly becoming recognized as an important source of uncertainty in the study of such
systems. It is well known, for example, that, for some numerical models of systems of ordinary
differential equations, the use of too large a timestep may result in spurious instability or chaos
(e.g. Lorenz 1989) or the spurious suppression of instability (e.g. Corless et al. 1991; Iserles
1990). Recent studies have also highlighted similar effects in some systems of coupled partial
differential equations (e.g. Moore et al. 1991; Yee et al. 1991), which have exposed sensitivities
both to the space and time step lengths and to the numerical scheme itself. Although no systematic
investigation of the effect of varying resolution and timestep was carried out in the present study,
a few semi-Lagrangian runs in the region where amplitude vacillation was expected were carried
out with shorter timesteps, though with no appreciable difference in behaviour. The present work
would therefore seem to suggest that the semi-Lagrangian schemes investigated here may fall into
the latter category associated with the scheme itself, and this question clearly needs to be addressed

more carefully in future work.
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(d) Further studies

The present investigation has highlighted a number of aspects of the simulation of rotating, stratified
flow which are clearly sensitive to the representation of heat transport. In any future extension
of this work, it would be highly desirable to look more closely at the sensitivity of the semi-
Lagrangian simulations to enhanced resolution. It would also be desirable to implement semi-
Lagrangian schemes for the representation of momentum transport in the model as well as for
heat, in order to investigate whether mixing schemes in this way affects e.g. the effective Prandtl
number as suggested above. Furthermore, given such a capability, the model would no longer
be constrained by the CFL criterion in the choice of timestep, and it would then be possible to
study the performance of the scheme at much larger Courant numbers, closer to values intended
for operational use in atmospheric models (since without achieving large Courant numbers, the
economical advantages of semi-Lagrangian advection are rather less apparent). Given the points
raised in (c) above, however, the possibility that the use of such large timesteps might lead to an

enhanced occurrence of spurious numerical artifacts should be considered seriously.

The particular cases of IaBoratory phenomena simulated in this (and previous) studies have
clearly proved a challenging test for the range of numerical schemes under consideration - perhaps
more challenging than one might have expected. It was decided at an early stage to focus on
phenomena for which baroclinic effects were paramount, but clearly in atmospheric flows barotropic
and other kinds of instability are also dominant under some circumstances. In the context of
the thermally-driven annulus experiments, a comparable test of model performance where both
baroclinic and barotropic effects are important may be found in the so-called ‘structural vacillation’
regime at higher values of {2 than considered in the present work (e.g. Hide & Mason 1975; Pfeffer
et al. 1980; Read et al. 1992). This form of time-dependence is generally believed to result from
the barotropic instability of the basic large-scale baroclinic wave pattern, in a manner analogous to
the stability of Rossby waves, and forms a transitional regime along the way towards the emergence
of fully-developed geostrophic turbulence. An investigation of the ‘structural vacillation’ regime
should therefore certainly feature in any future evaluation of numerical schemes used for momentum

advection.
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Figure Captions

Figure 1: Schematic sections through the rotating annulus used in the present study. The left-
hand section represents the velocity measurement system, showing the approximate location
of transparent acrylic inserts (indicated L) for illumination of tracer particles. The right-hand
section illustrates the arrangement of fine-wire thermocouple probes (labelled T) at mid-
height and mid-radius. Other labelled features are: A, insulating lid; B, insulating base; C,
inner cylindrical sidewall; D, outer cylinder.

Figure 2: Layout of the principal grids in (r,z) and (r,0) for the numerical model at the
baseline resolution of (24 x 24 x 64) in (r,z,0).

Figure 3: The variation of simulated Nusselt number in the axisymmetric flow regime using

the Eulerian E(A) scheme (a) as a function of model resolution at Q = 0.3 rad s-! and (b) as a
function of 2 at a resolution of (64 x 64) in (r,z). The corresponding laboratory
measurements are shown with appropriate error bounds for comparison.

Figure 4: Simulations of axisymmetric flow using the Eulerian E(A) scheme at Q = 0.1 rad
s”1 (a-b) and Q = 0.5 rad s-! (d-e), showing temperature fields ((a) and (d); contour interval
0.25 K) and azimuthal velocity ((b) and (e); contour interval 0.05 cm s-1). Corresponding

azimuthal velocity fields from laboratory measurements are shown in (c) and (f) for
comparison at the same contour interval as (b) and (e).

Figure 5: Contour maps of horizontal streamfunction, derived from measurements of
horizontal velocity in a steady m=3 flow in the laboratory ((a) - (c)) at three levels in the
vertical, compared with maps of the pressure field (p/p) at the same three levels obtained in a
numerical simulation at baseline resolution using the E(A) model at the same point in
parameter space. Horizontal levels correspond to z/D = 0.89 ((a) and (d)), 0.50 ((b) and (e)),
and 0.11 ((c) and (f)). Contour intervals are 0.05 cm? s-1 ((a)-(c)) and 0.1 cm? s-2 ((d)-()) -

the latter corresponding to @ = p/2Qr for Q = 1.0 rad s-1.

Figure 6: Azimuthal wavenumber spectra of (a) temperature at mid-height and mid-radius,
and (b) volume-integrated kinetic energy per unit mass, in a steady m=3 baroclinic flow. Data
were obtained from laboratory measurements [T(lab)] and numerical simulations using the
E(A% model at the baseline [T(DFF24)] (24 x 24 x 64) and high [T(DFF32)] (32 x 32 x 128)
resolutions.

Figure 7: Radial profiles of azimuthal velocity in the steady m=3 flow for (a) the azimuthal
mean flow component, (b) the m=3 wave and (c) m = 6 wave components, at the five vertical
levels measured in the laboratory. Solid lines show the profiles obtained in the baseline (24 x
24 x 64) E(A) model simulation and dashed lines show the corresponding time-averaged
profiles from laboratory measurements of horizontal velocity. Mean flow profiles are scaled
in cm s~1, m = 3 component profiles are scaled to a maximum velocity of 2.5 mm s'! and m =

6t00.71 mm s-1,

Figure 8: Radial profiles of radial velocity in the steady m=3 flow for (a) the m = 3 and (b)
m = 6 wave components, at the vertical levels measured in the laboratory. Solid lines
correspond to the profiles obtained in the baseline E(A) simulation and dashed lines show the
corresponding laboratory measurements. The m = 3 component profiles are scaled to a

maximum value of 2.2 mm s-! and the m = 6 profiles to 0.63 mm s-1.



Figure 9: The onset of m = 3 amplitude vacillation as £ is reduced in small steps from 1.0

rad s-1, as exhibited in the laboratory and in the baseline E(A) numerical simulation. Graph
shows volume-integrated kinetic energy per unit mass for azimuthal wavenumber
components m = 3 and m = 2 (KE3 and KE2) from velocity measurements in the laboratory,
and the m = 3 component from the numerical simulation, as a function of thermal Rossby

number ©. 'Error bars' indicate the rms variability in kinetic energy at each value of ©.

Figure 10: Temperature fields in the (r,z) plane from semi-Lagrangian and Eulerian

simulations of axisymmetric flows at Q = 0.1 rad s-! [(a) - (d)] and 0.5 rad s-! [(e) - (h)] at the
baseline resolution of (24 x 24). Schemes used are semi-Lagrangian scheme A [(a) and (e)],
scheme B [(b) and (f)], scheme C [(c) and (g)] and Eulerian scheme E(A) [(d) and (h)].
Contour interval is 0.25 K.

Figure 11: Convergence of Nusselt number at the inner and outer sidewalls in semi-

Lagrangian scheme C simulations of axisymmetric flow at Q = 0.3 rad s-! with increasing
resolution. Open squares show the Nusselt number at the outer boundary, filled diamonds
show Nu at the inner boundary, and the solid line indicates the value of Nu measured in the
laboratory.

Figure 12: Azimuthal wavenumber spectra of (a) temperature amplitude and (b) kinetic
energy (cf Fig. 6), for semi-Lagrangian and baseline Eulerian model simulations of the steady
m = 3 baroclinic wave flow. The values measured in the laboratory are shown as T(lab) and
KE(lab) respectively for comparison.

Figure 13: Contour maps of temperature at mid-height in simulations of steady m =3
baroclinic wave flow. Frames (a) - (c) are taken from Eulerian E(A) simulations at resolutions
of (a) (16 x 16 x 64), (b) (24 x 24 x 64) and (c) (32 x 32 x 128). Frames (d) - () are taken
from semi-Lagrangian simulations at the baseline resolution and correspond to (d) scheme A,
(e) scheme B and (f) scheme C. Contour intervals are 0.05 K.

Figure 14: As for Fig. 9, but showing the variation of kinetic energy in the m = 3 component
for semi-Lagrangian simulations using schemes A-C for comparison with the laboratory
measurements. 'Error bars' again indicate rms variability over 1000s periods, though this is
generally very small for all the semi-Lagrangian simulations.

Figure 15: Time series of kinetic energy in azimuthal wavenumber components m =0, 3, 6,
9 and 12, taken from semi-Lagrangian scheme A simulations of m = 3 baroclinic wave flows

at Q = 0.80 rad s-1, at which the laboratory flow exhibits a strong amplitude vacillation.
Frame (a) shows the development of a weak periodic modulation of m =9 and m = 12
following a perturbation of an otherwise steady wave flow (shown for comparison in frame
(b)).



TABLE 1

Annulus Dimensions and Fluid Properties

Quantity Symbol Value Units
Fluid depth D 14.0 cm
Outer cylinder radius b 8.00 cm
Inner cylinder radius a 2.50 cm
Temperature difference AT 4.0 K
Kinematic viscosity v 1.66 1074 | em% a7t
Thermal diffusivity i 1:20:5A07° CIE8
Mean fluid density p 1.044 x 103 kg m~3
Volumetric expansion coefficient «a 2.86 x 10~4 Xt
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TABLE 2
Nusselt numbers in axisymmetric flows as a function of resolution
for Eulerian (DFF) model

Resolution Omega
0.0 8}k 0.2
16 3216 N80 =853
24 X% -24 11.66 111536
SRR AT 12.24 1kl il
48 x 48 i Pal] 1155
64 x 64 11.96 11.45
Laboratory dioh 114 1ol
Table 3

(rad s”-1)
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10.

10.
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10.
10
10
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10.
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73
55
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46
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3

055

10.28
10
10.05
10.01

10.00

10.0

Nusselt Numbers in axisymmetric flows for various numerical

advection schemes (at 24 x 24
Omega

Scheme 9 0.2
2D DFF 11.66 11:36
2D Cubic SL 11.65 1130

11,75 11.69

2D Quintic SL 11,67 3133
11.69 11:.65

223D Cubic Bl i2.39 14..99
992 9.64

Laboratory 11.4 Lic2

resolution)

(rad s”-1)
0.3 0.4
10.98 10
10.87 10
11.46 13-
10.88 105
11.44 B 12
11.50 105
952 9
30:57 10
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41
14
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13

93
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30,13

995
10.78

9.94
0.5

10539
9.43



L (¥9 X $T X ¥2)

CC 5= eV G- 650 20°9 §9°C eIl 91 ¥ /SL'TT D Quwydg "Je-Twieg
LT (¥9 X ¥T X ¥27)

Sy ¢- 9L G- ¥$0 0€°9 68°C ¢8'vI 0T'v /OT°TT g swoyds "Se-1wag
8S°11 (¥9 X ¥T X ¥T)

£h o LL 255 9¢°0 ce9 g LE 90°'¥1 86'¢ [9T°11 V Qwaydg ‘FeJ-rweg
YL Ol (821 X T€ X 7€)

c0 £ I85> Iv°0 I1T°9 09°C 8T VI S¢E°S /TL°0T (V)g ueusmyg
¥6°01 (Y9 X T X $7)

96°C- 06°¢- ev0 £E9 1§°C LS £V .SLY /68°01 (V)g ueus[nyg
L6°01 (¥9 X 91 X 91)

0L T- 0v°9- evo ¢8°9 §T'T ¢9°C1 09'Y /86°01 (V)g uens[nyg
................... (g-8 qWD)----r--emmconecncaca-x (z-8 gwo) (q/e) uornjosal
0<Wey O wW-0N 0q 0<w y 0<Wy Oy NN % QWIYOS [edLIWNN

SOABM OIUI[O0IRq ApE3lS JO SUONB[NWIS IOJ SAJBI UOISISAUOD Or9SIOUQ puB SIIQUINU J[ASSNN UBQW-JWIL],



Rotation
AXis

A

1\/

B



(sws) sniavy
08 ST S

r"r"%u_"_wpup_"___”__“_M_"_"_I_:. 0

JgEmETa TS
..N

:

OEw

ouwa I

NOILISOd did® 40 NOILO3S V.13Hl-d NOILISOd didD 40 NOILO3S Z - H



Nusselt Number

Nusselt Number

a
—a— LABNU+
——eo— LABNU-
11.0 1 . e S & - o DFFNu
- |
L [
10.5 4
10.0 + T T T T T + T v T T
10 20 30 40 50 60 70
Resolution
12 -
—a— Nu(lab)
. Nu(64x64)DFF
11
10
9 y T . T X T y T y T b
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Omega (rad s*-1)



I~Tomo

w30

I~omo

»30

0

25

5.25
RADIUS (cms)

5.25
RADIUS (cms)

RADIUS (cms)






12

N
i 355
gyy 3
S8 o ENE
LN o
«Q
o)
nm 5
g Seatl el e e
Q. @ S
o e C SRR 6
W NN © 2
Z > 'S
e
’ :
o
- N _
S .Y
N
N
2 o i o 8 ® = = =
o o o o
~ (M) epnydwe ainjesedwse | pi (g-v8 Gvwo) Abieuz oneu
J 4
" —’

Wavenumber m



Scaled AMPLITUDE Scaled AMPLITUDE Scaled AMPLITUDE Scaled AMPLITUDE

Scaled AMPLITUDE

o
N
gl
N\
- I \ ~— 7
v
Q R
Lo
= 1
d T T 1 T I T 1 T 1
25 5.25 8.0
RADIUS (Cms)
<
(aV]
o
] kg
&
Q il
i
co:! 13T 3 T L L} ] L} 1 T 1]
25 525 80
RADIUS (Cms)
<
N
| < I
8_ 5 -
= RN
=
o" T 1 L T I 1 L] L] 1
25 5.25 8.0
RADIUS (Cms)
B
(oY)
o
e
o' = S -
bty -
4\~
=
o" 1 | 1 T I 1 1 1 T
4 5.25 8.0
RADIUS (Cms)
<
N
i
Tt
Q Lt
o
2 /"’\
. NN
sl
al
o' T T T T l T T 1] T
2:5 508 8.0

RADIUS (Cms)

Scaled AMPLITUDE Scaled AMPLITUDE Scaled AMPLITUDE
0.0

Scaled AMPLITUDE

Scaled AMPLITUDE

1.0

0.5
1 1 = | I ki 1

\

I T T T ] ] | TR T §

25 5.25 8.0
RADIUS (Cms)

1.0

0.5
S

o

o'lll!llllll
255 5.25 8.0

RADIUS (Cms)

1.0

0.5

N | 1 l A s TS,

~
\
)Y
7
N
N

o </
o‘ L R e e BT 5
25 5.25 8.0

RADIUS (Cms)

1.0

0.5

1 W T I NS 1 1

[ A

/
y

0.0

| T ¢ SR l 1 i

2.5 5.25 8.0

RADIUS (Cms)

1.0

0.5

o
Csllxl|I||17

2.5 525 8.0
RADIUS (Cms)

Scaled AMPLITUDE Scaled AMPLITUDE Scaled AMPLITUDE Scaled AMPLITUDE

Scaled AMPLITUDE

Ve
o
0
o
o
(e T LT | TR
2:5 5.25 8.0
RADIUS (Cms)
<
wn = o
3 N
N\
o
o‘ ' iR 1 . 3FE FTA A%
2.5 5.25 8.0
RADIUS (Cms)
S
o =
S ] =
1~ /7 N
o -
o’ ST B N [ e e ok
25 5:25 8.0
RADIUS (Cms)
S
To R r
P \\ 5
. \
3 \
=
o R gt k) [ R L
2.5 5.25 8.0
RADIUS (Cms)
o
0 ]
o -
o 2]
o 1577 SRS (7 i e R e
2i5 925 8.0

RADIUS (Cms)



Scaled AMPLITUDE Scaled AMPLITUDE Scaled AMPLITUDE Scaled AMPLITUDE

Scaled AMPLITUDE

Qe
ool /\
E / \
o -
o \
] \
o
o‘ I | B DY [ N ) { (3
2.5 525 8.0
RADIUS (Cms)
<
i ~N
i 4
0.
o —
o -
o ' 1 1 L} 1 | 1 1 1 1
25 5,25 8.0
RADIUS (Cms)
<
0 ]
o | - 53
) -
o T Ll T 1 l 1 T | 1
25 525 8.0
RADIUS (Cms)
e
0 ]
o —
i \
3 \
S
O' PR s g e PR e FE
2.5 5.25 8.0
RADIUS (Cms)
Q
T 7
0 ]
o -
i \
2
o I T T T T l T 1 T T
2:5 28 8.0

RADIUS (Cms)

o
s
D -
B 7%
i 5] - // \
=0 1008e (
< _
b ! \
H \
0] \
o 1 I T T I T T 1 T
2.5 5.25 8.0
RADIUS (Cms)
o
T
g a3
. -~
’—
T
S S (
< e ! \
B
§ o b
O T L T 1 I T 1 T T
25 5.25 8.0
RADIUS (Cms)
o
T
Q -
71 | o8
Y 4
7 ]
wn
= o 7\
¥ o4 4 \
© 1/ \
» < ]
o Y PR B SR
25 5.25 8.0

RADIUS (Cms)

1.0

Scaled AMPLITUDE
0.5
IOXE L l ool e |

o
d lllllllll‘[
25 5.25 8.0
RADIUS (Cms)
o
w
'a) -
3} .
= 1 -
gm._‘ 4 b
<O—/ \
By
[
o Bog
o llll!ll]]
2:5 5.25 8.0

RADIUS (Cms)



1.0

\ ik \"
\ , o
ol o
/" &0 *
\
/
a8y i) o
Y. L2
o
a .
\ [
p ;
o - ‘ b |
: of S
1 \ o
S b
¥ —a— ; S
by ¥
b \y d
~ o
it \\ W q°
@
! ggyg
r oen .
g g o ® : 2
(2-vs gywo) ABisuz oneuny

Theta




(swo) sniavy

08 Ge's ge
- 0
4
14
S
9 Y
_H
8 d
3
a
(0] 8
cl
i
08 Ge's g¢c

aaetaaaalasagts OO

)] 8

(swo) sniavy
08 S2's

i
.
!
w
5,
.
)

Se

N

OfE®

Quoak-IT

oy
09
08
00}
ocl

()

oyl

(swo) sniavy
08 §2's

< ) o @ © < o o
— o~ = e

S QuwarT ©f®

———

S < S < <
@ © < o (=}
QuakIT of®

00}

oelh

oS

08

(swo) sniavy
S2'S

Se

OE®

Quok-I

oeh



Nusselt Number

10 1

10

20

30
Resolution

40

50

8 Nu(s
® Nu(s
o—labl|



A‘L

£

Data from "Steady wave spectra"

g
N -~ —~
—~ @O
853334
FFEFFRF
ESESO
NN
./A/ﬂﬂz/ﬂ/
L] hd T T L]
8 8 2
o o o
(M) epnudwy einjesadwe ]
<
e

0.00

12

11

10

Wavenumber m

KE(DFF24)

B KE(lab)
B KESLA)

S
AR

KE(SLB)
O KESLO)

7

NIRRT
R

NSNS

ANHRIMINNNNN
R

B RN

n/////////////////////////////////////////7/////////////////////////A,

8

\Mo.\

T

o 5o i
=

.01

(2-vS gywo) ABiouz oneury

Wavenumber m






Kinetic Energy (cmA5 s?-2)
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Kinetic Energy vs. Time
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