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Abstract

Two statistical methods are demonstrated for making seasonal
forecasts of tropical rainfall; one method uses multiple linear
regression (MLR) and the other uses linear discriminant analysis
(LDA). MLR is used to forecast seasonal rainfall in standardised
anomaly units. LDA makes a probability forecast for pre-defined
anomaly ranges.

In this paper, the two methods are used to forecast the February
to May NE Brazil rainfall season. Forecasts are made from pre-
rainfall season values of Atlantic and Pacific sea surface
temperature anomaly (SSTA) eigenvector coefficient time series;
thus the results isolate that component of predictability that
results from SSTAs alone. Models are constructed using half of
the post-1911 historical data period, and test forecasts are made
for the remaining years. The forecast skill is assessed in
several ways, including a new score which measures the error
linearly in probability space. The scores suggest that about 50%
of the interannual NE Brazil rainfall variance is predictable
from these methods, and that the forecasts have no significant
bias. This level of skill over such a long period is a useful
advance on previous attempts at forecasting NE Brazil seasonal
rainfall and compares favourably with other promising attempts
at prediction of seasonal rainfall in tropical regions.

SSTAs with a near world-wide coverage are today available in
real-time, so it is possible to use the methods in this paper to
forecast seasonal NE Brazil rainfall in real-time. Successful
experimental forecasts produced prior to the main rainfall
seasons of 1987 to 1989 are briefly reviewed.

key words seasonal forecasting, tropical rainfall, sea surface
temperatures, eigenvectors



1. Introduction

The prospect of seasonal rainfall prediction for some tropical
regions has advanced greatly in the last decade. Pre-rainfall
season values of mean sea-level pressure, mean 2zonal and
meridional surface winds and sea surface temperatures (SSTs) show
strong relationships with seasonal rainfall indices for a number
of tropical regions (Nicholls (1987), Hastenrath Wu and Chu (HWC,
1984), Hastenrath (1987), Hastenrath (1988), Parker et al
(1988)). The state of the troposphere at middle and upper levels
also appears to be a useful indicator of rainfall in some regions
(eg for India, Bhalme et al (1986)), though the length of the
historical record is much shorter and therefore conclusions are
more difficult to draw. Similar comments apply to promising links
between the quasi-biennial oscillation in the stratosphere and
surface weather (Labitzke and van Loon, 1988) including tropical
rainfall (Bhalme et al, 1987).

In addition to these empirical studies, theoretical studies and
numerical models including General Circulation Models (GCMs)
have advanced understanding of the tropical atmosphere (eg Gill
and Rasmusson (1983), Palmer and Mansfield (1986), Krishnamurti
et al (1987)). For interannual variability, studies suggest that
boundary forcing is more important in the tropics than in the
extra-tropics. For example, the importance of SST anomalies
(SSTAs) in the observed low frequency variability of the tropics
was suggested by the 15-year GCM integration of Lau (1985), and
specifically for the Sahel by Folland and Owen (1988). This has
lead to the possibility of using-a GCM for seasonal forecasting
in the tropics (Owen and Ward, 1989, Shukla and Fenessy, 1988).

The Brazilian states normally taken to define the N Nordeste (NE
Brazil) extend over 35°-45° W, 2°-10° S (Fig 1). Most of the
annual rainfall usually occurs in the months March and April
when the inter-tropical convergence zone (ITCZ) is closest to,
though still mostly to the north of, the Nordeste. There is
substantial interannual variability in the seasonal rainfall
anomaly averaged over the region (Fig 2). Previous studies have
related this variability to the location of the ITCZ (eg
Hastenrath and Heller,1977), indices of the Atlantic trade winds
(in particular Chung,1982), the El1 Nino Southern Oscillation
(ENSO) in the Pacific (Caviedes, 1973; Covey and Hastenrath,
1978) and sea surface temperature anomalies (SSTAs) in the
tropical Atlantic (Markham and McLain,1977). The potential
influence on N Nordeste rainfall of an SSTA north-south dipole
in the tropical Atlantic was confirmed by forcing a GCM with such
an SSTA pattern (Moura and Shukla,1981). Recently, Mechoso and
Lyons (1988) showed that their GCM responded to the observed
global SSTA pattern of boreal spring 1984 in a way that was
consistent with much of the observed large scale circulation
throughout the tropics and, specifically, the abundant rainfall
in N Nordeste.

This paper empirically studies the relationships between NE
Brazil seasonal rainfall and SSTAs, and develops and assesses
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two methods of statistical prediction based on the relationships.
In addition to SSTAs, the statistical models of HWC (1984)
predicted N Nordeste rainfall from the pre-season measures of the
Atlantic trade wind strength, N Nordeste rainfall and the
Southern Oscillation Index (SOI). This had the advantage of
including information not present in the SSTA fields, so the
addition of non-SST predictors, including the sun spot cycle
(Kane and Trivedi, 1988), may add further to our skill. However
we use SSTAs alone here because there is strong evidence for a
causal link between SSTAs and large-scale atmospheric circulation
in the vicinity of N Nordeste from GCM experiments and because
our SST data are believed to be adequate for analysis of large
scale paterns back to about 1900 (Folland, Palmer and Parker
(FPP), 1986) so that our forecast experiments can extend over a
longer period than previously possible. Furthermore, using
predictors which have a long historical record, but which are
also available today in real-time, has allowed the production of
experimental forecasts for each N Nordeste rainfall season since
1987. The results in this paper extend a preliminary study
reported in Ward et al (1988).

Section 2 discusses the data used. Section 3 establishes the
nature and statistical significance of SSTA-N Nordeste rainfall
correlations, and demonstrates that a small number of eigenvector
coefficient time series (EC time series) successfully expresses
most of the link between SSTAs and N Nordeste rainfall. However,
further analyses suggest that the all-seasons unrotated Atlantic
eigenvectors used in section 3 rather over-simplify Atlantic SSTA
variability. These analyses, and consequent improvements to
rainfall predictability, are beyond the scope of this paper.
Section 4 uses pre-rainfall season values of the Atlantic and
Pacific EC time series as candidate predictors for Linear
Discriminant Analysis (LDA) and Multiple Linear Regression (MLR)
models. Very simple models using just one or two predictors are
used so the two statistical forecasting methods can be
illustrated clearly.

In Section 5 the statistical models are constructed using half
the available historical data period (the 'model training
period'), and forecasts are made and verified for the remaining
half. A discussion and analysis of several methods of forecast
verification is given so that comparison between results
presented here and those of other papers is made easier.

2. -Data

a) SST data

SST data are taken from the Meteorological Office Historical SST
dataset version 3 SMOHSST3) which contains monthly SSTs, when
available, for 5°5° grid squares over the world's oceans. The
data extend back to 1856, but this study is restricted to
analysis of post-1900 data. The data have been corrected for
changes in observational practice prior to 1942 in the way
described by Parker and Folland (1988) and in more detail by
Bottomley et al (in press).



After conversion to anomalies relative to a month by month 1951-
80 climatology, the data were combined into a 10°x10° dataset.
For analysis of large-scale SSTA patterns, the improved data
coverage and reduced noise of a 10°¢10° dataset outweigh loss of
spatial resolution. Fig 3 shows that in fact a 10°x10° resolution
is a good choice, since adjacent squares correlate well, and the
correlations gradually decay with increasing distance (Morgan,
Coventry Polytechnic undergraduate project, personal
communication). For a particular month, a 10°x10° anomaly was
included in this monthly dataset (dataset M) if any of the
constituent 5°%5° squares had data.

The monthly data were then averaged into three month seasons
(forming dataset S). One constituent month was required to be
present for a seasonal anomaly to be calculated. Finally a
seasonal dataset with all missing data interpolated (dataset SI)
was constructed for the years 1901-1980. For inclusion in dataset
SI, a 10°x10° square was required to have more than 60% of non-
interpolated seasonal data present in dataset S over 1901-1980.
For the squares included, the number of seasons present in each
of the four twenty year periods is shown in Fig 4. Interpolations
were made by fitting Chebyshev polynomials in time (eg see Burden
and Faires, 1985). These estimates were combined with linear
spatial interpolations in particularly data sparse situations
(not applied in Ward et al, 1988).

b) Rainfall data

The standardised anomaly series of N Nordeste seasonal rainfall
used in this study (Fig 2) is based on C Nobre's February to May
series for 1912-1981 (Nobre, personal communication, series not
yet available after 1981) and on updated values of HWC's March-
April series for the years 1982-1985 (Lamb, Peppler and
Hastenrath, 1986, and Hastenrath, personal communication).
Nobre's series covers a larger area than that used by HWC (see
Fig 1) and includes data from more stations (113 v 30). For 1913-
1981 (the years for which both series are available) the two
series correlate at 0.83 and the means and variances of the two
series are almost identical. Correlations between SSTA
eigenvector coefficient time series and the HWC series (and a
series combining March-May rainfall data from just Quixeramobim
and Fortaleza) were shown in Ward et al (1988) to not differ
significantly from those achieved using Nobre's more
comprehensive series.

inks between N Nordeste infa and Sea Surface T a s

a) Simple correlation studies

Fig 5a shows the correlations between March-May seasonal SSTA in
each 10°x%10° area in dataset S and N Nordeste rainfall for the
years 1912-85. The statistical significance of each individual
correlation has been estimated using a standard t-test since
there are no significant serial correlations in the N Nordeste
rainfall series (see Katz, 1988 for a discussion of the problems
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caused by large serial correlations in both of the series being
correlated). The pattern of correlations in the tropical Atlantic
is consistent with the findings of Markham and McLain (1977)
with strong positive correlations in the south tropical Atlantic,
and negative correlations in the north tropical Atlantic.
Significant negative correlations extend north into the extra-
tropics towards Greenland; this is consistent with Namias (1972)
who inferred from 700mb geopotential height data that an
interaction with the N Atlantic extra-tropics was involved in N
Nordeste rainfall variability. The negative correlations in the
tropical Pacific extend over a wide area and provide strong
evidence for the relationship between E1 Nino (La Nina) and
drought (flood) in N Nordeste that had been previously suggested
from analysis of the Southern Oscillation Index and SSTAs along
the coasts of Peru and Ecuador (eg Covey and Hastenrath, 1978).

Care must be taken when interpreting maps of correlations with
local SSTA time series because the SSTAs have strong spatial
correlations. The spatial correlation results in an increased
chance of a large proportion of the analysis area being covered
in significant correlations. To estimate the field significance
of the map we have estimated the likelihood of achieving by
chance the proportion of significant area in Fig 5a using a Monte
Carlo experiment (see Livezey and Chen, 1983). For the
experiment, 500 time series were simulated by randomly
rearranging the values in the 1912-1985 N Nordeste rainfall
series. These series were correlated with March-May SSTAs for
1912-1985, producing 500 correlation maps of the type shown in
Fig 5a. None of the 500 had as much area as Fig 5a covered with
significant correlations, so the result in Fig 5a is very
unlikely to be the product of chance ie the field is
statistically significant at <1% level.

The similarity between correlation maps calculated for 1912-48
and 1949-85 (Figs 5b and 5c) in the tropical Atlantic and Pacific
supports the idea that the correlations in these regions are
based on recurring physical relationships in the ocean-atmosphere
system. Though the correlations with the tropical Indian ocean
are weak, they are also similar in the two periods. It is likely
that the associations are real and due either to Indian Ocean
SSTAs moving in phase with SSTAs in that part of the Pacific
Ocean that forces atmospheric changes in the vicinity of NE
Brazil, or to the Indian Ocean SSTAs playing a role in the
forcing of the important atmospheric changes, perhaps in
partnership with the Pacific SSTAs. The role of the Indian Ocean
is an area for future investigation. In the N Atlantic extra-
tropics the pattern of correlations is weaker in the earlier
period. The atmosphere behaved unusually in this sector in the
1920's and 1930's and there was also a dramatic warming of the
N Atlantic (Rogers, 1985). The relationship between these events
and the correlations in Fig b5c also requires future
investigation.
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(b) SSTA eigenvectors

A linear transformation was applied to the SSTA data (dataset
SI) in the Atlantic Ocean and (separately) in the Pacific Ocean.
The main purpose was to try to derive a few time series which
express much of the large-scale variability in the SSTA data in
these regions. For example, one such derived time series may
trace the variability in E1 Nino / La Nina, enabling much of the
Pacific correlations in Fig 5 to be succinctly expressed by the
correlation between one time series and N Nordeste rainfall.

Let the matrix of SSTA data (either for the Atlantic or Pacific)
be denoted by the matrix x. For the Atlantic, this contains 94
time series of SSTAs for the 320 seasons in the period 1901-80
For the Pacific, just winter (Dec-Feb) data are used in the 126
time series (see appendix I for further discussion). x is
transformed to produce 2 which contains the same number of time
series as x:-

g2 =aA'x (1)
In the transformation used here, the kth column, a,, of the
matrix A is the kth eigenvector of the covariance matrix of =x.
Defining A in this way results in the first row of 2 (2,, the
first eigenvector coefficient (EC) time series) having maximum
variance, 2, having maximum variance subject to orthogonality
with the first row, and so on (see Jolliffe,b1986).

Each elgenvector a, has a term or weight, a,;, for each grld-
square in the analy51s domain, so the weights can be plotted in
the form of spatial patterns.

Once the eigenvectors described above have been derived, further
time series can be formed:

Z, =2'x (2)

where x is any set of Atlantic (Pacific) SSTA fields and the a’
are the Atlantic (Pacific) eigenvectors derived above. The 32
time series trace the history of the modes of SSTA varlablllty
described by the correspondlng Al patterns. For example monthly
data may be used in x to yield % 6 time series with a monthly
rather than seasonal time resolutlon.

Orthogonal rotation of the first few «, will maintain the
collective variance in the corresponding 2,, and may produce
eigenvector patterns which more closely resemble real patterns
of variability, providing the rotation criteria are sensibly
chosen (Richman, 1986). Results of such analyses, or non-
orthogonal rotations, are beyond the scope of this paper. As we
shall show, in this particular case they are not essential to
illustrate the potential of the eigenvector approach for
succinctly expressing links between SSTAs and NE Brazil rainfall.
However, further research with rotated eigenvectors of Atlantic
and Pacific SSTA is justified.

Table I gives the variance of the first few EC time series,
expressed as a percentage of the total variance in the Atlantic
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or Pacific datasets. Using a test discussed by North et al (1983)
the variances accounted for by Atlantic eigenvector 3 (AV3) and
Atlantic eigenvector 4 (AV4) are sufficiently similar to cast
doubt on the statistical significance of the patterns. However,
while AV3 is related to N Nordeste rainfall, AV4 is not (see
below), so the distinction between them is probably physically
real.

Table I Percentage of variance accounted for by first seven
covariance eigenvectors of Atlantic (all seasons) and Pacific
(Dec-Feb season) seasonal SSTA 1901-1980.

EIGENVECTOR NUMBER

b 2 3 4 S 6 7 total
Atlantic D2 8.2 "0:87 000 478 378 "33 4876
Pacific 165 10.8 66 5.4 4.1 3.7 3.4 5075

Fig 6a shows that the first Atlantic eigenvector (AV1l) has
everywhere weights of the same sign, so the EC time series (AT1)
traces overall warming and cooling in the Atlantic. Fig 6b shows
that warming in the Atlantic through this century took place
mainly in the 1920's and 1930's. AVl is quite like the Atlantic
part of eigenvector 1 for global SSTAs shown in Folland and
Colman (1988) and Parker and Folland (1989).

AV2 (Fig 7) is mainly a bi-polar pattern (positive in the S
Atlantic, negative in the N Atlantic), but with areas near NW
Europe and the Gulf of Mexico in opposition to the rest of the
N Atlantic. A bi-polar second eigenvector can be an artifact
(Richman,1986), but this pattern may here have a physical
significance, being the Atlantic part of a near worldwide mode
of variability (related to interdecadal variations in Sahel
rainfall) where the N Atlantic and N Pacific warm/cool out-of-
phase with the S Atlantic and Indian Oceans (see Folland and
Colman, 1988 and Parker and Folland, 1989)

In AV3 (Fig 8a) weights are strongest in the south Atlantic,
where the Benguela current, and much of the S tropical Atlantic
show weights out of phase with the rest of the S Atlantic and
most of the N Atlantic. The pattern of weights resembles the
inverse of the Atlantic correlation patterns in Fig 5, suggesting
that AT3 should be negatively correlated with N Nordeste
rainfall. This is confirmed for March-May values of AT3 in Fig
8b and Table II. No other EC time series correlates so strongly,
though AT2 and AT7 also have statistically significant
correlations.

The first Pacific eigenvector (PVl1l, Fig 9a) has weights which
resemble the pattern of SSTAs during an E1 Nino event. PT1 traces
the history of El1 Nino (very positive values of PT1l) and La Nina
(very negative values of PT1) through the present century. This
is indicated by a correlation of 0.82 between a Dec-Feb time
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Table II Correlations for 1912-85 between N Nordeste rainfall
and March-May values of Atlantic and Pacific eigenvector
coefficient time series.

Eigenvector Number
1 2 3 4 5 6 7
Atlantic -0.08 0.36 -0.54 -0.02 -0.15 0.01 0.26
Pacific -0.40 -0.01 -0.03 0.23 0.09 -0.04 0.27

Note: assuming 60 degrees of freedom, correlation significance thresholds are
58 : r = +/- 0.25
1X:r=+/- 0.32

series of SSTA in the east tropical Pacific (10N-15S, 140-160W)
and PT1l. To relate the eigenvector pattern to N Nordeste
rainfall, we calculate a March-May EC time series for PV1 by
using, in Eq 2, the Pacific eigenvectors in A' and March-May
data in x. The March-May PT1l values and N Nordeste rainfall are
plotted together in Fig 9b; the correlation between the two is
statistically significant (see Table II).

PV2 (not shown), like AV1l, reflects in phase warming and cooling
across the analysis domain; PT2 shows no association with N
Nordeste rainfall. Of the remaining Pacific eigenvectors, none
have time series that show very significant correlations with N
Nordeste rainfall.

Large scale SSTA patterns do not usually change very much over
a few months, suggesting that pre-rainfall season values of EC
time series, in particular AT3 and PT1l, may be useful predictors
of N Nordeste rainfall. To examine this, further EC time series
were formed using data from the monthly dataset M for x in Eq 2,
and these series were correlated with N Nordeste rainfall at
various lead times. To reduce sampling error, EC time series
values for adjacent months were averaged for the correlations
with AT3 and PT1 shown in Fig 10. With increasing lead time (ie
time before the rainfall season), the correlation with PT1 slowly
declines to a level that, by Nov-Dec, is marginally significant
at the 5% level. For AT3, the correlations are still
statistically significant at the 1% level when July-August values
are used, a lead time of six months on the N Nordeste rainfall
season. The AT3 correlations do however decline quite rapidly
from the value in January-February to the value in November-
December. This is now investigated.

Eq 2 can be written as a summation for each eigenvector k and for
each time period j:

i

where i indicates the grid square and summation is over all grid
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squares in the analysis domain. Now consider forming for a given
time period j and each Atlantic eigenvector k:

z2(t) = Zia“x
t

i and z(ne)jk = zj::kxii (4a and 4Db)

where i, indicates summation over only tropical squares (30N to
308) and i_ indicates summation over extratropical squares north
of 40°N. fﬁe two time series so formed when k = 3, AT3(t) and
AT3 (ne), can be viewed as tracing the tropical (t) and N extra-
tropical (ne) signals of AV3. The correlations of these two
series with N Nordeste rainfall are plotted in Fig 11. The
AT3 (ne) series correlates significantly (at the 1% level) during
the N Nordeste rainfall season, but the correlations quickly
become insignificant when the series leads the rainfall season.
In contrast, AT3(t) shows strong lead correlations, and thus
appears a more powerful predictor than an EC time series for the
whole Atlantic, as used in Ward et al (1988).

4. Methods of forecasting

Section 3 suggests that it may be possible to skilfully predict
N Nordeste seasonal rainfall totals from the SSTA patterns
observed in the months preceeding the rainfall season. To produce
a statistical forecast method usually requires the following
steps:

a) Choose the predictand. Here it is the seasonal rainfall.

b) Choose the candidate predictors. Here they are the pre-
rainfall season SSTA EC time series values.

c) Choose a statistical technique for constructing a forecast
model that relates the predictors to the predictand.

d) Choose a period (the training period) to provide the data for
estimating the model parameters, which express the relationships
between predictors and predictand.

The two forecast methods presented below handle steps a) and c)
very differently. Different advantages and disadvantages result.

METHOD 1 Multiple Linear Regression (MLR) statistical technique

This statistical technique was also used by HWC (1984) to predict
N Nordeste rainfall. The predictand is the standardized rainfall
anomaly, and the forecast is usually interpreted as a 'point
estimate' ie a precise forecast of the standardised rainfall
anomaly, though conversion to a probability forecast is possible
and is discussed later. The statistical forecast model is

R=bos°+b1s|+bzsz+........+bpsp+e (5)
where R is rainfall in standardized units, s; is the value of the
19 predictor in the model (s, always equals 1), b; are the true
model parameters representing the true relationship between the
predictors and predictand, p is the number of predictor variables
in the model and e is the unmodelled variance in the rainfall
series. The b; must be estimated from the relationships in the
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training period data. The term e is always unknown, but if
assumed to be normally distributed with mean zero, then the best
estimate of the predictand is (writing the b; and s; as column
matrices)

R' = Bl.' (6)

where R' is the predicted rainfall, and B' are the estimates of
the model parameters, chosen to minimize £ (R'-R)°, where
summation is over the training period.

The best estimate of the variance of e is

~R1)2
vai(R:RL) iwag? o ~En BB Gy

where p+1 is the number of fitted model parameters and N is the
number of years in the training period.

Ignoring error in the estimation of B', the standard error (SE)
of a prediction is o,, but when the B' errors are also
considered, the SE of a prediction increases to (in matrix
notation, see Weisberg,1976 for a derivation)

SE? = 0 %(s'(8'8) ") s) (8)

where 8 is the vector of variables being used for the current
prediction and 8 is the N x (p+l) matrix of training period
predictor data (the p+1 columns comprise the p variables Spe eS8
iJ%the model and a column of 1's for s,). The proportion by which

is raised in eq 8 depends on the variances and covariances in
tﬁe predictor training data and on the amount by which the
predictors for the current prediction differ from their average
values. For the two-variable models discussed below and %n
Section 5.2, the SE is usually raised by about 10% above o,
with the SE varying by about 5% over different predlctlons. For
models with more predictors and larger covariances among the
predictors, the changes become larger.

The predictor variables for the forecast model may be selected
from a set of candidates either using objective methods or from
an exploration of the relationships between predictors and
predictand. The objective method used here is stepwise multiple
regression which chooses the next predictor to enter into the
model on the basis of the proportion of unexplained variance o,
that is explained by each of the candidate predictors not yet in
the model. A threshold statistical significance a, is set which
a variable must exceed if it is to be entered 1nto the model.

To illustrate the MLR technique, a forecast model is fitted using
a 1912-81 training perlod. The 14 candidate EC time series
predictors are formed by using Dec-Feb seasonal SSTA fields for
the whole Pacific (forming 7 PT series) and the tropical Atlantic
(forming 7 AT(t) series). Models constructed using a, = 1% (Eq
9a) and 5% (Eq 9b) are:
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R' = 7.2 - 58.0(AT3(t)) - 8.7(PT1) (9a)
R' = 3.8 - 87.8(AT3(t)) - 8.0(PT1) - 9.2(PT3) - 68.0(AT5(t)) (9b)

The model parameters for PT1 (E1l Nino eigenvector) look small,
but the contribution of PT1 to the forecast R' is not usually so
small because the standard deviation of PT1 is greater than that
of other predictors. The standard deviation of (8.7 x PT1l) is
26.9 and of (58.2 x AT3(t)) is 47.6, suggesting AT3(t) is on
average twice as important as PT1 in determining the forecast
from the statistical model in Eq 9a. However, either predictor
may dominate in a particular year.

Fitting the model parameters to minimize Z(R-R') results in the
standard deviation of the model forecasts (0s) being less than
the standard deviation of the observed values (o ): it is easy to
derive that the ratio of o, to o, is given by

O, = g.xr (10)
where r is the correlation between the forecast and observed
values in the training period. Thus a moderate relationship
between the predictors and the predictand will rarely produce
forecasts of extreme values. A possible response to this is to
apply a correction to the forecasts to increase the expected
standard deviation of the forecasts to approximately o, which,
from Eq 10, can be achieved:

RY c = (RU = B)x" + i (11)

where R'; . is called the inflated regression prediction, and u,
is the average of the predictand in the model's training period.
Inflated regression forecasts are tested 1later along with
conventional regression predictions.

An alternative way to overcome the low variance in the MLR
predictions is to interpret them as probability forecasts rather
than point estimate forecasts, using the fact that the
conditional distribution of the predictand is approximately
normal with mean R' and standard deviation SE (Lindley, 1965).
MLR probability forecasts for NE Brazil rainfall are discussed
in Section 5.2e.

METHOD 2 Linear Discriminant Analysis (LDA) statistical technique

For this method, each rainfall season is categorized on the basis
of its position in the cumulative distribution of the
standardised anomaly rainfall index. In the results presented
here (and in Ward et al 1988, and Parker et al 1988), the driest
20% of seasons in the model's training period are allotted to
category 1, the next driest 20% to category 2 etc. This defines
five equiprobable categories (quints). LDA models are constructed
to forecast the probability of each category. The categories were
chosen mainly in an attempt to distinguish very dry seasons
(driest 20%) from very wet seasons (wettest 20%).
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LDA uses Bayes Probability Theorem and estimates the posterior
(forecast) probability of category i given a column matrix of
predictors (see Afifi and Azen, 1979). For just one predictor,
X, the probability of quint i given x is

- Sl 3). 12

where summation is over all five categories

q; = prior probability of category i (if the categories are
quints, each has a prior probability of 0.2, and the g; cancel in
Eq 12)

fi(x) = probability of observing predictor variable x when Q.
is observed. fi(x) can be regarded as a probability denslty
function.
The problem described by Eq 12 is illustrated in Fig 12. This
shows, for the years 1912-81, the estimated distributions of the
Dec-Feb value of AT3(t) for each of the N Nordeste rainfall
quints. The distributions are assumed to be Gaussian. The
standard deviation of all the distributions is assumed to be the
same, and is a pooled estimate. The mean, k;, of each
distribution is estimated from the values of AT3(t) in the n =
14 years categorised as quint i in the training period. Note that
MLR did not require so many parameters to be estimated from the
training period, and all parameters were estimated from the full
set of years so limiting sampling error. For this example, each
p; has a standard error of about o//n = 0.66//14 = 0.18. Fig 12
shows that u, and p; differ by only 0.04, so that sampling error
clearly domlnates any signal. This is often found for the central
three quints and future formulations of the forecast method could
consider the benefits of combining these categories into one or
two central ranges. In contrast, u, and u; are significantly
different (at the 5% level accordlng to a t-test) from the value
of respective adjacent means in Fig 12.

For the observation A on Fig 12, Eq 12 yields the probability of

quint 5 to be

Pr(Q./x) = 0.38 = 0.51
0:,01:+40:09 +.0.08 +.:0.,18:+.0.38

The probabilities of the other quints are estimated in the same
way (see Fig 12). Thus a one-predictor LDA model can be set up
in a very simple way.

Usually we want to forecast the probability of each category
(quint) using more than one predictor variable. To do this we
must consider the multivariate distributions of the predictor
variables. In LDA the distributions are assumed to be
multivariate normal. Given p normally distributed predictor
variables then the log of the multivariate probability density
function of X for quint i is
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In(f;(X)) = a; %X, +a;,X, + oo X + T (13)

PP
-1 Te-1
@y =Z i , Ty = =5uE
where X = vector of observed predictor variables Xipoeooans 3

£ = covariance matrix of the predictor variables in the
training period
u; = vector containing the mean value of each predictor
variable in those years when quint i is observed in the
training period.
Substituting Eg 13 into Eq 12 yields the multivariate LDA
probability equation

Pr(Q,/X) = 92%%)(?_) (14)
J

where d;, called the discriminant score for category i, is

d; = a; %X, ta,X, + ..., R T, o+ In(q;) (15)
Like MLR, a subset of the candidate predictors must be chosen for
inclusion in the model. The most common objective stepwise method
uses a one-way analysis of variance to assess the statistical
significance of each predictor. However, this is not appropriate
in this application because the test ignores the fact that the
categories are ranges taken from a continuous distribution.
Results from stepwise MLR and section 3 are used to guide LDA
model selection.

5. Assessment
5.1 An introduction to the skill scores

The skill of a forecast or of a set of forecasts can be measured
in many ways. This paper uses a number of scores chosen because
they each give most weight to different attributes of the
forecasts.

Skill scores are often scaled so that a set of perfect forecasts
score 100% and a 'reference forecast strategy' (RFS) scores 0%.
This helps in comparing different sets of forecasts. Frequently
used RFSs include

(i) climatology ie a forecast of the mean rainfall,

(ii) persistence ie the forecast for year j is the rainfall that
was observed in year j-1,

(iii) chance ie the average score that would be achieved by
randomly selecting a forecast value from the frequency
distribution of the observed values in some reference period.

33



e

Chance is used as the RFS in some scores below, with persistence
and climatology being viewed as alternative forecast strategies
whose score could be considered separately.

a) scores for forecasts made on a continuous scale
Forecasts from the MLR technique are on a continuous scale.

Correlation
Correlation assesses a set of forecasts. It is calculated using
the standard correlation formula:

r, = WS e A (16)

N(o.0,)

where f' and v' are deviations of the forecast from the forecast
mean and observed from the observed mean. Summation is over the
N forecasts being assessed and o, and o0, are the standard
deviations of the forecast and observed values. The score takes
values between -1 and +1. The expected value of r; from chance
is 0, so the score automatically uses chance as the RFS. The
score for climatology forecasts is also 0, since f'= 0 for all
forecasts. Persistence forecasts may score well. The correlation
score could be transformed to use persistence as the RFS
(Daan,1984). Instead, we present in section 5.2 the correlation
score achieved by persistence forecasts (r,) to assess whether
our forecast methods perform better than persistence.

The correlation is a measure of the linear association between
the forecast and observed series. The score ignores any bias in
the mean forecast value and the slope of the linear association
between forecast and observed. Thus other scores are needed to
check for these problems.

Root Mean Square error (RMS) and bias

These scores have been widely used in assessing seasonal rainfall
forecasts for tropical regions (eg Hastenrath, 1987
Nicholls,1984). They are defined:

%
% ~¥})?
ms-[N]

BIAS = ={(f=v)
N

- “f-“v

where T is over the N forecasts, f is the forecast and v is the
observed. The scores do not, as formulated here, indicate skill
relative to a RFS.

RMS has a special relationship with least squares regression,

since it is the quantity that the model parameters are chosen to
minimise. RMS can be expanded and written as

14



(17)

| B |
o

RMS = [ (af)2 + (av)2 il 4 i (BIAS)2

so the score is a function of correlation, bias, 0¢ and o,. Until
the correlation approaches 1 or the bias become very large, the
contribution to RMS from bias remains quite trivial.

The dependence of RMS on o, and o, in Eq 17 implies that

(i) RMS scores cannot be compared for different sets of forecasts
if o, differs greatly

(11) For a given low r., the score can be improved by simply
reducing o,. For example, if forecasts are made with 0¢=0,, then
r, must be >0.5 for the RMS score achieved by c11matology
forecasts to be improved upon (see Eq 17). For most purposes, a
set of forecasts that have r, = 0.5 would be more useful than
forecasts of climatology. The mean absolute error, widely used
as a skill score (eg Nicholls, 1984)), is very similar to RMS and
also suffers from the above problems.

BIAS can be useful for comparison of different sets of forecasts
if its statistical significance is also offered.

Linear Error in Probability S8pace for continuous predictand,
LEPS (cont)

An alternative approach is to compare the position of the
forecast and observed values in the cumulative probability
distribution of the observed values (see Fig 13). In Fig 13, the
distance between the forecast standardised rainfall value -25 and
observed value -50 is, in probability space, p(R<-25) = p(R<-50)
= 0.39 - 0.19 = 0.20. A skill score that has a maximum value when
the forecast and observed are coincident is:

S=1-a (18)

where a = mod(ps~p,) and p; and p, are the cumulative
probabilities of the observed and forecast values. S will take
values from 0 to 1. For a particular forecast and observation
with cumulative probability ps and p, respectively, the expected
score from chance is (see Appendlx II)

By = 1.5(p~ (p)2 + 0.5) (p,~ (p,)2 + 0.5) (19)

So the normalized score with a chance value of zero for each
forecast is

S' =8 - pu, (20)
For the p; and p, marked on Fig 13, u= 0.72 and S = 0.80, so
S' = 0.08. For a perfect forecast (ps~=p,= 0.19) u,~= 0.64, so the

score (S' ) for a perfect forecast would have been 0.36. The LEPS
percentage score for a set of continuous variable forecasts is

15



LEPS (cont) = ZS' x 100 (21)
£(s'))

Note that when (ZS') < 0 the forecasts have scored worse than the
chance level; the denominator in Eq 21 should be the sum of the
worst possible scores and the percentage score is treated as
negative. This ensures that the score can take values from -100%
to +100%.

For the forecast assessments in Section 5.2, the model training
period's cumulative rainfall distribution is used for estimating

ps and p,.

b) Scores for forecasts made on a categorical scale

For these scores, the LDA forecast is the category predicted as
most likely and the MLR forecast is the category in which the
continuous MLR prediction resides.

LEPS (cat)

Using LEPS(cont), S' can be integrated over category ranges to
produce a scoring table to give mean values of S' for each
forecast and observed category combination. For example, Table
III shows the scores (S');; for quint categories. Eq 21 is re-
applied to provide a score for a set of forecasts, in which
(S'), is now the score achieved by correct prediction of the

observed category.

The assumption is that incidences of forecast-observed outcomes
will be evenly distributed through each forecast-observed cell
in Table III. However, in forecast sets of very high skill,
outcomes may tend to be more accurate than this assumption
implies, so that Table III may give lower scores than LEPS (cont).
For moderate to low skill forecasts (as presently achieved in
long-range forecasting), the opposite effect may apply.

A further assumption is that each forecast-observed quint outcome
has the same chance probability of occurrence. If forecasts show
a clear bias for certain categories (or there is clear evidence
for a bias in the observed categories) we may judge that the
assumption is violated and that the scoring table should be
adjusted. This complication, whose principle is also applicable
to LEPS(cont), is not included in this paper.

'Hits' and a discussion of applicability of Chi-squared tests

A set of forecast and observed quints can be tabulated in
contingency table format (examples are shown later in Table V).
A standard way of analysing association in a contingency table
is to use a Chi-square test, comparing the observed frequency in
each cell with that expected from chance. This is not appropriate
for assessing forecasts since a) the test does not consider
whether the increased frequency above chance in a particular cell
is useful, b) the test does not distinguish between near misses
and very bad forecasts. LEPS(cat) was designed to overcome both
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Table III Scoring table for quints. The score is based on the
linear error in the cumulative probability distribution, and
normalised to have a chance value of zero.

observed quint

i 2 3 4 5

o < 6.4 2.7 -0.8 -3.4 -4.9
o]
- o | 2 el BT A Mg e e R I i
- e |
- 3 3 -0.8 0.1 1.4 0.1 =0.8
&
8 % 4 =3 q =23 0.1 29 257
t

5 -4.9 =3.4 -0.8"''2.7 6.4

e ——

these problems.

The proportion of correct forecasts (the 'hit rate') is a useful
measure mainly because of its simplicity, but should be compared
with the expected hit rate from chance. This is estimated by
calculating the expected cell frequencies (as in a Chi-square
test) for the cells corresponding to hits.

c) Assessing forecasts of the probability of categories.

These scores are used to assess LDA probability forecasts of each
rainfall category. Skill scores for assessing probability
forecasts still require further development. All scores known to
the authors generally reward confident forecasts more than
cautious forecasts when the score is positive, even if the
confidence is not justified by the skill of the forecasts. This
makes comparison of different forecast systems difficult, hence
the additional discussion of probability forecasts in Section
5«2 (@)

LEPS (prob)

LEPS(cat) scores have been adapted as follows. We note the
observed category (quint). Let this be quint 1 as an example. We
then weight the scores §';, in Table III by the forecast
probability p;, and sum over the i = 1 to 5 forecast categories:

S" =3 P8 'y (22)
.

The percentage LEPS(prob) score for a set of forecasts is
calculated by substituting S" for S' in the numerator of Eq 21.
The denominator remains the same as that for LEPS(cat) ie T s"
is expressed as the percentage of the score achieved by a set of

by .




perfect categorical forecasts.

The ranked probability score (RPS)

The Ranked Probability Score (RPS, see Epstein,1969) is used here
in the form recommended by Daan (1985). The score for each
forecast is given by

i __2_(_-V)._ 23
RE e iland UL - C))) s

where summation is over all categories,

P; is the cumulative forecast probability of category p =

V is the cumulative observed probability of category i (0 or 1),
C is the cumulative climatological probability of category i
For example, C;, = 0.4 for quint 2, and if quint two is observed,
V=0, V; =V; =V, =V, =1

The score from chance is

Hgps n

where RPS; is the RPS score for the forecast if category i is
observed and summation is over all n possible categories (for
quints, n = 5). The normalised score with a chance value of zero

is
RPS' = RPS = [ip
so
= B(RPS")
RPS% Z(RPS') x 100 (25)

where RPS'_ is the score for a categorical forecast of the
observed category. As before, if the numerator is negative, the
denominator should reflect the worst rather than best possible
scores, and the overall percentage score is negative.
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5.2 N E Brazil forecasts 1912-1985

Table IV Assessing various discriminant analysis and regression
model forecasts of N E Brazil rainfall

A) Ordinary regression (and persistence for comparison)

forecast training forecasts LEPSX  Quint hit rate
years period from mode | r RMS BIAS 4 cont cat model charce
1949-1985 1912-48 Nov-Jan a,=10% .68 52.8 +10.2 56.7 40.3 50.6 0.32 0.20
1949-1985 1912-48 Nov-Jan a priori .74 49.3 +8.9 SC.8 T 45.5" 5218 0.383 0.21
1912-1948 1949-85 Nov-Jan ¢t-10X .55 3. 7" =S 62.6 36.1 38.0 0.40 0.23
1912-1948 1949-85 Nov-Jan a priori .63 58.5 9.7 49.5 31.6 38.1 0.38 0.19
1912-1948 1949-85 Dec-Feb a priori .76 50.4 -12.8 59.3 46.9 51.4 0:5% 022
1949-1985 PERSISTENCE .24 85.1 -6.1 65.8 9 satlen 0.11 0.21
1913-1948 PERSISTENCE i 100.5 +1.8 76.5 0.1 4.2 0.19 0.26
B) Inflated regression

forecast training forecasts LEPSX Quint hit rate
years period from mode | r RMS BIAS o cont cat model charce
1949-1985 1912-48 Nov-Jan at-wx 65 59.0 +13.3 a§.4 51.6 58.4 0.40 0.20
1949-1985 1912-48 Nov-Jan a priori .74 988 7.3 89.6 52.9 63.5 0.35 0.19
1912-1948 1949-85 Nov-Jan at-wx 2D 71.0 -6.4 75.7 35.8 39.0 0.38 0.23
1912-1948 1949-85 Nov-Jan a priori .63 62.4 -15.0 66.5 35.4 40.7 0.50 0.22
1912-1948 1949-85 Dec-Feb a priori .76 56.1 -18.6 78.1 1 4855 S5¢32 0.49 0.24
C) Discriminant Analysis

forecast forecasts Quint hit rate LEPSX

years from mode model chance cat prob RPSX

1949-1985 Nov-Jan a priori 0.40 0.20 5615 367 BT

1912-1948 Nov-Jan a priori 0.38 0.17 5 I e 16.4

1912-1948 Dec-Feb a priori 0.57 0.20 53.6 32.0 26.0

Notes:

1949-1985, o, = 73.5; 1912-1948, o, = 75.6

a priori model predictors are pr{ and AT3(t). as.= 10X indicates that model predictors were
selected using 10X significance threshold. Details of the stepping process for Nov-Jan predictors:

1949-85 training period 1912-48 training period

step variable entered F-to-enter sig step variable entered F-to-enter sig
1 AT3(t) 22.9 1% 1 AT3(t) 1525 1%
2 PT1 11.9 1% 2 PT1 55 5%
3 AT6(t) 5.6 2.5% 3 PT6 3.5 10%
4 PT3 3.5 10%

5 ATS 2.9 10%

For details of skill scores see section 5.1

Table IV assesses forecasts for 1949-1985 (1912-1948) that are
made using models with a 1912-48 (1949-1985) training period.
SST data for the early part of the century are therefore
important so seasonal values of the EC time series are used to
minimise noise. In the real-time predictions discussed in section
5.3, a final forecast from monthly February EC time series values
is also made since Fig 10 suggested that, for the El Nino EC time
series, values closest to the N Nordeste rainfall season provide
the best predictor.
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a) Ordinary regression results

Models which comprise AT3(t) and PT1 are referred to as the 'a
priori' models. Using Nov-Jan predictors these correspond to
MLR models selected by a threshold significance level of 5% in
1912-1948 and 1% in 1949-1985 (see stepping details at the bottom
of Table 1IV). Results from models selected using a 10%
significance threshold are presented for comparison. The 'a
priori' models generally perform best on all skill measures,
suggesting that the stepwise method is not adding useful
predictors to AT3(t) and PTI1. All models shown perform much
better than persistence on all measures except BIAS. However, the
model BIAS values are generally only one standard error from O,
so are not statistically significant and probably arise due to
sampling variation.

When we forecast for the years 1912-1948, the results from Nov-
Jan predictors are good, but can be improved to those achieved
for 1949-1985 by using Dec-Feb predictors. It has not yet been
possible to deduce if this is due to less reliable SST data or
a change in the lead time of SSTs on N Nordeste rainfall in the
earlier years.

b) Comparison of inflated and ordinary MLR

RMS is larger for inflated MLR forecasts, because the standard
deviation of the forecasts (o,) has been raised close to that of
the standard deviation of the observed (o0,), while the
correlation (r;) remains constant. The LEPS scores for the
inflated forecasts are however generally better. Inflated
regression forecasts may be best in those applications when
forecast utility measures are closer to LEPS than RMS. The higher
BIAS values for inflated forecasts are still only about one
standard error from 0 because o, has been raised.

c) Comparison of LDA and MLR forecasts

LDA and ordinary MLR forecasts have very similar LEPS(cat)
scores. The mean ratio of model hit rate to chance hit rate in
Table IVC is 2.34, compared to 2.05 and 2.06 for the same
ordinary and inflated MLR forecast sets, so LDA does best with
a hit rate well over twice that expected from chance. RPS and
LEPS (prob) show considerable agreement despite their very
different formulation, but these and other probability forecast
scores require further study and comparison to increase their
utility. Probability forecasts are returned to in e) below.

d) Comparisons with other studies

The correlation between forecast and observed (r;) can be
directly compared with other prediction studies for seasonal
rainfall in the tropics. Values over 0.7 have rarely been
achieved over such a long testing period. Typical results include
r, = 0.7 for predictions of N Australian seasonal rainfall 1951-
1980 (Nicholls, 1984), r, = 0.4 to 0.5 for predictions of coastal
Kenya seasonal rainfall (Farmer, 1988), r, = 0.55 for Java
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seasonal rainfall (Hastenrath, 1987). Recently, very large values
of r, have been reported (>0.8) for prediction experiments for
all India summer rainfall (Shukla and Mooley, 1987) but
Hastenrath (1988) has shown that these results for the short
period 1969-1985 deteriorate when the testing period is extended
to 1959-1985 (r, = 0.75), either due to sampling variability or
a real fluctuation in the predictability of the Indian monsoon.
For NE Brazil, HWC (1984) using predictor data for January
achieved r, = 0.64 with their March-April rainfall series and r;
= 0.68 with their March-September series. The testing period was
1958-1972, so our results using AT3(t) and PT1 for 1949-1985 (x
= 0.74) correspond to a useful advance in terms of the longer
period and hence greater confidence in the results and in the
slight improvement in r,.

A useful advance on the results of HWC (1984) is also found in
our BIAS values. HWC's forecasts for 1958-72 tended to be much
too dry; analysis of their results suggests the BIAS is about
three standard errors from 2zero, which is statistically
significant at the 1% level. This may have been due to spurious
trends that are now believed to be present in surface wind data
acquired from ship reports (Cardone et al, in press).

e) Further analysis of quint forecasts

Table V contains contingency tables of forecast and observed
quint for some of the forecast sets in Table IV. The improvement
in quint 1 forecasts for 1949-85 in Table VB illustrates the
potential benefits to be gained from inflated regression.

The range (quint) in which the continuous MLR prediction resided
was, for Table 5, taken to be the predicted range; this is the
usual way in whlch continuous predictions are converted to
predictions of ranges (eg Folland et al, 1986). However, the
probability of different ranges can be estimated if the
distribution of the expected prediction error is known. Making
the assumptions of MLR, the error distribution is approximately
normal with a standard deviation equal to the SE of the
prediction (Eq 8). From this, the ordinary MLR forecasts in Table
V have been converted to probability forecasts of quints. Table
VI presents the mean forecast probabllltles for those forecasts
when the continuous prediction resided in a) an extreme quint,
b) quint 2 or 4, and c) quint 3. For these 3 subsets of the
forecasts, the proportlon of years observed to be in each
category is also presented. If the probability of each quint has
been accurately forecast, the mean forecast probabilities and the
observed proportions should be similar. For extreme quint
forecasts, the mean probability forecast is good; just a little
too confident. For quint 3 forecasts the mean forecast
probability of each quint correctly expects there to be least
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Table V Contingency tables of forecast quint v observed quint
for some of the sets of forecasts in Table IV: A = ordinary

regression, B = inflated regression, C = discriminant
analysis.

1949-1985 forecasts 1912-1948 forecasts
A) observed observed

Qi QR QT T QYT QS Q1™ 027 Q3 Q4 OS
£ Q1 0 2 0 1 0 Il 9 1k 2 0 2
raiQa 5 3 1 0 0 r Q24 2 1 0 0 1
ooy 1 2 2 a1 1 C Q3" A 0 2 i L 2
s Q4 O 2 4 4 0 s Q4 O il 2 3 2
5050 0 0 3 5 £t 050 0 i 0 4
B) observed observed

Q1 Q2 Q3 "QF Q5 Q1" Q2" Q3 TOF TON
£ 01 4 4 1 1 0 £01L 9 2 2 0 2
B2 2 1 1 0 0 r iQ2:i%3 0 0 0 1
ey 0 2 1 1 0 c @3 "o 0 2 0 2
s Q4 O 0 2 2 1 8 Q4 0 1 0 <, T
t 95 0 2 2 5 5 t 050 0 3 1 5
C) observed observed

01 02 03 704 05 Q1" 02 03 04 0%
£ 01 1 1 1 0 0 £.01-9 0 i 0 i
r-02 4 4 1 a L 0 r Q2% i3 2 0 0 3
c 030 1 0 0 0 ¢g3 o 0 3 0 1
s 04 1 1 3 4 0 s Q4 O 1 2 4 3
t-05 0 2 2 4 6 tQ5 .0 0 1 0 3
Notes:

Results are for 'a priori' models shown in Table IV.
1912-1948 forecasts are from Dec-Feb predictor values,
1949-1985 are from Nov-Jan predictor values.

s Sl =

skill in this subset of forecasts. Least skill in long-range
forecasts of near normal is often found and is an active area of
debate (eg see Toth, 1989).

Given the SE of these forecasts and the narrowness of quints 2
and 4, a prediction residing in quint 2 or 4 always implies that
the extreme quint is most likely to occur, and this is reflected
in the mean forecast probabilities (0.20 for the quint in which
the forecast resides, 0.41 for the adjacent extreme quint).
However, the hit rate of the quint 2/4 forecasts is rather better
than predicted (0.35 correct, only 0.29 observed in the adjacent
extreme). The main reason for this is that the conversion to
probability forecasts does not expect the RMS error of quint 2/4
forecasts to be less than the RMS on other forecasts (see Table
VI). The difference between the RMS errors in Table VIA are not
quite statistically significant at the 10% 1level, so their
effects on the observed probability distributions may be
fortuitous.
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Table VI Analysis of the ordinary MLR and LDA forecasts in Table
V in terms of the probability forecast for each quint. The
forecasts have been sub-divided by the forecast quint shown in
Table V.

e ————————————— s

A) Mean quint probabilities and observed proportions of each
quint for subsets of MLR continous forecasts.

Subset 1: Continuous MLR prediction resides in an extreme quint (30 forecasts).
RMS error for continuous predictions is 54.0

forecast 1 quint 2 quints 3 quints 4 quints

quint in error in error in error in error
forecast probability 0.69 0.13 0.1 0.04 0.02
observed proportion 0.60 0.20 0.10 0.03 0.07

Subset 2: Continuous MLR prediction resides in quint 2 or 4 (31 forecasts).
RMS error for continuous predictions is 44.3

forecast adjacent 2 quints 3 quints

quint extreme quint 3 in error in error
forecast probability 0.20 0.41 0.20 0.10 0.08
observed proportion 0.35 0.29 0.22 0.10 0.03

Subset 3: Continuous MLR prediction resides in quint 3 (13 forecasts).
RMS error for continuous predictions is 52.7

forecast 1 quint 2 quints

quint in error in error
forecast probability 0.24 0.17 0.21
observed proportion 0.31 0.15 0.19

B) Mean quint probabilities and observed proportion of each quint
for subsets of LDA predictions.

Subset 1: Extreme quint forecast as most likely (32 forecasts).

forecast 1 quint 2 quints 3 quints 4 quints

quint in error in error in error in error
forecast probability 0.53 0.22 0.15 0.06 0.04
observed proportion 0.59 0.16 0.16 0.06 0.03

Subset 2: Quint 2 or & forecast as most likely (37 forecasts).

forecast adjacent 2 quints 3 quints

quint extreme quint 3 in error in error
forecast probability 0.36 0.23 0.23 0.12 0.06
observed proportion 0.38 0.27 0.16 0.08 0.1

Subset 3: Quint 3 forecast as most likely (5 forecasts).

forecast 1 quint 2 quints

quint in error in error
forecast probability 0.33 0.23 0.10
observed proportion 0.60 0.10 0.10
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A similar analysis of quint probabilities was performed on the
LDA forecasts in Table V. The mean forecast probabilities (Table
VIB) are more accurate than those of MLR in the subset of extreme
forecasts and especially in the subset of quint 2/4 forecasts.
Again the highest hit rate is expected for extreme forecasts and
the lowest for average forecasts, though the small number of
average forecasts makes their assessment difficult.

f) The forecasts by year 1912-1985

The forecasts in Tables VA and VC are plotted by year in Fig 14.
There is close agreement between the most likely quint forecast
by LDA and the quint in which the continuous MLR prediction
resides. Particularly noteworthy is the ability of the systems
to forecast the onset, persistence and breakdown of the runs of
very dry years 1914-15, 1930-32 and 1941-43.

Despite the strong El1 Nino in 1983 (PT1 predictor in Nov-Jan =
8.8), LDA does not forecast quint 1 as most likely because of the
large negative values of AT3(t) (= -0.9). Quint 2 is forecast as
most likely (p = 0.42), followed by quints 1 (p = 0.34) and 5 (p
= 0.10), introducing some bimodality. MLR can only produce a
unimodal forecast; not surprisingly a near average forecast
results. This illustrates a potential benefit of LDA. The most
severe drought in the last 20 years occurred in 1983 (Rao et al
1986) . Models which use March-May values of our two predictors
do correctly indicate the drought, since AT3(t) changed rapidly
from negative values to positive values (+1.05 in March-May), a
change that is consistent with the relationship between Atlantic
SST and E1 Nino identified in Ward et al (1988). A link between
ENSO and the ocean-atmosphere system in the tropical Atlantic is
also discussed by Wolter (1987) and inclusion of an interaction
between our two predictors in the forecast models requires
further consideration.

5.3 Experimental forecasts produced in real-time 1987-1989

SSTAs are today available in near real-time, so it is possible
to prepare forecasts before the main N Nordeste rainfall season.
Experimental forecasts were prepared in each year 1987 to 1989
using Nov-Jan values of SSTA EC predictors and February values
of the predictors. The forecasts were distributed in early March
to a small number of scientists. Table VII shows the LDA
probability forecasts made from February SSTA EC time series
values for quints of the Quixeramobim/Fortaleza (QF) March-May
index used in Ward et al (1988). Forecasts with similar
probability distributions were also made for HWC's March-April
index and Nobre's Feb-May index (since 1988), but these series
have not been updated so the forecasts cannot yet be properly
verified.

A forecast of quint 1 (very dry) was made for 1987 and the
rainfall season, after a very wet March, was dominated by two
very dry months; the QF standardised anomaly is just sufficiently
negative to score 1987 as one of the driest 20% of years (ie
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Table VII NE Brazil seasonal forecasts 1987-1989 that were
produced in real-time using the LDA technique and their
preliminary verification.

o

A) Forecast probabilities for quints of March to May Quixeramobim/Fortaleza index.

forecast probability of quint

Q1 Q2 Q3 Q4 Q5
1987 .45 .18 14 .18 .05
1988 .03 .07 .08 31 .51
1989 .00 .08 .06 .18 .68

B) Data for March-May Quixeramobim/Fortaleza (QF) index 1987-1989

Quixeramobim : Fortaleza : combined QF index
March  April  May SU : March April May U .3 sU quint
mean 166 160 115 : 304 246 193 :
1987 235% 61 20 -68 : 4t 78 40 -75 -2 a
1988 140 192 163 1 : 562 287 306 +97 : +59 Q4
1989 180 305 309 +171 : 287 310 188 -25 +73 Q5

SU = March-May rainfall anomaly in station standard deviations x 100

Combined QF index quint boundaries fo: 1951-80 are -70.1, -16.1, 15.1, 67.5

Data are from CLIMAT reports except which are from a bulletin by FUNCEME, Ceara State, Brazil (whose
Fortaleza site is slightly different)

quint 1) using 1951-80 as the base period. For 1988, forecasts
from Nov-Jan predictors were contradictory, but by February the
1987 E1 Nino event had decayed sufficiently to allow the value
of AT3(t) to influence the forecast most and produce a clear
prediction of the wet (p = 0.31) or very wet (p = 0.51) quint.
After a dry start, the 1988 rainfall season was well above
average, categorised as quint 4 (wet) in the QF index. In 1989,
a combination of large negative values for AT3(t) and PT1
produced a confident prediction of very wet conditions. This
confidence was not fully reflected in the released forecast
because the complete AT3 predictor (including the extra-tropics)
did not suggest such wet conditions and SSTAs associated with La
Nina were decaying quite quickly. Like 1988, the season started
dry, but at Quixeramobim became extremely wet in late March,
April and early May, ensuring a quint 5 season on the QF index.
Analysis of Monitor Climatico (produced by FUNCEME, Ceara State
Met. Office, Fortaleza) and outgoing long-wave radiation patterns
suggest that Nobre's and HWC's indices will be a little higher
in 1987 than the QF index, but similar in 1988 and 1989.

Overall, the three experimental forecasts that were produced in
real-time and disseminated have shown good skill.

6. Conclusions

Statistical methods to predict seasonal rainfall in NE Brazil
have been developed. Measures of sea surface temperature were
used as predictors because GCM integrations have shown that
physical mechanisms exist to link SST to NE Brazil rainfall and
because a carefully quality controlled dataset of SST is
available.
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A covariance eigenvector analysis of SSTAs in the Atlantic and
Pacific oceans identified several patterns of SSTA variability.
Two of the patterns showed a strong relationship with seasonal
rainfall in N Nordeste; one in the tropical Atlantic which is
similar to that previously discussed by Hastenrath and Heller
(1977) and one representing ENSO in the Pacific which was
previously discussed in relation to NE Brazil rainfall by Covey
and Hastenrath (1978). Pre-rainfall season values of the time
series of these two patterns provide the most powerful SST
predictors of seasonal NE Brazil rainfall yet discovered. Test
forecasts over many years suggest that at a lead time of a month
or so, about half of the interannual variability of seasonal N
Nordeste rainfall is predictable from these two patterns. By
using a variety of assessment methods, many different attributes
of the forecasts were revealed. At a lead time of six months, the
tropical Atlantic SSTA predictor still shows a statistically
significant correlation with NE Brazil rainfall, but the level
of correlation would yield a very low level of forecast skill.

Two statistical forecast techniques have been considered. The MLR
method is relatively simple. Inflated regression was shown to be
a potentially useful way of overcoming the low variance in MLR
predictions, though conversion to a probability forecast also
enables extreme events to be expected with realistic frequency.
LDA is a step towards techniques that specifically estimate the
probability distribution of possible outcomes. It allows some
non-linearity in the predictor-predictand relationships and
allows bi-modal forecasts. In this application, LDA's probability
forecasts indicate best the 1likelihood of each category's
occurrence. LDA is however not ideal and more efficient
techniques may be found in the future. Objective methods for
selecting the predictors for the forecast models have been
briefly considered. The view taken here is that they should be
used along with physical understanding, GCM experiments and
extensive empirical studies.

This paper has built on previous work, and developed methods that
are now being used to produce successful experimental forecasts
of NE Brazil seasonal rainfall in real-time. However, there is
scope for much development. Improved analysis of the SSTA data,
including rotation of the eigenvectors, should better define the
important predictor SSTA paterns. Other predictors, such as
monthly or seasonal indices of atmospheric circulation similar
to those used by HWC (1984), may combine with the SSTA predictors
to increase skill since the set of predictors would then provide
a more complete summary of the state of the pre-rainfall season
ocean-atmosphere system. The main hindrance is the uncertain
quality of the atmospheric circulation data, and improvements to
the data may be needed first.

Prediction using a GCM forced with the pattern of observed SSTAs
prior to the rainfall season could be attempted (as done for the
Sahel in Owen and Ward, 1989). GCM integrations are already
leading to better understanding of the links between SSTs and
atmospheric circulation in the vicinity of the N Nordeste
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(Mechoso and Lyons, 1988). Our empirical results suggest that it
is important to address the reasons for the links between NE
Brazil rainfall and SSTAs over the whole globe including the
Indian Ocean.

APPENDIX I

Presentation of results in this paper is simplified by presenting
and using only one set of Atlantic and one set of Pacific
eigenvectors. The choice of using all seasons eigenvectors for
the Atlantic and seasonally specific eigenvectors for the Pacific
was based on the desire to produce the clearest versions of the
patterns in Figs 8a and 9a. For the Pacific, clear El1 Nino
eigenvectors result from analys1s of any of the four seasons;
Dec-Feb patterns are presented since this is the period from
which forecasts are made, but results are not sensitive to this
choice.

APPENDIX II

The LEPS skill score is

S =1 - mod(psp,)

where p; and p, are the cumulative probabilities of the forecast
and observed (eg see Fig 13). The expected value of the score S
when a particular combination of p, and p; occurs is given by a
standard statistical result as

pf:1 pv:1
J Sdp; J Sdp,,
P¢=0 p,~0 (Al)
"
pv-1 p=1
Jl Sdp.dp,
P,~0 pg=0
now
pfl1 Pf"
J Sdp; = I 1 - mod(p,~Ps) dpg
P¢=0 P¢=0
P¢=Py Pf"‘
- I 1 - (pspP,) dpg + I 1 - (p,~P¢) 4p; (A2)
Pf'o PPy
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evaluating this and the other integrals yields

B, = 1.5(p~ (p)2 + 0.5) (p,~ (p,)2 + 0.5)
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Figure headings

Figure 1. Location map of N Nordeste. The rainfall series of
Nobre is based on stations throughout N Nordeste. The series of
HWC(1984) used stations from within the area marked by the dashed
line.

Figure 2. Standardised seasonal anomaly rainfall series for the
N Nordeste. Values are x100. 1912-1981 for February-May from
Nobre (INPE, personal communication). 1982-1985 are updates of
the HWC(1984) March-April series (Lamb, Peppler and Hastenrath
(1986), and Hastenrath, personal communication)

Figure 3. Correlations for 1901-1980 (in hundredths) between
seasonal SSTA in the shaded square and SSTA in surrounding
squares (from Morgan, personal communication).

Figure 4. Number of seasons with sufficient sea surface
temperature ship observations to allow estimation of the season's
anomaly.

Figure 5a Correlations (in hundredths) between SSTA in March-May
and N Nordeste rainfall index 1912-1985. Correlations significant
at the 95% level are shaded.

Figure 5b. As Figure 5a but for 1949-1985.
Figure 5c. As figure 5a but for 1912-1948.

Figure 6a. First covariance eigenvector of seasonal SSTAs in the
Atlantic ocean (all seasons included) 1901-1980. Values are
x1000.

Figure 6b. Time series for Atlantic eigenvector 1.
Figure 7. Second Atlantic eigenvector.
Figure 8a. Third Atlantic eigenvector.

Figure 8b. March-May values of the Atlantic eigenvector 3 time
series (AT3, solid line) along with N Nordeste rainfall index
(dashed line).

Figure 9a. First covariance eigenvector of seasonal Dec-Feb SSTAs
in the Pacific ocean 1901-1980.

Figure 9b. March-May values of time series for eigenvector in
Fig 8a (PT1, solid line) along with N Nordeste rainfall (dashed
line).

Figure 10. Correlations 1912-1985 between SSTA eigenvector time
series and N Nordeste rainfall. JA = July-August values of
eigenvector time series, AS = August-September, SO = Sept-Oct
etc. In the plot, A = correlations with Atlantic eigenvector 3
time series, P = correlations with Pacific eigenvector 1 time
series.
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Figure 11. As Figure 9, but N = correlations with series AT3(ne),
ie using Atlantic data north of 40N, T = correlations with series
AT3(t), ie using tropical Atlantic data (see text).

Figure 12 Probability density functions for value of AT3(t)

(Atlantic eigenvector 3 time series, tropical signal) in

December-February. Function f,(x) is for years when quint i was

observed in N Nordeste 1912~ 1981.

If AT3(t) = -0.9 (marked above with a vertical dashed line):
fi(x)=0.01, f,(x)=0.09, f5(x)=0.08, f,(x)=0.18, f.(x)=0.38

so (from equai:ion 12) the forecast probability og each quint is:

Pr(Q,)=0.01, Pr(Q,)=0.12, Pr(Q;)=0.11, Pr(Q,)=0.24, Pr(Q;)=0.51

Figure 13 Cumulative probability distribution of the NE Brazil
standardised rainfall series. For the forecast f shown, the
cumulative probability is p, = 0.39, and for the observed v, the
cumulative probability is p, = 0.19.

Figure 14 LDA and ordinary MLR forecasts in Table V plotted as
time series along with the observed quint.
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Correlation with NE Brazil rainfall
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INDEX TO LONG-RANGE FORECASTING AND CLINMATE RESEARCH SERIES

THE CLINATE OF THE VORLD - Introduction and description of world climate.
by C K Folland (March 1986)

THE CLIMATE OF THE VORLD - Forcing and feedback processess.
by C K Folland (March 1986)

THE CLINATE OF THE VORLD - El Nino/Southern Oscillation and the Quasi-
biennial Oscillation.
by C K Folland (March 1986)

THE CLIMATE OF THE VORLD - Climate change: the ancient earth to the
‘Little Ice Age'.
by C K Folland

THE CLIMATE OF THE VORLD - Climate change: the instumental period.
by C K Folland (March 1986)

THE CLIKATE OF THE VORLD - Carbon dioxide and climate (with appendix on
simple climate models).
by C K Folland (March 1986)

Sahel rainfall, Forthern Hempishere circulation anomalies and worldwide sea
temperature changes, (To be published in the Proceedings of the "Pontifical

Academy of Sciences Study Veek", Vatican, 23-27 September 1986) .
by C K Folland, D E Parker, M N Vard and A V Colman (September 1986)
(Amended July 1987)

Lagged-average forecast experiments with a 5-level general cipculation

model.
by J N Murphy (March 1986)

Statistical Aspects of Ensemble Forecasts.
by J X Murphy (July 1986)

The impact of El Nino on an Ensemble of Extended-Range Forecasts.
(Submitted to Monthly Veather Review)
by J A Owen and T ¥ Palmer (December 1986)

An experimental forecast of the 1987 rainfall in the Northern HNordeste

region of Brazil.
by X ¥ Vard, S Brooks and C K Folland (March 1987)

The sensitivity of Estimates of Trends of Global and Hemispheric Marine

Temperature to Limitations in Geographical Coverage.
by D E Parker (April 1987)

General circulation model simulations using cloud distributions from the
GAPOD satellite data archive and other sources.
by R Swinbank (Nay 1987)
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Similation of the Madden

and Julian Oscillation in GCM Experiments.
by R Swinbank (May 1987)

Numerical simulation of seasonal Sabel rainfall in four past years
using observed sea surface temperatures.

Not used

by J A Owen, C K Folland and X Bottomley
(April 1988)

A note on the use of Voluntary Observing Fleet Data to estimate air-sea

fluxes.

by D E Parker (April 1988)

Extended—range prediction experiments using an 1ll-level GCK

by J M Murphy and A Dickinson (April 1988)

Numerical models of the Raingauge Exposure problems - field experiments
and an improved collector design.

by C K Folland (May 1988)

An interim analysis of the leading covariance eigenvectors of worldwide sea
surface temperature anomalies for 1901-80.

Prospects for long range

CLIMATE OF TBE VORLD 1.
(Restricted Issue)
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CLIMATE OF THE VORLD 3.
(Restricted issue)

CLIMATE OF THE WORLD 5.
(Restricted Issue)

CLIMATE OF THE WORLD 6.
(Restricted Issue)

CLINATE OF THE WORLD 7.
(Restricted Issue)

by C K Folland and A Colman (April 1988)

forecasting for the United Kingdom.
by A Dickinson and C K Folland (July 1988)

Introduction to world climate

Description of world climate
by C K Folland and D E Parker (July 1988)

Climatic forcing and feedback processes.
I. Forcing from above.

Climatic forcing and feedback processes.
I1I. Interactions with land surface
by C K Folland and D E Parker (July 1988)

Ocean-atmosphere interaction
by D E Parker and C K Folland (July 1988)

The El1 Bino/Southern Oscillation, the Quasi-
Biennial Oscillation, and the 30-60 day
variations.

by C K Folland and D E Parker (July 1988)

A review of palaeoclimate from the early Earth to
the Pleistocene ice ages

. Climate from the late glacial to the "Little ice

age"
by C K Folland and D E Parker (July 1988)
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CLIMATE OF THE WORLD 9. Climatic change in the instrumental period
(Restricted Issue) by D E Parker and C K Folland (July 1988)

CLIMATE OF THE VORLD 10. Carbon dioxide and cther grcenhouse gases, and
(Restricted Issue) climatic variation
(with appendix on simple climate models).
by D E Parker, C K Folland and D J Carson
(July 1988)

Comparison of corrected sea surface and air temperature for the globe
and the hemispheres 1856-1988 - Presented at the 12th Annual Climate
diagnostics Workshop, Boston USA 31 Oct - 4 Eov 1988. :

by C K Folland and D E Parker (Hovember 1988)

Development of a Sahel rainfall series using CLIMAT data
by A V Colman (December 1988)



