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ABSTRACT

The mesoscale version of the long-range dispersion model NAME uses various forms of the
Langevin equation to predict turbulent velocities in the atmospheric boundary layer. These
equations, presented in Chapter 2, can be different for horizontal and vertical motion and
for stable, neutral and unstable conditions. In Chapter 3, several parametrizations of the
vertical variance o, and Lagrangian timescale under convectively unstable conditions are
evaluated against the Willis and Deardorff (1976, 1978, 1981) laboratory measurements of
plume dispersion. The sensitivity of the results to values of the skewness and the universal
constant Co, as well as to the boundary condition at the top of the mixed layer, is also
investigated. A scheme which combines a skewed inhomogeneous o profile near the
source with a Gaussian homogenous profile further downstream is chosen and presented in

Chapter 4. Turbulence profiles for stable and neutral conditions are also specified in this
Chapter.

1. INTRODUCTION

The existing long-range versions of NAME deal with sub-grid turbulent diffusion by means
of a simple perturbation of particle position in the horizontal and a random reassignment in
the vertical in the atmospheric boundary later. This last is because the boundary layer is -
regarded as well mixed from the outset. More sophisticated random force techniques
would prove excessively expensive for a long-range model - the timestep would have to be
made very small and the parametrization much more complicated: the ratio of cost to
benefit would be unfavourable. The same argument does not apply to the mesoscale
problem, where it is essential to pay more attention to the turbulent structure of the
boundary layer - especially close to the source. Turbulence must be parametrized in a more
detailed manner so that the statistics of the particle perturbation velocities reflect those of
the turbulence. In order to achieve this, the velocities are predicted by a form of the
Langevin equation which is valid for non-stationary, non-Gaussian and inhomogeneous
turbulence.

Through laboratory experiments (Willis and Deardorff, 1976, 1978 and 1981), numerical
experiments (Lamb, 1978, Luhar and Britter, 1989) and field experiments (Briggs,
1993a,b), we now understand qualitatively and quantitatively a number of important
features of near-source dispersion in a convective boundaty layer. These include the

descent of the mean prlume centreline from an elevated source to a near-source maximum




well-mixed throughout the boundary-layer depth further downwind. It is essential that a
mesoscale dispersion model be able to reproduce this behaviour. In this note we evaluate
various parametrizations for convective turbulence, including homogeneous and non-
homogenous, and Gaussian and non-Gaussian (skewed). As well as testing different values
for skewness, we examine a profile in which the skewness itself is inhomogeneous. The
influence of the universal constant Co in the Langevin equation is also investigated. It is
shown that the convective turbulence profile chosen for the mesoscale NAME model is able
to reproduce the important features of near- (and far-) source dispersion. Parametrizations
for neutral and stable conditions are also presented.

The procedure presented in this Note has been developed to operate over the first 24 hours
(or whatever period is selected) following the release of a particle; reversion can then be
made to the simpler and cheaper techniques.

2. FORMULATION OF THE MODEL EQUATIONS

Each particle is advected and perturbed according to

x(1+Ar)=x(1r)+ [u(t) +u' (1)] At
y (1 +a0)=y(0) +[v(1) +v'(1)] A1

n(t+At)=n(r) +[i;(t) G i7'(t)] At

where x, y, i are the particle coordinates, #,v,n the resolved particle velocities which are
taken directly from the Unified Model (UM) fieldsfiles, and «’,v’, 7’ the subgrid velocities;
the timestep is A7z. The vertical coordinate of UM and NAME, 7 is defined

n= £+A(1—&)
p- p-

where p is pressure, p. surface pressure and py a reference pressure taken as 1000 hPa. 7
ranges from 1 at the surface to O at the 'top' of the atmosphere; 4 is a function of height
chosen so that the coordinate system follows the terrain close to the surface, where 4 = 0,
but follows straightforward pressure levels in the stratosphere (where 4 = 7), with a
graduation between.

The subgrid velocities are obtained from a differential equation, first proposed by Langevin
in 1908 as a model for Brownian motion. Although a general form of the Langevin
equation exists which is wvalid for non-stationary, non-Gaussian (skewed) and
inhomogeneous turbulence (Thomson, 1987), simpler forms of this equation can be applied
when the turbulence is assumed to be Gaussian or homogeneous. Skewed can be thought
of as meaning that the probability that a sampled velocity will be positive is not the same as
that it will be a negative one; in Gaussian turbulence the probabilities are equal. An example
of the former is convective turbulence, where downdrafts occupy a greater area than
updrafts. By inhomogeneous, we mean varying in space. In this Chapter we present the




different forms of the Langevin equation used in the model according to the type of
turbulence being parametrized.

2.1 Stable conditions
We can assume that the turbulence under stable conditions is Gaussian.
2.1.1 Horizontal motion

Assuming that the turbulent eddy motions are uncorrelated among the components the fresh
impulse in the x-direction is obtained from the stochastic differential equation (Langevin)

du'=adt+bd¢ | (1)

the terms on the RHS representing 'memory' of earlier eddy motion and an innovation
respectively. Assuming that the turbulence is Gaussian and homogeneous, we can choose a
(the drift or memory coefficient) and b (the diffusion or random coefficient) as follows (see
for example Physick and Hurley, 1995):

u'

a=—— 2)
F

b=[z "5j ' 3)
T

u

where 7, is the Lagrangian timescale for the #-component of the turbulence and o is the

horizontal velocity variance. The d¢ are increments of a random process; they are here
taken as Gaussian with mean zero and variance dr. Thus from (1) - (3) the velocity

perturbation can be expressed

1/2
(202At)

u'(t+Ar)= u’(t)(l —%) + e z 4
(Saihy
vi(t+Af) = v’(t)[l——TA—t) + \2"; :A‘) 7, ®)

u
where 7, is a random Gaussian variable of zero mean, unit variance.

2.1.2 Vertical motion

Although the above formulation is adequate for the # and v components, where changes in
the horizontal are small, the position is more complicated in the vertical as the turbulence is
not constant with height, and simply to use o;,(#) in this type of equation leads to particles

tending to collect at levels of small o, . To avoid this we must appeal to the Fokker-Planck
equatlon, as dlscussed in Thomson (1987) By applymg the ‘well-rmxed' condmon the_:




For these conditions (Gaussian inhomogeneous turbulence), it is sufficient to apply the
formulation of Wilson et al. (1983) as adjusted by Thomson (1984); skewed turbulence in
unstable conditions requires a more complex scheme (see next section).

The Wilson/Thomson model uses a standardized variable a =7’/ o, and may be expressed
as a sequence of operations
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da = . dt+(’;,) d.f+p” én(a"p")dt

7 =ao,

dn = qdt + iy'dt

where p, is a density function of air (or equivalently well-mixed pollutant) measured in the
x, ¥, n coordinate system. The system is easily shown to be equivalent to (4,), (5) but with
additional drift terms. As p, is constant in 7 coordinates (in the lower part of the
troposphere - we are not concerned with high levels), the 3rd term on the RHS of the top
equation simplifies to J&o,/dn.dt. Now cdo,/on=-1/p.dpo,)/ & is close to the

'known' input profile which is expressed in standard vertical coordinates, -0, / dz .
Accordingly the system for the vertical perturbation may be expressed.

a(t):a(t—At)(l—%l] +(21—’2’) r, —%At (6)
7' =a(t)o, (7)
n(t + A)=n(r) +[7(7) + 7'(r)]| At (8)

Apart from the presence of o, in (7), this is now a viable system. Consideration of #’ in
the general coordinate system 7(x,y,z,7) shows that

pocs i | iemas e | ey T e [ —

o | e | Ty

o | |

B



-

a(t)=alt- At)( —&) +(~241)”~r, s 4o §,

zu 5 dz
w'=a(l)o,
e
n rT" (10)

n(t + Ar)=n(r)+ [i](t) + i]'(t)]At

(where @ now denotes w'/o,) under the transformation (10). With the do, /dn
approximation the potential advantages of the 7 - coordinate system (i.e., p, = const) are
lost.

At the upper and lower boundaries of the mixed layer, the reflected velocity of a particle is
equal and opposite to the incident velocity (i.e. perfect reflection is applied). New upper
boundary conditions to be applied in the NAME model are detailed in 4.3.

2.2 Neutral and unstable conditions
2.2.1 Horizontal motion

In the horizontal direction, Gaussian homogeneous turbulence is assumed and the same
equations are used as for stable conditions (Eqgs.(1)-(5)). The formulations for o, and z,,
are of course different (see Chapter 4).

2.2.2 Vertical motion .

The turbulence profile in the convectively unstable boundary layer is inhomogeneous, as for
stable conditions, but it is also assumed to be non-Gaussian (skewed). [As described in
section 4.3, options also exist for homogeneous and Gaussian profiles in the NAME model.
Vertical motion for the Gaussian option is dealt with as in 2.1.2.] For skew conditions the
general form of the Langevin equation (1) is used, but the drift and diffusion coefficients a
and b are specified differently. In this section of the model, it is easier to compute w’ in a
z-coordinate system, rather than #’in 7-coordinates, and then convert back to #' to step

the particle position forward in time. The corresponding equation to (1) is

aw' = adt +bd& 11)

where b=(Cy¢)* ¢ is the rate of dissipation of turbulent kinetic energy and C, is a universal
constant. Uncertainty surrounds the value of Cy , although 2.0 is usually used for unstable
conditions. We evaluate several values in Chapter 3. The Lagrangian timescale 7, can be
related to &by the relation




As we shall see, a is a function of &, and &, both measurable quantities, rather than 7,
which is only clearly defined when the turbulence is homogeneous and stationary. Note too
that, unlike previous versions of the Langevin equation (for example de Baas et al., 1986,
Sawford and Guest, 1987), it is not necessary to incorporate the skewness Sk of the
convective boundary layer in the diffusion (random) term, which remains Gaussian.

The finite-difference form of Eq.(11) is
w(t+Ar) = w'(t)+aAt+(CoaAt)”2r, : (12)

After computation of w’, 7'is calculated from
p 7

e Sl (13)

and the new particle position found in the (x,y, 77) system.

An expression for the function a is obtained by solving the following form of the Fokker-
Planck equation (Thomson, 1987),

J\aP, S(wP, -
( EJ:-aPE— 5 E)+l oé’aPE (14)
ow ot oz 7 Aw?

subject to the boundary condition aPe—0 as |w'|—w (BL. Sawford, personal
communication, 1988). Pg is the probability density function (PDF) made up of two
Gaussian functions, one representing the updrafts (+) and the other representing the
downdrafts (-) of the convective boundary layer, and written as

P =pN(m,,0,)+(1- p)N(m_,0_) (15)

with

N(m,0)= o™ (272)™* exp(—(w' -m)’ / 20'2). (16) .

Here p is the probability of a particle being in an updraft, m. is the mean velocity in an
updraft and o. is the velocity standard deviation in an updraft, and similarly for the
downdraft terms. The first three moments of Pr are equated to the first three moments of
the vertical velocity distribution (0,02 and S] respectively, where S? =Sko?) and the
resulting equations are solved for the variables p, m., and m_, by making the assumption o
=|m| for both updrafts and downdrafts (see for example Hudson and Thomson, 1994).

The solutions are:

p=05(1-(Sk*/(@8+S5k*))") a7

So,(1-p)/p

i - —
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m_=-m,p/(1-p)

where Sk = (S,/a)’ is the degree of skewness of the turbulence.

By means of a little calculus, the solution of Eq.(14) can be shown to be (see for example
Luhar and Britter, 1989)

_ .+
PE

g (20)

where

b, =-2CoopN.(w'-m.)/ o’

+o,N

+

o”po+_pw'( do. ' o”m+) pw'? o,
( oz o’ M ozv %t gz) " o Oz

_1Spm, w—m,
2" a (‘*"’f (ﬁa)]

with the expressions for ¢. of the same form, except with p replaced by 1-p and with
subscript "+" replaced by "-". Note that the inner bracket in the second term is zero.

The boundary condition used is one of skewed memory reflection, where w’ is scaled by
the absolute value of the ratio of the mean updraft velocity to the mean downdraft velocity
when reflecting at the ground (w’ becomes —w’(1-p)/p). The inverse of this ratio is used
in an analogous manner at the top of the mixed layer in the experiments of Chapter 3.
Thomson and Montgomery (1994) show that the theoretically correct boundary condition is

TIW'PE aw' = ]‘OW'PE aw’
- w,

{ 2

where w; is the incident velocity and w/ is the reflected velocity. There is negligible

difference between results from either formulation in inhomogeneous turbulence where the
moments of the turbulence, or the timescales, usually decrease to zero at the boundaries.

Some runs are done in Chapter 3 where the top boundary condition is removed and particles
are allowed to move into a stable region of low turbulence above the mixed layer. There
appear to be no problems with particle loss or accumulation at the mixed-layer top and it is
recommended that no reflection condition be used in NAME at the upper boundary of the
mixed layer. Further discussion can be found in Chapters 3 and 4.




2.3 Computational timestep

The first consideration is that a change in the magnitude of o, due to the turbulent vertical
motion of a particle should be small in comparison to the size of o, itself. That is

w'At d;“' « o,
so that to an approximation
1
il do,, 1dz|’
for practical purposes taken as
Avo. 005
do ., / dz|

The above expression may give very large values near do, /dz = 0 and is replaced by

'l

if it is smaller. Here, 7; is the boundary layer top, and (1 -7;) the boundary layer depth, in
7 units. An additional requirement is that the timestep be short in comparison with the
Lagrangian timescale, so (20), (21) are subject to the additional constraint.

At £0057,.

The Lagrangian timescales for all conditions of stability are subject to a minimum of 20secs,
although they may well be smaller close to the surface. This is to avoid very short

computational timesteps. Note that each particle can be followed for a number of

timesteps, totalling for example 15 minutes, and then the next particle is followed for the
same period and so on. Concentrations may be calculated at the end of such a period. The
timesteps are clearly variable in length, so that provision must be made to truncate a
timestep when the end of a period of integration has been reached.

3. EVALUATION OF TURBULENCE PROFILES FOR UNSTABLE
- CONDITIONS

Documentation for all stability conditions of the horizontal and vertical components of the
turbulence (variance o’ and either Lagrangian timescale 7 or turbulence dissipation rate &)
employed in NAME, is presented in Chapter 4. However in this Chapter, we evaluate three
turbulence formulations appropriate to unstable conditions, before making a choice for use
in NAME. Boundary conditions and skewness values are also examined. The three
turbulence schemes are tested here against the laboratory results of Willis and Deardorff

(1976, 1978, 1981) for plume dispersion in convective conditions. In these experiments,
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neutrally-buoyant oil droplets were released at various levels in a convectively mixed layer
generated in a water tank and downstream concentrations monitored.

Inhomogeneous profiles of o, and 7, from Hanna (1982), based on the 1973 Minnesota
planetary boundary layer experiment, are evaluated first, followed by the o, profile of
Hibberd and Sawford (1994) (Fig. 1). The small amount of scatter in the convection tank
data upon which the latter profile is based reflects the large amount of sampling under
tightly-controlled conditions. The 7, profile is obtained indirectly by specifying the variation
of the TKE dissipation rate with height and using the relation 7z, = 2%, /C,£. The third
turbulence formulation tested specifies homogeneous profiles of o, and 7, As can be seen
from the timestep-size relation of section 2.3 (Eq. 20), a homogeneous o, profile allows a
larger timestep to be used.

0.8

Figure 1. Variance of vertical velocity fluctuations as a function of dimensional height.
Hibberd and Sawford, 1994 (M) Willis and Deardorff, 1974, case S1 (O), case S2 (0):
Deardorff and Willis, 1985 (J): Caughey and Palmer, 1979 (+): Young, 1988 (X):
Kumar and Adrian, 1986 (A): Adrian et al, 1986 (---): Range of results from large-eddy
simulations of Nieuwstadt et al. 1992 (shaded region i ): Empirical fit of Equation (22)
(—). (From Hibberd and Sawford, 1994).

3.1 Parametrizaticns
Expressed in z-coordinates '(height above the ground), the three parametrizations are

A Hanna (1982)
o,=0,=u,(12+05 n)"” for 77) 0.996 (the surface layer).
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Here L is the Monin-Obhukov length defined as

3
c, Tu;

g

where ¢, is the specific heat at constant pressure, k is von Karman's constant, 7, the surface
temperature and H the sensible heat flux. L is a quantitative measure of atmospheric

stability. z; is the boundary layer depth, u. is the friction velocity, and the convective
velocity scale, w., is defined (for +ve H) as

& 1/3
W, = l(.(— 7(2) %

:
1]
=)
O
(@)}
Vg
w
3 IN
|
[~
Nemind
o
RS

{ 003,

> i i

o 173 0.175
" o min[0.96(3%--f—') ; 0.763(‘%) ] 0.03 (£( 04,

o 0.207
* = 0,722 (1 “ zi) 04 (X096,

o

=037 0.96 ¢ zi &1L
i

-

The Lagrangian timescales are specified as

7, =1, =0152
all
0.1z z 2z
(e for = (01, -=(1,
¥ 0,(055+038z/ L) z,< ¢
7, =252 : for L0121
o, Z; L
b4 : A £
| 7, =015——|1-exp(-5z/z for £ >01
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B Hibberd and Sawford (1994)

o, o= 11.(12+O.Sz,. / |L|)”3 for 7 ) 0996 (the surfacelayer)
c,=0, = (O.4w.2 )”2 above (in the mixed layer)
2/3 W2

o, z z

%, [1.2(—) (1 ~09 —)} 22)
w. z, Z

- - u13
=|15- 1.2(%) > (from Luhar and Britter, 1989)

C  Hurley and Physick (1993)

o,=o0,=0, =06w,

v

e=06w]/z,

For each formulation, a value of 0.6 is chosen for the skewness at all levels, in agreement
with most field data (for example, Wyngaard, 1988, Lemone, 1990). However, the

sensitivity to skewness of the results from the Hibberd and Sawford profile is examined
later.

3.2 Experimental setup

The Willis and Deardorff experiments examined the time behaviour of an instantaneous line
release of passive material (oil droplets) at three heights: z,=0.067z;, 0.24z; and 0.49z,.
There was no mean flow. In our numerical experiments, we release at time =0, 60000
particles at each of these heights. The positions of these particles, converted to
concentrations, are stored at intervals of 0.057, where T is a non-dimensional time (w./z)t.
If we assume Taylor's hypothesis that # = x/u, where « denotes windspeed and x downwind
distance, then 7" can also be thought of as the non-dimensional distance X = xw./uz). Thus
our height-time plots of concentration, and those of Willis and Deardorff, can also be
thought of as height-downwind distance plots.

Skewed reflection conditions, as described in section 2.2.2, were used at the top and bottom

of the mixed layer. Concentrations were calculated by dividing the mixed layer into 20

boxes of size 05z,, countmg the number of particles in each box, and non-dmwnstonahmg
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concentrations measured by Willis and Deardorff. A value of 600 m was used for z;, 1.5 m
s for w., and -55 m for L.

3.3 Results from the parametrization comparison

Figure 2 shows the dimensionless concentration contours obtained for the three source
heights by Willis and Deardorff. The mean centreline of the two elevated plumes descends
to the ground, where the maximum ground-level concentration is registered at a distance
less than X=1, and then appear to lift off again before finally becoming well mixed
throughout the depth of the boundary layer further downwind. The descent of the plume is
due to the skewness of the turbulent vertical velocity distribution; slower-moving
downdrafts occupy a greater area than the faster updrafts. The plume from the near-surface
source (0.067z;) drifts horizontally for a short distance before it too is lifted to the upper
reaches of the boundary layer. A well-mixed profile eventually results towards X=4. It
should be noted that the mixed layer was growing slowly during these experiments; hence
the falling off in concentrations towards the top of the layer. This should not be evident in
our numerical experiments where there was no boundary-layer growth and a reflection
condition was employed.

Numerical predictions of the plume dispersion using turbulence parametrization A (Hanna)
are shown in Fig.3 for the three source heights. From a comparison with Fig.2, it is
apparent that the plume is being brought to the ground too far from the source, and any
subsequent lift-off is almost non-existent. As discussed later, the maximum ground-level
concentration (glc) from the two elevated sources is clearly lower than measured in the
laboratory experiments. There also appears to be a problem with a deficit of particles near
the surface in the well-mixed region further downwind.

Results from parametrization B (Hibberd and Sawford) are plotted in Fig.4. The elevated
plumes reach the ground only a little further downwind than measured, after which they lift

off as observed and become well-mixed throughout the boundary-layer depth further

downwind. Simulation of the dispersion from the near-surface source also displays the main

observed features. For all sources, there is significantly better agreement between predicted -

and measured maximum ground level concentrations than for parametrization A.

Figure 5 shows the concentrations predicted when the homogeneous parametrization C
(Hurley and Physick) is used. All the main features are reproduced. The results are
surprisingly good; better than parametrization A, and barely different than those of B. In
fact this parametrization is superior in simulating the near vertical or shghtly forward-
leaning contours near the surface observed after plume lift-off.

Further evaluation of the three schemes can be carried out by examining the predictions of

ground level concentration as a function of downwind distance (Fig.6). Also shown are the
data points from the laboratory experiments. For the elevated sources, the magnitudes of
the predicted maxima are smaller than observed and the locations of these maxima are
generally a little further downwind than was observed. For all three sources the predicted
plume lift-off (glc less than 1.0) is not as pronounced, as evidenced by the higher

concentrations predicted at this time. Parametrization A performs poorly for the elevated

sources and as suspected previously, does not produce a well-mixed profile far from the
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Figure 2.  Contours of the non-dimensional cross-wind integrated concentrations obtained
by Willis and Deardorff for the three source helghts (z./z.) (top) 0. 067 (mnddle) 0.24, and
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Figure 4. Contours of the non-dimensional cross-wind integrated concentrations predwted
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source. There is not a lot to choose between schemes B and C, although C is probably
closer to the measured data in terms of magnitude and location of the maxima.

A comparison of the three profiles of (o, /w.)’ in Fig.7 shows that the inhomogeneous
profiles are not greatly different, especially in the lower half of the boundary layer.
However in scheme A, there is a discontinuity at z/z; = 0.03 (see section 3.1), resulting in a
change of sign of the o, gradient. For zyz; = 0.49, a run was carried out in which the
expression for o, above 0.03 was extended downwards from 0.03 to 0.00 (and the surface-
layer formulation omitted), resulting in a continuous curve. The results were not very
different from those of the previous run in Figs.3 and 6, except that the profile downwind
was now well-mixed throughout the depth of the boundary layer.

Examination of 7/(z/ w.) profiles (Fig.8) reveals that in the middle of the mixed layer,
parametrization A values are only 0.25 the magnitude of those of B. Even as low as 0.1z/z;,
the ratio is still only 0.5. This suggests that the reason for the delayed arrival of the plume
at the ground seen in Fig.3 could be that downward-moving particles in the vicinity of the
source height are not remembering their descending motion for long enough. A run for
scheme A was carried out with 7, calculated from the dissipation rate of turbulent kinetic
energy in the same manner as done for parametrization B. The resulting 7, profile was not
very different from that of B. Results from this run closely resembled those from scheme B
(Fig.4), confirming that the formulation for 7, in scheme A gives values which are too low.

3.4 Sensitivity experiments

As the predicted maximum glcs for all schemes are slightly low, and occur a little further
from the source than measured, it is of interest to examine the sensitivity of the results to
various parameters, especially those which are not as yet determined with any great
accuracy.

3.4.1 Skewness

For all three source heights, runs were carried out with parametrization B for additional
skewness values of 0.4 and 0.8 (0.6 having been used in the previous experiments). A value
of 0.4 has been found in laboratory water tank experiments by Hibberd (personal
communication) and 0.8 was used in numerical studies of the Willis and Deardorff
experiments by Sawford and Guest (1987) and Luhar and Britter (1989). However we first
show results from a run (z/z~0.24) with Gaussian turbulence, i.e. zero skewness (Figs.9
and 10). Comparison with Fig.2 shows that the descent of the mean plume centreline is not
simulated properly, the maximum ground level concentration is seriously underestimated,
and there is not enough plume liftoff in the X=1 to 3 region. These deficiencies are greater
for the 0.49 source, but less so for the source at 0.067.

For the non-zero values of skewness, our results show that there are no great differences in
the predicted dispersion patterns over the range examined. Comparisons of ground level
concentrations can be seen in Fig 11 The trend is for higher skewness values to give higher
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Figure 7. Profiles of (ow/w.)’ as a function of non-dimensional height z/z, for
parametrizations A (dotted curve), B (solid curve) and C (dash - dot curve).
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Figure 9. Contours of the non-dimensional cross-wind integrated concentrations predicted
by the model using parametrization B (Hibberd and Sawford) and skewness=0.0 for a
source height (z/z;) of 0.24.

N T T T

Figure 10. Non-dimensional cross-wind integrated ground-level concentrations as a
function of downwind distance, for a source height (z/z) of 0.24. Skewness=0.0 (dotted
curve), and skewness=0.6 (solid curve). Measurements of Willis and Deardorff (U).
Turbulence parametrization B is used.

lower skewness, and so higher concentrations will result at the ground. However the mean
downdraft velocity will be smaller and so the main body of the plume will take longer to
reach the ground. As far as comparison with the laboratory data is concerned, it cannot be
said that any value of skewness is superior in all aspects.
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investigate the effect of this inhomogeneity on our dispersion results and to this end we use
the following skewness profile from the laboratory experiments of Hibberd (personal
communication). Between the lower boundary and z/z; = 0.3, Sk increases linearly from 0.0
to 0.4, remains constant at 0.4 up to z/z; = 0.9 and then decreases linearly to zero at the
upper boundary. Results from this run are shown in Fig.12, along with those from a run in
which the skewness was specified to be constant at 0.4 throughout the boundary layer.
Only concentrations for z,/z; = 0.24 are shown, but the findings apply equally to all three
source heights. There is not a lot of difference between the two plots in Fig.12, but the
most mterestmg effect of inhomogeneous skewness can be seen below about z/z; = 0.15. In
this region the concentration contours have become more vertical, although still not
attaining the slightly positive slope observed by Willis and Deardorff (Fig.2). The
magnitude of the maximum in ground level concentration has been reduced by 10% for the
surface source, with negligible change for the higher sources. However the location of the
maximum is nearer that observed for the latter release points.

1.0
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3.4.2 Universal constant C,

There is still uncertainty over the value of Cy, although 2.0 is commonly used. Hudson and
Thomson (1994) have discussed this problem and carried out random walk and large eddy
simulations, concluding that C, should be considered a function of stability, and possibly
source height. A value of 2.0 for C, was found to be the most suitable for convective
conditions. Here we examine the effect of increasing or decreasing this value by 50%. By
considering the relation 7, = 2¢%,/C,¢, it can be seen that we are in effect decreasing by
two thirds or doubling the Lagrangian timescale from its value when C, =2.0. Experiments
are carried out with parametrization B and a homogeneous skewness value of 0.6.

When Cy =3.0, the concentration distribution for all three source heights does not compare
well with the Willis and Deardorff results of Fig.2; the magnitudes of the ground-level
maxima are smaller than those of the Cyp = 2.0 run (Figs.4 and 6) and occur further from the
source. There appears to be nothing to be achieved by pursuing values of C, larger than 2.0
in our model. In fact the results tend to resemble somewhat those of parametrization A
(Figs.3 and 6). This is not too surprising as the resulting 7, profile is similar to that of A.

The concentrations for each source height for the C, = 1.0 run are shown in Fig.13.
Comparison with Figs.2 and 4 suggests that of the three C, values, 1.0 gives results which
most closely resemble those of Willis and Deardorff. One area of improvement occurs near
the ground where the contours now tend more towards the vertical, although still not as
much as observed. Improvement is confirmed by Fig.14 in which ground level
concentrations are compared. Not only are the magnitude and location of the glc maxima
reproduced at least as well or better by C, = 1.0, but the region after plume lift-off where
the non-dimensionalised concentrations are less than 1.0 is also simulated better. This latter
feature of convective dispersion has recently been identified in the atmospheric boundary
layer by Briggs (1993, 1994) in his analysis of data from the CONDORS field experiment at
Boulder. For a surface source Briggs found a mean non-dimensional concentration of 0.5 at
a distance of X=1.3, compared to Willis and Deardorff's values of 0.5 and 1.55

- respectively. Our numerical experiments give 0.33 at X=1.65.

As mentioned above, we have in essence doubled the Lagrangian timescale 7, for this run,
leading us to conclude that the 7, profile used in our other runs (Fig.8) is a little low,
especially in the lower one third of the mixed layer. This probably explains why the
homogeneous turbulence profile of Hurley and Physick (Fig.8), in which 7, remains
relatively large right down to the ground, is able to reproduce the laboratory experiments
quite well. Interestingly, when this profile (parametrization C) is used with C; = 1.0 there is
not a lot of difference from the results with Cy = 2.0, although glcs after lift off are smaller,
and so agree better with the data. Results for the surface source height are shown in Figs.
15 and 16. This suggests that there may be little advantage in increasing 7, once it is
sufficiently large.

3.5 Upper boundary condition

All runs discussed in this Chapter have been carried out with a skewed memory reflection
condition on velocity (see section 2.2.2) at the top of the mixed layer z, except for the

Gaussian run which employed perfect reflection. However, we have also done simulations
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Figure 15. Contours of the non-dimensional cross-wind integrated concentrations predicted
by the model using parametrization C (Hurley and Physick) and Cy = 1.0 for a source height
(z/z) of 0.067.

GLC

XN G
w
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Figure 16. Non-dimensional cross-wind integrated ground-level concentrations as a
function of downwind distance, for a source height (z/z) of 0.067. C, = 1.0 (dotted
curve), and 2.0 (solid curve). Measurements of Willis and Deardorff ([J). Turbulence
parametrization C is used.

using parametrization B in which this boundary condition is removed and particles are free
to leave the mixed layer through the top As can be seen from Eq.(22) and Fig.7, o, does




27

Our main aim was to investigate the behaviour of particles near and above z, and to see
whether a well-mixed profile could be maintained. Fig.17 shows the particle distribution
out to X=8 from a source at z,/z; =0.49, using parametrization B with skewness 0.6 and
C¢=2.0. It is obvious that a well-mixed profile exists beyond X=4.0 and up to a height of
about 1.1z, that there is minimal leakage of particles to higher levels, and that the essential
features of elevated source dispersion are simulated (c.f Fig.4). Note that an a priori
assumpiion of well-mixedness up to an arbitrary height of 1.5z; has been assumed in Fig.17
and so the normalised concentrations should not agree with those of Fig.4 (well-mixedness

assumed up to z)). In the Fig.17 results, a value of 20 seconds was used for z, in the region

where 6,=.01 m s’. No difference was detected in runs in which values of 100 and 500
seconds were specified.

Simulations were also done to investigate whether particles initially above z; could be
entrained into the mixed layer, and to what extent. For a run in which particles were
initially distributed uniformly between 1.0 and 1.1z, it was found that by X=4.0 nearly all
had been entrained into the mixed-layer, whereas for an initial spread between 1.05 and
1.15z; the majority of particles remained aloft.

s T 2.8 T T

2/7i

Figure 17. Contours of the non-dimensional cross-wind integrated concentrations predicted
by the model using parametrization B (Hibberd and Sawford) for source height (z/z)=
0.49. No top boundary condition is applied (see text).

3.6 Comparison of run times

Total run time and mean timestep values for selected runs are shown in Table 1. For all
runs with Cyp = 2.0, the size of the timestep is determined by A7 = .057, for more than 96%
of the time. Hence the longer run times for lower source heights when particles spend more
time at levels where 7, is smaller. For the Cy = 1.0 runs, the timestep does not quite double
because it is additionally determined in these runs for about 25% of the time by criteria (20)
and (21) of section 2.3. Note that although the inhomogeneous runs with homogeneous
skewness, inhomogeneous skewness and zero skewness (Gaussian) all run with the same
mean timestep (6.9 seconds), the run times vary according to the amount of computations
associated with each scheme. As far as o, is concerned, a Gaussian homogeneous profile
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(not discussed in this Chapter) runs the quickest, followed by skewed homogeneous and
then Gaussian inhomogeneous.

Turbulence Param. Co  z/z;  Mean At (s) Run time (s)
skew inhomog. B 20 049 6.9 4122
skew inhomog. B 20 024 6.4 4500
skew inhomog. B 20 0.067 9 5430
Gaussian inhomog. B 20 049 6.9 3225
skew (inhom.) inhomog. B 2.00 41049 6.9 4441
skew homog. C 20 049 10.0 2216
skew inhomog. B 10 049 11.8 2496
skew homog. 9 1.0 049 18.3 1328
Gaussian homog. G 1.0 0.49 18.2 1115

Table 1.  Mean timestep and run time of various simulations.

3.7 Discussion

Although comparison of the model results with the Willis and Deardorff laboratory data
suggests that the best value for C, (of those tested) is 1.0, there is little support in the
literature for a value below 2.0. In a review of C, values obtained by various investigators,
Rodean (1991) found that only van Dop et al. (1985) suggest a value less than 2.0. Their
value is 1.610.6, although it is thought that this may be in error and it could be closer to 4.0
(Thomson, personal communication). However, if we are to keep Cj at a value of 2.0 but
also maintain that magnitude of 7z, which gives the best dispersion results, then our other
alternatives are to either increase o, in low levels (by V2) or decrease the tke dissipation
rate & (by half). While scatter in the data on which o, and ¢ are based does allow for some
increase and decrease respectively, it is not vitally important in a model which is based
around the prediction of hourly-averaged ground-level concentrations to specify highly
accurate parametrizations of these variables. It is more important that the combination of
ow, ¢ and Cy gives a value of 7, that produces realistic dispersion results. It is therefore
recommended that a value of 1.0 be used for Cy in this model with the inhomogeneous
turbulence parametrization B (Hibberd and Sawford). Although an inhomogeneous profile
of skewness does give slightly better results than a constant skewness value, in view of the
uncertainty of the exact nature of this profile and the fact that it produces a longer running
time, it is recommended that a homogeneous skewness value of 0.6 be used.

It should be noted that the skewed homogeneous parametrization C gives very good results
and a considerably faster running time. Results from runs in which the timestep has been
increased to 0.157, are barely different from the 0.057, results and of course run three
times faster.

While a Gaussian homogeneous turbulence profile does not reproduce near-source:
dispersion well, it is able to maintain a well-mixed profile and could be used further from the
source where its relatively fast computation time (see Table 1) would be an advantage.




4. BOUNDARY-LAYER TURBULENCE PROFILES USED IN NAME

This Chapter presents details of the turbulence parametrizations (velocity variance o
Lagrangian timescale 7 or turbulence dissipation rate &) used in the near-source version of
NAME. These will differ depending on the stability of the atmospheric boundary layer and
for the horizontal and vertical turbulent components. The current version of the Unified
Model (UM) is hydrostatic with a flux-gradient type turbulence closure, so that the direct
route of utilizing diagnosed turbulent kinetic energy is denied. The values must be
determined either from empirical fits to observational data, or parametrized from the
information stored in the UM using, eg. Ri-based formulae. The former option has been
chosen for the NAME parametrization. For the unstable boundary layer, we employ the
turbulence profiles of Hibberd and Sawford (1994) and Hurley and Physick (1993)---see
evaluation in Chapter 3---with a mechanical component or neutral limit from Brost et al
1982. It is convenient to express the formulae in z-coordinates (height above the ground)
rather than the model 7-coordinate system.

4.1 Stable Boundary Layer

At night the atmosphere becomes stably stratified due to radiative cooling from the surface
beneath, and turbulence tends to be suppressed. Typically it takes the form of slow
oscillations of wind direction with intermittent bursts of mechanically driven turbulence,

depending on the wind strength. The formulae for stable conditions are adopted from
Hanna's (1982) review:

g,=0,=20u(l-z/z)
o,=13u(1-2/z)
A o

dz z

and the timescales

4.2 Unstable and Neutral Boundary Layers

Unstable or convective conditions occur where the air is buoyant due to heating from the
surface. The boundary layer is deepened steadily by the action of thermals on the capping
inversion, and reaches a maximum (which may be a km or two) by late afternoon.
Turbulent mixing is due to both buoyant overturning and mechanical turbulence, which
decay in the mixed layer after sunset. At these times of transition between convective and
stable conditions, or when the weather conditions are generally overcast and windy, the heat
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flux to and from the surface is near zero, and the atmosphere is described as neutral. The
profiles used are as follows.

Near - source: Skewed inhomogeneous turbulence
213 ‘;‘
g, 4 z .
-;;"— = [12(2—) (l_— 09 ;—)} (Hibberd and Sawford, 1994)
b i i -
can apply only towards the convective limit; accordingly a mechanical term derived from the
profiles in Brost et al (1982) has been incorporated into the formula using a root sum of "
squares to give
L) -
2 z) z E zy X ‘
o,= 1.2w:(1 -09 —)(—) -+ (1.8 -14 —) u,
Z;/\%; Z; ~
so that =
£k
]
d9.ip Lo wz(i) (0.4—0.91) ~0.7u? )
e o 2z z,
)

These formulae can also, of course, be applied in the neutral limit. A.R Brown (private
communication) has found from LES integrations that although formulae which exclude the
mechanical contribution are inadequate, the inclusion of the full neutral component can give -
results which are a little excessive. A cube root sum of cubes may be preferable---see for ‘
example Moeng and Sullivan (1994). The formulae will be reviewed when further

experience has been gained. Similarly, ™
o, =0, =[04w? +(5 —4z/z,)u.2]% -
but for the surface layer, for 7> 0.996, after Hanna (1982), e
o,=0,=u.(2+05z /|L|)3 |
It will be noted these formulae give a profile for o up to about z/z, = 13. In addition, i

Sk = 06 C, = 10. e ™

The formula for the d:ssxpauon rate of TK.E is a combmatlon of convectlve and neufl_'al :




sy

3]

1
3 ag3 s
&= 1.5—1.2(1) w.  u.(1-08z/z)
Z, g kz

subject to a minimum of 107°, so that

T 2
Tido =20y, J1CsE.

Medium-range: Gaussian homogeneous turbulence

0,=0,= [0.4W.2 +3u.2]%

g [O.4w.2 + 112 ]%

£=06w./z, +12u}/ kz, used to compute 7, as above,

Sk=0.0 Co= 1.0

In unstable conditions, the mode of operation envisaged is that a switch be used to effect a
transition from a skewed inhomogeneous turbulence parametrization close to the source to
Gaussian homogeneous in the middle field to the existing NAME parametrization (Maryon
and Buckland, 1994) of random reassignment in the vertical (assuming a well-mixed layer)
in the far field. In this way an optimum timestep can be used at the various stages of a
simulation while still reproducing the essential features of convective dispersion.

4.3 Boundary Conditions

The specification for the NAME model follows. Two problems arise in the vicinity of the
capping inversion: the vertical gradients do,/Jz due to the particle motion during a
timestep---for the inhomogeneous profiles this is catered for in the model formulation---and
the changes in timeJo,, / Jt due to the rediagnosis of boundary layer depth at intervals,
which can result in a particle ‘crossing’ the inversion. This is not allowed for in the random

walk model. Accordingly a rather complex set of boundary conditions have to be applied,
which is summarised in Table 2.

Vertical

Unstable/neutral boundary layer---inhomogeneous: Above the inversion use a minimum of
0.01m/sec for o, and zero gradients---the inhomogeneous formulae of section 4.2 give
usable values up to about 1.3 times the boundary layer depth. Where the skewed option
applies the variable @ (section 2.1.2) is not standardised, and must be rescaled whenever a
particle crosses the inversion.

Unstahle/meutralhcwndaxy; layeu;—:-ahiqfno neous
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described in section 2.2 will be used initially. There will be no serious degrading of the
integration , as the conditioned particle motion will only be operating for a short space of :
time. The minimum of 0.01m/sec is used above the inversion. Particles crossing the u 1
inversion due to changes in the diagnosed inversion height must be re-initialised. Improved

top boundary conditions will be developed in due course.

Stable boundary layer: Use a minimum of 0.C1m/sec for o,; thus a test will be necessary f
below the inversion. Zero gradient applies above the inversion. ..-;_‘
Changes UNSTABLE STABLE -
in profile £
of Homogeneous Inhomogeneous
Neutral | Gaussian | Skewed | Skewed | Gaussian | Neutral -
foléz=

jump at Z; |jumpat z; | jumpat z; | continuous | continuous | continuous | continuous

reflect reflect reflect no action | no action | no action | no action B
folét=

a=1'lo, a=1i'lao, a=1i a=1 a=1'lo, a=1'lo, a=1'lo, "

initialise | initialise | initialise | rescale | no action | no action | no action
Table 2. Boundary conditions for the different categories of stability and homogeneity. '
Horizontal @

Unstable and neutral boundary layers: use o, =0, = 005m/sec above the inversion
pending further investigation. It is considered safest to re-initialise particles crossing the o
capping inversion. The model does not, at present, handle do,, / z, or even scale u’,v’

in terms of « : these matters will be addressed at a later date.

P
Stable boundary layer: Use a minimum of 0.05m/sec: again a test will be necessary below
the inversion. -
Timescales

s
For lack of information the following values will be used above the boundary layer:
t,=7,=1,=300sec
in order to provide a reasonable timestep. -
Future work will focus on an improved entrainment parametrization and the efficacy of the

CBL formulae combining #, and w, .

4.4 A Note on Computation

The truncation effects in long integrations are surprising. Minute effects due to slight
nts « the code can.lead to‘a prolonged, slew‘ohange‘ parti vel, 1
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is needed in one arrangement to reach the end of an integration period: this alters the
incidence of the random numbers generated for the remainder of the integration, and from
hereon changes increase steadily. For skew runs these changes may be accelerated close to
the surface, where the solution of equation (20) can be very sensitive to precision.

Thus for two 2000 particle runs extending over 8 consecutive periods of 600 secs, featuring
a slight difference in the arrangement of the algebra computing do, /&z, no significant
change occurred before particle number 1410 at the end of period 7. At this point an extra
timestep was needed in one of the runs to reach the 600secs termination. Beyond this point
the differences mounted steadily due to the changed allocation of the random numbers. The
differences in the length of the timestep increased monotonically through period 7, arguing a
systematic feedback.

Truncation effects due to different computational approaches can hence lead to different
realizations , although there may be little justification for assuming that one is more ‘valid’
than another.

ACKNOWLEDGEMENT: Our thanks to D J Thomson , Meteorological Office, for his
advice, and for comments on this paper.

REFERENCES

Adrian, R.J., Ferreira, R.T.D.S. and Boberg, T. (1986) Turbulent thermal convection in"
wide horizontal fluid layers. Experiments in Fluids, 4, 121-141.

Briggs, G.A. (1993a) Final results of the CONDORS convective diffusion experiment.
Boundary-Layer Met., 62, 315-328.

Briggs, G.A. (1993b) Plume dispersion in the convective boundary layer. Part II: analyses
of CONDORS field experiment data. J. Appl. Meteor., 32, 1388-1425.

Brost, R.A., Wyngaard, J.C. and Lenschow, D.H. (1982) Marine stratocumulus layers. Part
II: Turbulence budgets. J. Atmos. Sc. 39, 818-836.

Caughey, S.J. and Palmer, S.G. (1979) Some aspects of turbulence structure through the
depth of the convective boundary layer. Q. JI. R. Met. Soc., 105, 811-827.

Deardorff, J.W. and Willis, G.E. (1985) Further results from a laboratory model of the
convective planetary boundary layer. Boundary-layer Met., 32, 205-236.

de Baas, A F., van Dop, H. and Nieuwstadt, F.T.M. (1986) An application of the Langevin
equation for inhomogeneous conditions to dispersion in a convective boundary layer. Q. JL
R. Met. Soc., 112, 165-180.

Grant, A.L.M. (1992) The structure of turbulence in the near-neutral atmosphenc boundary
layer J. Atmos. Sc. 49, 226-239. ‘ | Gt ol :




34

Hanna, S.R. (1982) Applications in air pollution modeling. In: Atmospheric Turbulence
and Air Pollution Modeling. Ed.F.T.M. Nieuwstadt and H. van Dop, D Reidel Publishing
Company, Dordrecht, Holland.

Hibberd, M.F. and Sawford, B.L. (1994) A saline laboratory model of the planetary
convective boundary layer. Boundary-Layer Met., 69, 229-250.

Hudson, B. and Thomson, D.J. (1994) Dispersion in convective and neutral boundary
layers using a random walk model. Met O (APR) Turbulence and Diffusion Note No. 210.

Hurley, P.J. and Physick, W.L.(1993) A skewed homogeneous Lagrangian particle model
for convective conditions. Atmospheric Environment, 27A, No. 4, 619-624.

Kumar, R. and Adrian, RJ. (1986) Higher order moments in the entrainment zone of
turbulent penetrative thermal convection. Trans, ASME,J Heat Transfer, 108, 323-329.

Lamb, R.G. (1978) Numerical simulation of dispersion from an elevated point source in the
convective boundary layer. Atmospheric Environment, 12, 1297-1304.

Lemone, M.A,, (1990) Some observations of vertical velocity skewness in the convective
planetary boundary layer. J. Atmos. Sci., 47, 1163-1169.

Luhar, AK. and Britter, RE (1989) A random walk model for dispersion in
inhomogeneous turbulence in a convective boundary layer. Atmospheric Environment, 23,
1911-1924.

Maryon, R.A. and Buckland, A.T. (1994) Diffusion in a Lagrangian multiple particle
model: a sensitivity study. A#mos. Environ., 28, 2019-2038.

Moeng, C-H. and Sullivan, P.P. (1994) A comparison of shear- and buoyancy-driven
planetary boundary layer flows. J. Afmos. Sc. 51, 999-1022.

Nieuwstadt, F.T.M., Mason, P.J., Moeng, C.H., and Schumann, U. (1992) Large-eddy
simulation of the convective boundary layer: A Comparison of Four Computer Codes
Turbulent Shear Flows, 8, Springer, pp 343-367.

Physick, W.L. and Hurley, P.J. (1995) A fast Lagrangian particle model for use with three-
dimensional mesoscale models. 20th International Technical Meeting on Air Pollution
Modelling and its Application, X, Ed. E. Gryning and M. Millan, Plenum Press, New York.

Rodean, H.C. (1991) The universal constant for the Lagrangian structure function. Phys.
Fluids A, 3, 1479-1480.

Sawford, B.L. and Guest, FM. (1987) Lagrangian stochastic analysis of flux gradient
relationships in the convective boundary layer. .J Afmos Sci, 44, 1152-1165.

Thomson, D.J. (1984) Random walk modelling of diffusion in inhomogeneous turbulence.
- 0. JIL R.. Met. Soc., 110, 1107-1120.



Sl

ety
ST

SR e i gt TR e e ooy

S RN . PSP

iy

=l

sl

35

Thomson, D.J. (1987) Criteria for the selection of stochastic models of particle trajectories
in turbulent flows. J. Fluid Mech., 180, 529-556.

Thomson, D.J. and Montgomery, M.R. (1994) Reflection boundary conditions for random

walk models of dispersion in non-Gaussian turbulence. Atmospheric Environment, 28,
1981-1987.

van Dop, H., Nieuwstadt, F.T.M. and Hunt, J.C.R. (1985) Random walk models for

particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids, 28, 1639-
1653.

Willis, G.E. and Deardorff, JW. (1974) A laboratory model of the unstable planetary
boundary layer. J Atmos Sci., 31, 1297-1307.

Willis, G.E. and Deardorff, J.W. (1976) A laboratory model of diffusion into the convective
planetary boundary layer. Q. JI R.Met. Soc., 102, 427-445.

Willis, G.E. and Deardorff, JJW. (1978) A laboratory study of dispersion from an elevated

source within a modeled convective planetary boundary layer. Atmospheric Environment,
12, 1305-1311.

Willis, G.E. and Deardorff, JW. (1981) A laboratory study of dispersion from a source in
the middle of the convective mixed layer. Afmospheric Environment, 15, 109-117.

Wilson, J.D., Legg, B.J. and Thomson, D.J. (1983) Calculation of particle trajectories in
the presence of a gradient in turbulent-velocity variance. Boundary-Layer Met., 27, 163-
169.

Wyngaard, J.C. (1988) Structure of the PBL. In: Air Pollution Modeling, Ed, A
Venkatram and J C Wyngaard, American Meteorological Society, Boston, USA, 390pp.

Young, G.S. (1988) Turbulence structure of the convective boundary layer. Part I:
Variability of normalized turbulence statistics. J. Atmos. Sci., 45, 719-726.




