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Bayesian quality control using multivariate normal distributions

N Bruce Ingleby and Andrew C Lorenc
Abstract

An expression for the probability density of any distribution of observed
values (given background values of known accuracy) 1is derived from the
properties of multivariate normal distributions. This is used in the quality
control of observations - ’good’ and ’'bad’ observations are assumed to have
errors from a normal distribution or a distribution giving no wuseful
information respectively.

Three methods of quality control are presented and compared; two of these
are based on the probability density derived above, and the third is based on
a related maximum probability analysis. They differ in the optimality
principal used: Individual Quality Control finds the most likely quality (i.e.
good or bad) for each observation, given information from all the others,
Simultaneous Quality Control finds the most likely combination of qualities,
while Variational Quality Control is based on a Variational Analysis which
finds the most 1likely true values. The multi-observation framework used
includes the ’background’ check as a special case, and it is extended to deal
with observations with common sources of gross error. Applications to
multilevel checks, bias checks and éhecks for known error patterns are
sketched.

As a by-product the standard statistical interpolation formulae are
derived from the properties of normal distributions thus demonstrating the

implicit dependence of statistical interpolation on the normal distribution.

1 Introduction

Objective analysis schemes are used to provide initial conditions for
numerical weather prediction. Current operational methods are sensitive to
large errors in observations and so a preliminary quality control (qc) step is
included to remove ’'bad’ observations. For instance Lorenc (1981) adapted the
full statistical interpolation (OI) method to check the data being used, and

Lorenc and Hammon (1988) used Bayesian methods to perform objective quality



control (these methods are used operationally at ECMWF and the Meteorological
Office respectively). Alternatively it is possible to design analysis systems
that are insensitive to ’bad’ observations, and so to combine the quality
control and analysis functions (eg Dharssi et al, 1992). This paper arose
from an attempt to understand the relationship between the different methods,
and to provide the theoretical framework essential to enable informed
decisions about the implementation of practical approximations to optimal
objective1 quality control methods.

We present a probabilistic framework for checking observations using
information from nearby observations (’buddies’) and from a background field
(eg from a forecast). Checks using the background alone are included as a
special case. The framework is quite general and applies to an arbitrary mix
of observation types. The theory can be used directly, or used to guide the
development of approximate methods - some of which are presented. The main
assumption made 1is that we know the error distributions of good and bad
observations, and of the background. Furthermore, to make the problem
manageable, we assume that the background and good observations have normally
distributed errors.

Lorenc and Hammon (1988) presented a method for quality control of
observations based on Bayesian probability theory and assumptions about the
distribution of observations both with gross errors, and without (=bad/good
observations respectively). They explored the single observation case, and
gave an extension to two observations, and by an approximate iterative method
to n observations. In this paper the equations for the multiple observation
case are derived from first principles (Section 2) - first for the case where
there are no bad observations, then including gross errors with properties as
assumed by Lorenc and Hammon (1988). In section 3 the theory is expanded to
include gross errors affecting several observed values, and a brief comparison
with previous work is made. The application to special tests and correction
of observations is also sketched. Simple examples and a discussion of the

different methods are given in section 4, and we summarise in section 5.

1By "objective’ we imply more than the automatic application of ad hoc rules,

rather that the rules themselves have some theoretical foundation.



23 Theory

Notation

y, X, u etc (lower case bold) are column vectors, with elements Y-
0, B, = etc (upper case bold) are matrices.

Superscript T (eg yT, KT) denotes matrix transpose.

P(A) is the probability of event A and P(y) the probability that the
vector takes a value in a volume dy surrounding y. P(y) = p(y)dy where p is
the probability density function (pdf). (For convenience y is being used to
represent two different things: a vector, and the event that the vector takes

a value in dy).

AnB denotes A and B’. P(A|B)=P(AnB)/P(B) is the conditional probability
of A, given B. P(AnB) can be written in two ways to give Bayes’ Theorem:
P(AnB) = P(A|B)P(B) = P(B|A)P(A) > P(A|B) = P(B|A)P(A)/P(B)

2.1 Some properties of multivariate normal distributions

A vector y, of length n, is normally distributed if it has a probability

density function

ply) = {(2m)"|2]}°° expl[-0.5(y-uw) =™ (y-)] (1)
where Z is an nxn symmetric positive definite matrix with determinant |Z|, and
p is a vector of length n. y is said to be distributed as N(u,Z), for the pdf

we use the notation p(y) = n(y|u,Z). p(y) is normalised so that

[ P ay =1 (2)
y has mean p and covariance matrix £, i.e.

I y ply) dy = p (3)
and

[ G- o-w" py) oy = 2 (4)

Any linear combination of the ¥ is also normally distributed. For any
mxn matrix W of rank m = n then z = Wy has pdf
p(z) = n(z| Wy, wsu") (5)

Consider y split into two vectors Y, and Y. of length k and n-k




respectively and p and £ partitioned in the same way

y K z p>
y=[1]’“___[1],2= i o
Ya H Z21 Z22
211 and 222 are the covariance matrices of i and Y3 of order k and n-k

respectively. 212=Z;1 has dimensions kx(n-k) and is the covariance of y1 with

Y,

The marginal pdf of . e is defined as

p(ya) = I p(y) oy = J p(yinyz) dy, (7)

The conditional probability density of Yo given the value of Y. is

p(y1|y2) = p(ylnyz)/p(yz) = p(y)/p(yz) (8)

and so the density of y is given by the product of (7) and (8)

ply) = ply |y,)p(y,) (9)

For the multivariate normal distribution the marginal pdf is particularly
simple, being multivariate normal with mean and covariance given by just

picking the relevant elements of p and Z.

p(yz) = n(y2|y2, 222) (10)

The conditional distribution p(yllyz) is also multivariate normal

R i A (11)

-1
p(y1|y2) i n(yll RTINS S UTD FIER e 0 M

12 22 1

-1 p s
The mean u1+212222(y2 uz) is known as the regression function of y1 on y,.
The convolution of two multivariate normal distributions of the same

order (see example in next section) is

In(y1|y, z:11)n(ylyz’ Zzz)dy = n(y1|y2, 211+222) e

We shall also quote the result that the quadratic form (y—u)E_l(y—u) has

a xz distribution with n degrees of freedon.

These properties of multivariate normal distributions, except (12), can
be found in Chatfield and Collins (1980) (chapter 6) or the extensive
description by Anderson (1984) (section 2.3 for results (1) to (4), section
2.4 for (S5) and (10), section 2.5 for (11) and section 3.3 for the quadratic



form). A proof of (12) is given in Tarantola (1987) problem 1.20. Some of

these properties are given in the Appendices of Thiébaux and Pedder (1987),
and their Appendix III ’The statistical basis of statistical objective
analysis’ relates to some of the analysis equations in this paper.

When applied to meteorological analysis systems ’'multivariate’ usually
means a simultaneous analysis of mass and wind variables. In this paper
'multivariate’ simply means many variables in the statistical sense, and the
vector y can contain pressure, wind, temperature or humidity variables or some
mixture of them. The observations y, can come from one observing platform or

from many.
2.2 Analysis using multivariate normal distributions

We start with background and observed values assumed to have multivariate
normal probability density functions. For simplicity the interpolation to
observation points is ignored, i.e. the background is taken to be available at
observation locations. All probabilities will be taken to be conditional on

knowing the background values (which we always have available).

P(y) p(y)dy = {(2m)"[B[}™*° exp[-0.5(y-y )'B " (y-y )ldy (13)

P(y_|y) = ply_|y)dy_ = {(2m)"[0]}*° exp[-0.5(y-y )07 (y-y )ldy_ (14)

B and O are the background and observation error covariance matrices. vy, r

and Y. are the vectors of true, background and observed values respectively
(ya will denote analysed values). n is the number of observations.

The joint probability of y and ¥ (denoted p(ynyo)) is
plyny ) = ply_[y)p(y)
= {(211)"]B+0|}'°'5 exp[-0.5(y -y ) (B+0)  (y -y )]
o’ -%b o b
{(2m)" (B7+07)™'[}™*° expl-0.5(y-y ) (B7+07") (y-y )]
— -1 Py
where Lyt B(0+B) (yo yb) (15)

The probability of . occurring is

]

Ip(ynyo)dy

{(2m)"[B+0|} "% exp[-0.5(y -y )" (B+0) ' (y -y )] (16)

p(yo)

(15) and (16) (the product and convolution of two multivariate normal

distributions) follow from the properties of normal distributions eg Tarantola



(1987) problem 1.20 (ym can be evaluated from his A™'b). The normalisation

coefficients can be derived directly B@B+0™Mo = 0+B = |o| |B|] =

|0+B||(B_1+0-1)_1|) or simply deduced from the normalisation condition.
Thus the probability density of the observations is a multivariate normal
function of the differences from the background values. This result will be

used extensively in the following sections.2

From (15) and (16) we obtain the distribution of y given .

plyly) = plyny )/p(y )

plyly) = {(2m)"| (87407 [}™*° exp[-0.5(y-y )" (B7+07") (y-y,)] (17)

The posterior distribution of y is the conditional probability density
given by (17) (cf equation 1.37 of Tarantola, 1987). It has a multivariate
' = B - B(B+0)'B.

These equations can be generalised to account for interpolation of the

normal distribution with mean y and covariance (B"'+0™)

background to observation locations (see Appendix A). In both cases p(ylyo)
has a multivariate normal distribution with mean and covariances given by the
statistical interpolation equations.

The analysis at observation points, Yo has to be deduced from p(ylyoL
The maximum probability analysis is ; 20 which maximises p(ylyo) (the mode of
the distribution). The mean analysis is y = yp(y|y°)dy. y is also the
minimum variance analysis, i.e. yl=; minimises (yl-y)T(yl-y)p(nyo)dy. For
normal distributions Youi and y are identical, and equal to yi:

Figure 1 provides a simple one dimensional 1illustration of these
equations for particular values of yo. The dashed line represents the
background pdf p(y|yb), the dotted line the observation pdf p(y°|y), and the
solid line is p(y;ny) - the product of the other two. The area under the

Collocated observations:

If some of the observations measure the same quantity then the covariance
matrix B is singular, and (13) would have to be replaced by a lower
dimensional normal distribution. However this can be treated as the limit
when the off-diagonal correlations tend to 1, and all the other equations
remain valid. In particular in (16) B+0 is non-singular so the individual and
simultaneous quality control methods (section 2.4) are not affected. In the

variational analysis method (section 2.5) equation (13) has to be modified.



solid curve is the probability density of the observed value, which gets
smaller the further the observation is from the background (compare a and b).
If the solid curve is normalised so that its area is 1 then it is p(y|yo), the

posterior distribution of y. The shape of p(y|yo) is independent of Y.
2.3 Gross errors in observations

We follow Lorenc and Hammon (1988) in assuming that an observation is
either good, in which case its error is from a normal distribution, or it has
a gross error, in which case all plausible values are equally likely. We also

assume that observational errors are independent. Thus we replace (14) with
n

ply. |y) = 1. ply

= yy)

oil i

1
n
=1E1 {p(yoilyinGI)P(Gi) i p(yoilylnGi)P(Gl)}

i

{[Jt= -

. {p(yoi|y1nGl)P(Gl) + kiP(Gi)} (18)

i is an index over the observations, Gi is the event that observation i
contains a gross error and Gi is its converse. p(y°1|yinGi), the pdf for
observations with gross errors, is taken to be constant. Strictly speaking we
take p(yoilyinGi) = ki within an interval of width l/ki and zero outside. The
interval should cover all non-negligible values of p(yi) as we will
approximate Ip(yi)p(y°i|yinGi)dy1 by ka(yi)dyfki in (23}

The total probability density of ¥ is

ply.) = Jp(ynyo)dy = Jp(y)p(yoly)dy

= [p),1, bty 1,06, PG + kP(G)) dy (19)

If we multiply out the product there is a term for all subsets of
{GV""Gn} i.e. 2" terms. We introduce a (binary) notation for all these

combinations of good and bad data:

C =GnG ...GNG
0 n n-1 2 _1
6 =GnG ...GNG
1 n n-1 _2 1
C =GnG ...GNnG
2 n n-1 21
CoiosGaG. .G B (20)

For each Ca’ a is written in binary and the bits numbered from 1 to n starting
from the right. Bit i = 0 (1) corresponds to Gx (61)' C0 denotes that all

observations have gross errors, C2"1 that no observations have gross errors.



Thus (19) can be rewritten as
n

2 -1
p(yo) = jp(y)ago p(yo|ynCa)P(Ca) dy (21)
2"-1
or p(yo) = ago p(y°|Ca)P(Ca) (22)

Let us treat a term corresponding to a particular combination Ca where
the first k observations (yol) do not have gross errors, but the remaining n-k
(yoz) do. If the gross error mechanisms in each datum are independent (as we
implicitly assumed in (18)), then P(Ca) is the product over i of P(Gi) or
P(Gi) as appropriate.

p(yolca)P(Ca) = Ip(y)p(y°|ynca)P(Ca) dy

k n
= Ip(y)ig ply, |v,06)P@G) T kP(@G) dy (23)

The components of ¥, only appear within p(y). Then

1

n k
Py |COP(C) = T kP(G) Lgl ply_ |y,nG IP(G) Up(y)dyz]dyl (24)

From (10) the marginal probability of Yy is just the multivariate normal
distribution with correlation matrix B11

l }—0.5

k ]
J.p(y)dy2 = {(2n) |B11 exp[~0:5ly -y VB (y -y JI

If the p(yoilyinai) are each normal then we can write

k

=ies K 05
igl p(y°1|y1nGi) = {(2n) |011|}

Ticq
expl=0.56y.~y )00 (y ~y I

= p(yollyl) (26)

Substituting (25) and (26) in (24) we have
n

p(yolca)P(Ca) 3 P(Ca) jEL+1 ijp(yl)p(y°1|y1)dy1

n
o K -0.5 1 i T -1 v
= P(Ca)jgk+1 kj {(2m) ]B11+011|} expl O.S(yb1 yol) (B11+011) (yb1 yol)]

where P(C ) = 151 P(G,) jirm P(G)) (27)
as in (16). Some notes on the computation of (27) are given in Appendix B.
The assumption that O is diagonal - used in writing (18) - is not necessary
for equations (27) to (30). Any combination Ca can be reordered into the form

used above; in general y1 is formed by selecting those observations assumed



useful, and B11 and 011 are formed from the corresponding elements of B and O.

The probability of combination Ca is
P(Calyo)=p(yo|Ca)P(Ca)/p(yo) (28)

which we can calculate from (27) and (22).
We can also calculate the probability of gross error in individual

observations P(Gllyo) using
P(Gilyo) = p(y°|Gi)P(Gi)/p(y°)
= p(yo_l)kiP(Gi)/p(yo) (29)

where Y5 is the vector of observations excluding i. Multiplying out as in
(219
n n
2 -1 2 -1
PG |y) = 2 7 (a)ply |CIP(C) / = ply|CIP(C)
where 71(a)=1 if GieCa, 0 otherwise (30)

There are 2"' non-zero terms in the numerator, these are identical to the
terms in the denominator which contain Gi. The terms are given by (27).

The derivation given here makes it clear that P(Ca|yo) and P(G1|y°) are
derived from integration over all possible states. Their use is discussed in

the next section.

The observation values in vector y,6 are being compared with each other to
determine how likely each is to contain a gross error - a ’buddy check’. 7
could be a radiosonde temperature ascent - in which case the buddies are other
values in the same ascent (with correlated observation errors - non-diagonal
0). If we take ¥ to be a single observation then (30) reduces to the

’background check’ of Lorenc and Hammon (1988).

Lorenc and Hammon (1988), considering two observations, calculated
p(yolalnﬁz) using statistical interpolation theory, this can be shown to give
a bivariate normal distribution - a special case of (16). Their calculation
of P(Gllyo) is thus equivalent to (28) for the two observation case. Their
extension to more observations involves repeated application of this pairwise

check giving an approximation to P(Gi|y°). See appendix C for details.



2.4 Individual and Simultaneous Quality Control

Individual quality control (IQC)

One way of quality controlling the observations is to calculate P(Gl|y°)

for each observation using (30), and to choose Ca such that it contains:
2 e
G, if P(Gi|y°) 0.5
G, if P(G1|y°) = 0.5

This will be referred to as individual quality control (IQC) in the subsequent
discussion, because although all observations are being considered the
calculation (30) has to be repeated for each observation. This is essentially
the method of Lorenc and Hammon (1988), although as mentioned above they

calculated an approximation to P(Gl|yo).

In IQC decisions about the quality of each datum are taken one by one,
after the data have been compared with the background and each other. This
could conceivably, in a borderline case, lead to a set of contradictory

observations being accepted (see examples in section 4).
Simultaneous quality control (SQC)

The combined quality control and analysis problem consists of finding the
best analysis given a multidimensional probability distribution which may well
be multimodal, particularly if quality control is important. If gross
observational errors following the simple model of this paper are the only
source of nonlinearity, then the analysis probability distribution function
will be a linear combination of multidimensional normal distributions. One
reasonable strategy for choosing the best analysis is to choose the normal
distribution with the largest integrated probability, and to set the analysis
to its mean.

This strategy will be referred to as simultaneous quality control (SQC).
It is equivalent to choosing the combination of accept/reject decisions for
each datum that is most likely to be correct, and using it in a linear
statistical interpolation analysis. SQC provides a finalAquality control
decision, rather than a probability of gross error, and the denominator p(yo)

in (28) need not be evaluated. All that is required is to find the Ca with

10



the maximum p(yolca)P(Ca), where p(y°|Ca) is a multivariate normal

distribution (27).

The states Ca correspond to vertices of a hypercube. There is no simple
way to guarantee finding the maximum p(yolCa)P(Ca) without searching them all.
One approximate method is to move from vertex to adjacent vertex - 1i.e.
changing the decision on one observation at a time so that p(yo]Ca)P(Ca)
increases each time. This will converge to a 1local maximum, but not
necessarily the global maximum. This method is similar to the simplex
algorithm in linear programming, however in linear programming there is only
one maximum, to which the simplex algorithm is guaranteed to converge. To
increase the probability of finding the global maximum several randomly
selected starting conditions could be used. Fischler and Bolles (1981) take
this sort of approach starting from just a few observations each time and
seeking to add consistent observations. However in the meteorological context
most observations have small P(Gi) (<0.1) and it seems to be a better strategy
to start with all or most observations and seek to remove inconsistent ones.

This is similar to the ECMWF buddy check method of Lorenc (1981): ’all
data ... are compared with an interpolated value obtained not using the datum
being checked or any flagged data. If the absolute value of this deviation is
more than four times the estimated interpolation error then the datum is
considered to have failed. If more than one fail, then the worst is flagged
and the rest of the failures are rechecked not using it.’ In this paper the
accept/reject criterion is expressed in probabilistic terms, its relationship
to the deviation from an interpolated (analysed) value excluding the datum
being checked is clarified in Appendix D.

Using this kind of algorithm only a small subset of the total 2" terms
will be evaluated, and so the approximate SQC will be significantly cheaper
than the full SQC or IQC.

2.5 Maximum probability analysis (VAN and VQC)

Yet another alternative is to combine the quality control and analysis
steps, and to determine a maximum probability analysis directly (suggested by
Purser, 1984). The basic equation is

Ply|y ) = ply_|y)p(y)/p(y ) « ply_|y)p(y) (31)

111



Nonlinear optimization methods which attempt to search the phase space
are computationally prohibitively expensive for application to the large
volumes of meteorological data. Variational methods, wusing descent
algorithms, are not guaranteed to find the best solution in nonlinear cases
although in some instances they do. Dharssi et al (1992) described such an
iterative non-linear analysis scheme for finding y which maximises (31) when
ply) is given by (13) and p(y°|y) by~ {18).. The weight given to each
observation is multiplied by a term we denote here by 1-Py(Gi). Py(Gi) can be
thought of as the probability of Gi given that the current iteration’s
estimate of y is correct; thus the weight given to observations with a high

probability of gross error is nearly zero. Py(Gi) is given by
P (G) = kP(G)/Ak P(G ) + P(G ) (o> 21) " ®exp|-(0 -y )/ 20° (32)
b A § i i i i i oi i i oi
After the iteration has converged to Sk Py(Gi) is given by (32) with

yi=(ymax)i'

probability of gross error, taking into account all possible true values and

This is not identical to P(Gl]yo). The latter is the expected

their probabilities. Py(Gi) is the probability of gross error for one (the

most likely) true value.

Dharssi et al (1992) also showed that it is possible, and computationally
cheaper, to use the variational analysis scheme to quality control subsets of
the observations using (32) and then use a conventional linear analysis. The
distinction between using the variational analysis directly, and using it to
quality control the observations used in a linear analysis (these will be
referred to as VAN and VQC respectively) is illustrated in the examples

(section 4).

The maximum probability analysis has to cope with the presence of multiple
minima in the cost function: for large problems a full search of the state
space is out of the question. The technique used by Dharssi et al (1992) was
to set the observation errors to very large values initially and then
gradually reduce them during the iterations to the ’true’ values. This worked
well on the simulated data studies of Dharssi et al (1992), but it may be that
the data density was sufficient so that there were no really difficult

decisions.

12



3 Generalisations and Applications

Section 2 presents the basic theory for the case when observations have
independent errors - either normal or gross. Section 3.1 considers the
extension of IQC and SQC to the case where there are several causes of gross
error some of which may affect several observed values; this is compared to
alternative approaches based on the quadratic form in section 3.2. Similar
extensions to the maximum probability analysis are considered briefly in
section 3.3.

Tests on linear functions of the observation increments, tests for errors
with characteristic patterns, the possibility of using the theory to correct
observations and a current Bayesian quality control system are mentioned in

sections 3.4 to 3.7.
3.1 Several sources of gross error - Bayesian approach

" 3 S 2 5
What if a subset of observations y (coming from the same instrument or
o
subject to the same processing) has a common source of error GS in addition to
the independent sources of gross error, Gi, in each observation i? Assuming

that the events Gi and Gs are independent we replace (18) by

n
ply_|y) = P(G) T {p(y_ |y nGnGIP(G ) + kP(G )}

g5 = -
- P(Gs)p(yoly nGs) igs {p(yol|yinGl)P(Gi) + kiP(Gl)} (33)

The second product is over the observations not in yz. Terms not affected by
any error are normal as before. We have assumed that p(y:|ySnGs) is
independent of the G‘, it will depend upon the type of error, for the present
we assume
S .S
Pl¥Gy) =

S kl (34)

If the individual or simultaneous quality control methods are being
applied (Sections 2.3 and 2.4) then if (34) holds the extension to an

arbitrary number of causes of gross error each affecting different subsets of

the observed data is straightforward. We redefine Ca as having the same

"good’ and ’bad’ observations as before, but where the gross errors can come

from any cause. The prior probability P(Ca) can be estimated and used in
k n

(27), but it is no longer equal to M P(G) T P(G).
i=1 i1° j=k+1 J

13




Position errors

As an example consider that GS is the event that an observation has been
reported with the wrong position, as can happen for ship-borne observing
systems. Let 1 denote the correct position and 2 the reported position, we
assume that these have the same climate, but that they are sufficiently
separated to be independent. The calculated observation increment has

covariance
1 2 1 R o 2 2 2T 1 2 1 25T 1 1 1 1T
- - = B - > - - > <(y - - >
sbyiy )y yidi = <y A yb) Gy by ) (y =y e o < (Y yo)(y ¥l
=B +2C+0 (35)

where <.> denotes an ensemble average and the observation errors and the
background errors are assumed to be uncorrelated with each other and with the

1—yz)T> = 2C where C is the covariance matrix of the

true values y. <(y1-y2)(y
distribution (climate) from which y1 and y2 were taken. 2C will usually be

much larger than B and 0. If y is normally distributed then
S, .S S S, _S
ply_|[ynG) =nl(y | y,, B+ 2C + 0) (36)

If we consider a surface report from a ship then y consists of pressure,
temperature and wind. The temperature and pressure will have some correlation
through the hydrostatic equation, but under the geostrophic assumption the
wind is uncorrelated with the both of them, and thus C is almost diagonal.

However if a radiosonde profile from a ship is assigned the wrong
position (as occasionally happens) then the yz—y: differences will vary
reasonably smoothly in the vertical, because there is substantial correlation
in C between adjacent levels. Unfortunately a significant error in
development in the background forecast will have much the same signature. If
one level contains an individual gross error in addition then the generally
large, but smooth differences will contain a spike (an example where
ply |G.nG,) # p(y |G.nG)).

Equation (36) is specific to a particular type of error, a malfunction of
one of the radiosonde sensors would have a different signature. Equation (34)
implies a more catch-all test for any differences from the assumed normal
distribution. It can be considered an approximation to the diagonal elements
of C (and is the form used by Lorenc and Hammon (1988)). It assumes that the

different elements of yz—yi are independent of each other.

14




3.2 The quadratic form

This section considers the special case where a set of observations has a
single cause of gross error which corrupts all the observations. An
approximate example is a satellite sounding in which an error in one radiance
channel or the cloud clearing algorithm can corrupt the retrieved temperatures
at almost all levels. In this context Barwell and Young (1991) calculate the

quadratic form
2is CSENT 2 B
r = (yb yo) (B+0) (yb yo) (37)

which is a measure of the distance between yb and yo.

If r exceeds a critical value then the whole sounding is rejected. Their
derivation is based on the multivariate normal distribution, and -r?/2 is the
exponent in (16). Lif (yb-yo) is unbiased and normally distributed with
covariance matrix B+0 then r2 is distributed according to the xz distribution
with n degrees of freedom (because of the normalisation by (B+0)—1 r2 can be
rewritten as the sum of squares of n independent random variables each
distributed as N(0,1)). Note that even if B is almost singular the addition
of O makes it nonsingular.

Using the Bayesian approach of the last section (and setting P(G1)=O, for
all i) we only need consider Co (all observations corrupted) and Cg&, (no

observations corrupted).
ply_|C)P(C)) = P(G)p(y_|G)) (38)
p(yolczn-1)P(Cz"-1) =
P(G,) {(2m)"|B+0[}™*° exp[-0.5(y -y ) (B+0) ™" (y -y )] (39)
B o {» DAL

In practice this is very similar to the test used by Barwell and Young in
that both reject large values of (ys-yo)T(B+0)-1(yb—y°), the difference lies

in the calculation of the rejection limit.

The r2 statistic has also been proposed as a preliminary step in
multi-observation tests by Purnell (1990). It would be used to test the
hypothesis that the observations come from a multivariate normal distribution,
and only if the hypothesis was rejected would further tests be carried out.
The choice of significance level used is somewhat arbitrary, and the method
cannot take into account variations in the prior probability of gross error in

different observations. The test statistic is related to P(Czn-l)’ the
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probability that no observations are corrupted. As with any method which does

not involve calculation of P(Ca) for all a« this test could give incorrect
results: large r2 could still correspond to C£L1 (although unlikely) having
larger probability than any other combination and the test could also fail to
detect some cases where C n_, is not the most 1likely combination. The

Bayesian approach presented here has similarities but is more general.

3.3 Maximum probability analysis with several sources of gross error

We have looked briefly at the case where the observations have correlated
normal errors (14), and at the case where the observations are independent but
contain gross errors (18). The maximum probability analysis would in theory
extend to observations with both gross errors and correlated normal errors.
However the evaluation of the gradient of the observation penalty function
would have to be split into separate cases. For a correlated set S of m
observations terms for all 2" subsets of S would have to be calculated.
Bearing in mind that this is an iterative analysis method with these terms
being evaluated each iteration this would be quite expensive. One compromise
would be to have a preliminary quality control step to deal with multi-level
data (the main source of correlated observation errors) before a variational

analysis/VQC to detect errors in single-level data.

If the observations have dependent gross errors but uncorrelated normal
errors then there is less extra work involved. In the case given by (33)
there is one extra term in the penalty function (corresponding to P(GS)L
More generally for each subset of observations with a common source of error
then there is one extra term in the penalty function provided that the subsets

do not overlap.

3.4 Linear functions and bias checks

In testing for bias in a set of measurements, say a radiosonde
temperature profile, the obvious test statistic to use is the mean of the

observation minus background values.

d= Wy -y,) (40)
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where W is a 1xn weights matrix with elements wi. The weights wi should be

chosen on a physical basis, for radiosonde temperatures which are wusually
reported at irregular intervals it may be appropriate to weight by the time
interval that each measurement represents. If : o 4 is normally distributed
as in (16) then d is normally distributed with variance W(B+0)WT By - (5)w = A
standard significance test can be used, or if prior information on the
distribution of radiosonde temperature biases is available then a Bayesian
test can be performed. In practice it would be necessary to omit elements of
v that appear to contain gross errors before calculating and testing d.

In a similar way any linear function of yo—yb could be tested, including
the tropospheric stability index developed by Kelly et al (1991) for checking

satellite soundings.
3.5 Non-uniform distribution of gross errors (special tests)

Some observations are known to have particular preferred errors eg
a) satellite cloud track winds tend to have too low wind speeds in jet
regions
b) some aircraft report a wind speed of zero instead of missing data
c) low level profiler winds are close to zero if corrupted by ’ground
clutter’.

To take account of these situations the pdf for gross errors p(yoj|anGj)
(usually = kj) can be increased to take account of the increased frequency of
errors. In theory we have to replace kJP(Gj) in (23) with p(yojly{{%)P(Gj]
and recalculate the convolution with p(y). But if p(yojlyjnGj) is independent

of y (as we can usually assume) then it merely replaces kj i (27)
3.6 Correcting observations

Other possible events such as ’the observation has a +10 mb error’,
denoted by E+10 can be added to the basic formalism. A single term from (18)

would then become
p(yolynG)(1—P(G)-P(E+10)) + p(yolynE+10)P(E+1o) + kP(G) (41)

where p(yolynE+1o) is the same normal distribution as p(yolyné) but shifted by
10. P(E+u3) has to be estimated from prior knowledge, P(Eh1olyo) can then be
calculated, and if larger than the alternative probabilities the observation

can be corrected with some confidence. Of course other events such as Elo
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E+20 and E-zo can be considered at the same time.

It should be stressed that any corrections should be based on a careful
study of observation characteristics such as that by Collins and Gandin
(1990). Errors in a single digit, such as 10 mb errors are associated with
manual coding or transmission in character format, and it would not be
appropriate to use such tests on data from an automatic weather station.
Digit (or sign) tests need to be based on the quantities reported eg wind
speed in knots or m/s rather than wind components.

There is also possible application to the dealiasing of scatterometer
winds. Scatterometer aliases could be put in as separate observations al and

a2 with P(G nG ) = 0.
al a2
3.7 Implementation at the Meteorological Office

Methods based on the Bayesian quality control theory of Lorenc and Hammon
(1988) have been used for operational quality control of surface marine
observations since March 1988. In June 1991 the Bayesian quality control was
extended to all observation types (Ingleby and Parrett, 1991). The buddy
check is the pairwise method of Lorenc and Hammon (recast in symmetric form),
modified by an ad hoc ’damping’ method (see Appendix C). Only surface,
aircraft, radiosonde and satellite cloud track wind observations are buddy
checked, and only against other observations in the same category. A check
for corruption of the whole observation (typically position error) is applied
to single level data following section S5(b) of Lorenc and Hammon. Preliminary
work has been done to extend this to multi-level data using the theory of
section 3.1 of this paper.

VQC has been tested on aircraft data (approximately 10000 observations)
with encouraging results. The implementation used a descent algorithm to find
a maximum of the pdf; it was therefore an approximation to the ideal, as it
was not guaranteed to find the global maximum. The operational Meteorological
Office and ECMWF schemes can be regarded as approximations to IQC and SQC
respectively. Because of the millions of data per day used in numerical
weather prediction, it is not practical to implement any of the schemes in its
theoretically ideal form. This paper clarifies the relationship between the
different methods and the approximations made. In the development of
operational quality control systems further work on simple test cases to

elucidate the properties of the different methods will be a necessary
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supplement to large scale realistic tests.

4. Discussion and Examples

4.1 Summary of different methods

From section 2 we have three possible quality control methods which can

be summarised as follows:

IQC. Individual quality control. All observations are compared with each
other, but the decisions are taken independently. All 2" combinations of
possible gross errors should be considered. (In practice a sequential

approximation can be used.)
For each observation P(Gx|y°) is evaluated using (30) and (27).

If P(Gi|y°) is over 0.5 the observation is rejected.

SQC. Simultaneous quality control. Choose the most likely from 2" subsets of
observations. (In practice only the most likely combinations of gross errors
are examined.)

For each subset p(yOICa)P(Ca) is evaluated using (27).

vQcC. Compare with a variational (maximum probability) analysis which
incorporates the possibility of gross errors in observations.
The analysis is given by the maximum of (31) and Py(Gi) by (32}

If Py(Gl) is over 0.5 the observation is rejected.
Notes

1) IQC, SQC and VQC are all derived from the same background and observation
pdfs (eg (13) and (18)), they differ in the optimality principle being used.

2) IQC and SQC are calculating probabilities integrated over all possible

analysis states, they can be thought of as multidimensional background checks.

3) The optimality principles do not depend on the probability distributions,
but normal distributions have many special properties which reduce the

computational expense, particularly for the integrations in IQC and SQC.
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4) The most fundamental problem is that we are trying to reduce a complicated,

often multimodal, pdf into a single vector - the ’analysis’.

5) For normal distributions the analysis based method VQC uses the separate
covariance matrices B and 0, whereas the integrated methods IQC and SQC only

use B+0.

6) None of the methods require a preliminary (background) check considering
observations individually, although it might be useful, particular in SQC to

guide the search for the most likely combination of observations.

7) IQC and VQC provide (different measures of ) probabilities of gross error in
individual observations whereas SQC just gives a pass/fail marking for each

observation.

4.2 Examples

Much of the time one of the normal distributions has much larger
probability than any of the others, and IQC, SQC and VQC will tend to make the
same decisions. It is only in rather borderline cases that they disagree.
For illustration we use cases involving two or three collocated observations,
so that the pdfs are one dimensional and can be displayed as line graphs. The
cases were chosen for disagreement between IQC and SQC and are given in figure
2 and table 1.

The dotted curves in figure 2 are the pdfs for each individual
combination. They are each normal and are displaced towards zero relative to
the observations as they also include background information (as for the solid
lines in figure 1). The background error pdf, corresponding to all
observations having gross errors, is centred on zero. The total pdf (the sum
of all the individual contributions) is shown as a solid line. VAN picks the
highest point of the total pdf (the mode) and VQC uses this to check the
observations. SQC chooses the individual distribution with the largest area;
its mean does not necessarily correspond with the mode, since it is based on
the integral of the pdf whereas the height of the peak is a local quantity.
The mean analysis can fall in the trough in pdf between the background and the
observations, eg in figure 2a it is -3.2, making it an unsatisfactory choice
for most purposes.

Table 1 gives the posterior probabilities of gross error and resulting

analyses given by the different methods, for comparison the background check
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(only using observation i in the calculation) and the mean analysis are
included. For the background check (BKC) the probability of gross error (PGE)
is P(Gllyoi), fior  IQC P(Gi|yo) is given, for VQC P(Gi|y=ymax). The
observation is taken to have passed the quality control for values less than
QLS5 For SQC a pass/fail indicator is given. For these quality control
methods the resulting linear analysis is given in the analysis column, for VAN
(MAN) the maximum (mean) probability analysis obtained directly is given.
Case a) will be examined in some detail to explain the calculations.
p(yo[Ca)P(Ca) for different combinations of gross errors is given in table 2,
along with the marginal sums. SQC chooses the largest individual value, which
is 3.11E-6 for alnéz. IQC calculates P(G1|y°) as the partial sum for G1 over
the total sum = 4.40/7.53 = 0.58. Similarly P(G2|yo) = 2.98/7.53 = 0.40.
These are the values in the IQC line of table 1la.

A more graphical representation of IQC is given in figure 3. The solid
line is p(y|yo) (= the total pdf from figure 2a normalised so that its area is
1), the dashed lines are P(Gl]y) the probability of gross error in observation
i given that y is the ’truth’ (equation (32)). VQC simply reads off the
values of P(Gily) corresponding to s g IQC calculates the integral of the

product of P(Gi|y) and p(y|yo) over the whole range of values of y.

The difference between performing a maximum probability analysis directly
and using it to quality control observations for a linear analysis (VAN and
VQC) can be illustrated using the examples. VAN chooses Y. at the maximum
of the solid line, whereas VQC chooses the peak of the individual pdf which is

(in some sense) closest to y The cases here suggest that the differences

ax'
between the resulting analyses are minimal. Any choice between VAN and VQC

would be largely on ease of practical implementation.

In these simple examples all the terms are being evaluated, and a
complete line search is made (with a grid interval of 0.1). In general search
algorithms would be used, these are not guaranteed to find the global maximum.
The total pdf can be multimodal (figure 2) causing difficulties for VQC. In
table 2 the two largest values of p(yolca)P(Ca) are not adjacent, illustrating
that a simplex-like algorithm for SQC could get stuck in a secondary maximum

when two observations should either be accepted or rejected together.
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1QC
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VAN
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d) s A (
BKC
1QC
SQC
vQc
VAN
MAN
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G2 G2
G1 2.96 1.44 4.40
G1 0.02 311 3,13
2.98 4.55 7.53

Table 2. pl(y Ica)P(Ca) (x10°) of different combinations of gross errors for
o

case a).
4.3 Choice of methods

To take a subjective view of the examples in table 1. 1In a) and b) the
observations seem fairly consistent, so in a) SQC and VQC are better than IQC,
in b) VQC is better than IQC which is better than SQC. c¢) and d) are both
(somewhat contrived) symmetrical situations: IQC gives the same probability to
both observations - a marginal fail in c), a marginal pass in d) - whereas SQC
and VQC consider the two observations inconsistent so have to pick one of them
(or not return an answer). This illustrates that the three methods are

providing different types of consistency or optimality.

IQC can be characterised as ’even handed’, giving ’compromise’ solutions.
SQC and particularly VQC are more ’decisive’. IQC and SQC tend to favour
broad distributions whereas VQC chooses higher (often narrower) distributions.
As the distributions get narrower the more observations are involved this
suggests that VQC tends to ’'draw to’ the observations more than the other
methods. The simple examples given here support this view, and would tend to
favour VQC. However the dilemma becomes more acute for observations which are
usually much more accurate than the background, but subject to gross errors.
For example in figure 4 should we choose the very narrow peak and accept the
observation (VQC) or the broader peak which has larger area and reject the
observation (the ’safer’ option followed by IQC and SQC). Correlated
observation errors are dealt with more naturally by the IQC and SQC methods
than by VQC. The question of which method is ’best’ is discussed further in

the next section.

With several different multi-observation checks available the options
include using one method, using two or three methods and combining the results
somehow, or using a cheap method (the pairwise check?) in an initial scan and

then referring difficult cases to a better (less approximate) check. It seems
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likely that any of these methods would be applied to subsets of observations

at a time - implicitly assuming that quality control and analysis will

continue to be treated as two separate processes, for the time being at least.

An important practical aspect is that our knowledge of the observation
and background error distributions is imperfect. The decisions made depend on
these distributions, and ideally we would like a method that is relatively
insensitive to the parameters that we are least sure of. Figures 5 and 6 both
show the total distribution from figure 2a (solid line) and the effect of
perturbations to the case. In figure 5 the observation at -8 is moved to -8.5
(dotted line) and then to -9 (dashed line), the size of the hump corresponding
to both observations being correct decreases very rapidly, and in both cases
both observations are rejected by all three gqc methods.

In figure 6 the background error variance is modified: to 1.61 = 1.272
(dotted 1line), to 2.89 =1.7° (dashed line), the average of these two
distributions is also used (dash-dotted line) this has the same variance 2.25
= 1.5° as used in the solid line. When the background error distribution is
narrowed (dotted line) the observations are rejected, whereas the observations
easily pass the gqc when the wide or composite pdfs are used. At any
particular point the estimate of background error standard deviation could

easily be in error by 0.2 mb, so this sensitivity is uncomfortable.
4.4 Wrong decisions

Any quality control system is subject to errors of two types: Type 1 is
rejecting ’good’ observations and Type 2 is accepting ’bad’ observations.
What levels of Type 1 and 2 errors are acceptable? The answer depends on at
least two factors: how bad a particular ’'bad’ observation is, and how
sensitive to initial conditions the atmospheric/model flow is in the region
under consideration. The decisions are most important in areas sensitive to
initial conditions, unfortunately model errors will on average be larger in
these areas making the decisions more difficult.

Is it more important to avoid one type of error than the other? This
question is not usually addressed explicitly, the implicit assumption seems to
be that both types of error should be given about the same weight. If
avoiding ’bad’ observations was more important then we would tighten the

tolerances allowed and accept the rejection of more ’'good’ data. With IQC or




maximum probability analysis QC it would be possible to adjust the
accept/reject threshold (usually 0.5) for P(Gi|yo) or P(Gl|vl) to give
different weights to Type 1 and Type 2 errors. Modifying SQC would be more
difficult.

If we specify a cost function for analysis errors we can, at least in
theory, take account of the two factors mentioned above. Let us denote the
cost function by f(ya,y), in the linear case it is a function of ya—y.
Usually f will increase as the difference between 4% and y increases (this
measures the ’'badness’ of the analysis, rather than the observations). If we
wish to take account of variations in perturbation sensitivity then a
non-linear cost function has to be used.

If we know p(ylyo) and f(ya,y) then the ’optimum’ analysis is given by
the minimum of their convolution i.e. the ¥ that minimises Ip(y[yo)f(ya,y)dy.
Very narrow cost functions have a delta function as a limit - i.e. ’anything
other than a perfect analysis is useless’. This will give the maximum
probability methods VQC and VAN. At the other extreme as f becomes very wide
the optimum analysis will tend towards the mean of p(y|y°), this is E
ya(Ca)P(CaIYO) where ya(Ca) is the linear analysis using combination Ca and
P(Ca|y°) is given by (28). This is related to SQC and IQC, but is not the
linear analysis from either of them. In practice the cost function lies
somewhere between these extremes.

The cost function and hence the ’best’ quality control/analysis does
depend on the use of the analysis; eg an analysis designed specifically to
monitor frost/no-frost at a location has a step function cost. Hence the
"best’ method of quality control for numerical weather prediction is still an

open question.
4.5 Robustness

Gutowski and Hoffman (1985) suggested that it is desirable for the
analysis ya to be a continuous function of (insensitive to small changes in)
the observations yo. This is related to robust estimation in the statistical
literature. Robustness implies using all observations in the analysis, but to
take account of ’bad’ observations some sort of quality factor is included in
the weightings. The robustness of quantities used in this paper are as
follows.

a) the PGEs from IQC are a continuous function of Y.




b) the PGEs from VQC are a piecewise continuous function of Yy containing

jumps from one maximum to another
c) any rejection method (IQC, SQC or VQC) will introduce discontinuities
d) VAN is a piecewise continuous analysis

e) the mean analysis Jy p(y|yo) dy is fully continuous

If required the PGEs from VQC, equation (32), could be used to
reconstruct VAN (a robust analysis) just by dividing the observation error
variances by Py(él) (Dharssi et al, 1992, equations 15-17).

We have found that the robust quantities such as the PGEs from IQC, while
continuous, have fairly flat regions with quite sharp gradients in between -
reducing the distinction between robust and non-robust methods. This sharp
transition is related to the assumption that observation and background errors
are normally distributed - longer tailed distributions give smoother

transitions/more robustness (see example in Tarantola (1987) problem 1.9).
4.6 Use of Bayesian methods

The Bayesian approach explicitly depends on prior estimates of the
observation distributions for all possible distributions (for ’good’
observations and gross errors). In the meteorological context there is ample
opportunity to build up such estimates (or models) from months or years of
previous observations. If we have reasonable models of the distribution of
gross errors then the Bayesian approach is much more powerful than the
significance testing approaches (section 3.2). The significance tests do not
use any information about the distribution of gross errors - they just test
for a certain degree of consistency with the normal distribution. A
statistical viewpoint is provided by Barnett and Lewis (1978), however they

are mainly considering single sets of data without reliable prior information.
4.7 Normal distributions, linear analyses and statistical interpolation

If the observation and background errors are normally distributed then
the posterior distribution of the truth is also normally distributed with mean
(and mode) given by the statistical interpolation analysis, the covariance
matrix is also given by the statistical interpolation equations (see (17) and

also Appendix A). This 1is because least-squares/minimum variance/linear
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regression methods (including statistical interpolation) are implicitly based
on the normal distribution. If the errors are not normal then these methods
are sub-optimal (eg Tarantola (1987) section 1.7.2 and problem 1.11, also
chapter 4 for least-squares methods in general).

The analysis equation p(ylyo) = p(ynyo)/p(y) = p(ynyo)/fp(ynyo)dy (see
(16) and (17)) is quite general requiring only that p(ynyo) can be normalised.
If the errors are normal then the location of the distribution (and hence the
analysis) turns out to be a linear function of yb and yo. However for
non-normal errors the analysis derived from p(y|yo) will be non-linear in
general.

If the background errors are not normally distributed then the integration
over all analysis states may not be possible analytically, and the versions of
IQC and SQC as presented here are not applicable. However if the background
errors were represented by the sum of two normal distributions then P(Gi|y°)
can be calculated but the denominator of (29) would then contain 3" terms.
Alternatively - e could be transformed so that it was more nearly normally
distributed, however this would distort any physical relationships (such as
geostrophy or non-divergence) in the covariances. The maximum probability
analysis formulation depends only on the distribution being differentiable,
although the convergence would be affected by non-normal background errors

(the cost function becomes less quadratic).
S% Summary

The Bayesian probability methods of observation quality control
introduced by Lorenc and Hammon (1988) have been generalised. From the error
distributions of observations and background (including non-normal observation
errors) the posterior probability density function of the ’true state’ can be
found which encapsulates our knowledge. This can be used to determine which
observations probably have ’gross’ errors and/or the ’optimal’ analysis.
Several different optimality criteria are possible, we examine three in
particular. They can be related to the Meteorological Office’s operational
Bayesian quality control scheme, the statistical interpolation gc scheme used
at ECMWF and a non-linear variational scheme. They are illustrated with

simple examples in section 4.
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Much of the time the three methods perform similarly, mainly differing on

the difficult cases where they show different levels of ’decisiveness’ or
’compromise’. Which is best depends on the cost function of analysis errors.
All the methods depend on our knowledge of the observation and background
error distributions. It is important to improve this knowledge, and also to

consider the sensitivity of gc methods to the various parameters.
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General analysis equation

Appendix A.

Here we extend the theory given in section 2.2 to the general case where
to obtain an estimate of the observed quantities from a forecast requires a
generalised interpolation K (see Lorenc, 1986). K may be non-linear, it will

be linearised about the forecast state.

This appendix uses the same notation as the main paper with the following

additions and modifications:

X true state of the atmosphere projected onto model representation
x prior estimate of x (e.g. from forecast) referred to as the background
observations

observations that would be given by error-free instruments

K(x) forward operator for calculating y from x

K tangent linear operator of K, such that K (x+8x) =K (x) +K8x+0(8x°) .

We assume that

p(x) = n(x|xb,B) (A1)

ply |y) = nly |y,0) (A2)
o o

ply|x) = n(y|K(x),F) (A3)

(cf Lorenc (1986) equations 14-16). Equation (A3) describes the error of K.
If K(x)=Kx then ¥ and B as used in the main paper correspond to Kxb and KBKT
here. We take the convolution of (A2) and (A3)

n(y |K(x),0+F) (A4)

assuming that p(yolynx)=p(y°|y) i.e. that knowledge of x does not add to our
information about 8 if we already know y. The convolution of (A4) and (A1)
is
ply ) = J'p(xnyo)dx = Jp(y°|x)p(x)dx
= n(y_|K(x_),0+F+KBK') (A5)

This is the probability density of the observations given the background




information (cf (16)). This result holds for linear K, and for nonlinear K
providing it can be linearised over the range where the integrands are

non-negligible.

We can write the joint distribution of x and y, as

p(xnyo) = n(z|zb,C),
X % B BK'
where z = ;B and C = ¥, (A6)
y K(xb) KB 0+F+KBK
o

The covariance matrix C is given by (A1) and (AS), and the ensemble average

<(x-xb)(y°-K(xb))T> - <(x—xb)(y°—K(x))T> + <(x—xb)(K(x)—K(xb))T> = BK', since

<(x—xb)(y -K(x))"> 0 by the assumed independence of observation and
o
background errors. Using standard results for conditional distributions

(equations (9) to (11))

p(xny ) = n(y |K(x ), 0+F+KBK") n(x|x ,A) (A7)
o o b a
where xa and A are defined by

A =B - BK (KBK +0+F) 'KB (A8)

X
a

x_ + BK' (KBK'+0+F) ' (y-K(x )) (A9)
If K(x)=Kx, then equivalent definitions for X and A are:

| Al o=t & oF) (A10)

A'x =B7'x +K"(0+F) 'y (A11)
a b [
The conditional probability
p(x|y ) = p(xny )/p(y ) = n(x|x_,A) (A12)
o o o a

is the posterior probability density, i.e. the probability that the truth lies
in a volume dx around x, given the background X and the observations y,: The
mean and its variance (A9) and (A8) agree with the maximum likelihood/minimum
variance estimates derived in Lorenc (1986) (his equations 28 and 29).

In statistical terms p(yo) is the marginal density at the point ¥ and
p(x|y°) is the conditional density of x given the value of ¥
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Appendix B. Computational methods

The evaluation of (16) or (27) involves the calculation of |B+0| and
(yb—yo)T(B+0)-1(yb—y°). Because B+0 is a covariance matrix it is symmetric
and positive definite and it can be expressed as B+0 = UTU, where U is upper
triangular - the Cholesky decomposition. The determinant |B+0| - |U|2, and
]U| is just the product of the diagonal elements of U since it is triangular.
Rather than calculate (B+0)_1 it is cheaper and more accurate to calculate x =
(B+0)_1(yb—yo) as the solution of the linear equations (B+0)x = (yb—yo) using
the Cholesky decomposition (eg the Cholesky decomposition can be performed by
NAG routine FO1BXF, and the solution of the linear equations by routine
FO4AZF.)

When calculating probabilities for several subsets of observations some
savings can be made by noting that the Cholesky decomposition of B+0 for
observations 1 to m (in that order), contains within it the Cholesky

decompositions for observations 1 to m-1, 1 to m-2 etc.

The special case where all off diagonal elements of B+0 are equal
corresponds to collocated observations, each with equal error variance. It is
useful for test purposes as special forms of (B+0)-1 and |B+0| are available:

The inverse can be calculated directly, i.e. if

1:p P «a BB
B0 = o¢"| p 1 p then (B+0)™ = ¢™®"| B o B
PP } S BoBsocss i
where a = 1+ (n-2)p = and B = 2 3
i +:{n=2)p "~ (n-1)p Vi dn=2)p -~ (n-1)p

To calculate the determinant we use the Cholesky decomposition (see eg

Tarantola (1987) for details), in this case

“ d1 w1 e 5 i-1 o i-1 &
U=0¢| 0 d2auz...u2 | wheredi“=1- T u" and ui = [p - £ uk" |/di
k=1 k=1

010 d3 i a8

-1

If we set de = k§1 ukz then we can rewrite this as di2 =71 = S11

andis =5 rmfes Hip-s

2 2
i 7 )°/d1” with S = 0.

1

n
The determinant of B+0 is o>" I di®.
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Appendix C. Pairwise buddy check of Lorenc and Hammon

To evaluate the joint probability of two observations y01 and Yo when

neither of them have gross errors Lorenc and Hammon (1988) used
p(y°|G1nG2) = p(yoiny°2|G1nG2)
7 p(yollyoznGInGZ) p(y02|G2) (Cl)

where

= = 2ig
ply |y G nG) = nly |y, .0, +o ) (c2)

ol
and y : is the statistical interpolation estimate at position 1 using the
a
background and observation 2. ojl and ail are the error variances of vy and
y i respectively. The resulting expression for p(yolélnaz) was reduced to a
o

symmetric form by B R Barwell (personal communication). It can be written as

T 1 =1 x2 2px1x2 xz
L e huil e e W (c2
o ol P 1 1252 2
X Vo =y o po o
where 1= ok and O+B = s 122
% Yoz Vb2 it o %

C3 is a bivariate normal distribution with correlation p (a special case of

(16)). Note that p is the total correlation between Yoy and o not

bl b2’
the background error correlation. The agreement with the different derivation
in section 2 is gratifying, it is a special case of the general relationship
demonstrated in Appendix D, equations D1-D3.

We now evaluate the factor p(yolGlnGz)/p(yoi|G1)p(y02|G2), which is

central to the pairwise buddy check.

p(yo|G1nG2) i pb(yolclnGZ)
= = 2,-0.5 2579 2,-0.5 2l g
p(y°1|G1) p(y°2|G2) (Znol) exp( x1/20~1)dx1 (2n02) exp(-x2/202)dx2
2 2 2 2
2n01¢2 ] X, 2px1x2 x2 X, X,
i 2.0,5 P R [ T g MY e
Zno-lo‘z(l-p ) 2(1-p%) o) oo, o, 20‘1 20'2

33




2 2 2

1l = =D X, 2 2x1x2 . X,
S A g T 7 ca
(1—p2)° : 2(1—p2) o“:‘ PEGL ey (C4)

This factor is also an objective measure of the ’agreement’ of two
observations, taking values > 1 if they are consistent with each other, < 1 if

the two observations disagree.

For two observations and i=1 (30) becomes
PGy ) = [p(yo|Co)P(Co) + p(y°|C2)P(C2)]/
[p(yo|C0)P(Co) + p(y°|C1)P(C1) e p(yo|C2)P(C2) + p(yo|C3)P(C3)]
(C5)
where C =G nG. , C=G.nG. , C.=G.nG_ , C.=G.nG_ and P(C_ )=P(G.)P(G.) etc
0.1 50 I U TR e i pea 0 1 2

Following Lorenc and Hammon (1988) (equations 36, 38 and Appendix B) (C5) can

be rewitten as

P(Gily:)e= P(GI|y01){p(yol)p(yol)/p(yo)} (Cé)
ply )/ply Jply ) =
1 - P(G1|yol)P(Gzlyoz){l—p(yo|G1nG2)/[p(y°1|G1)p(y02|G2)]} (C7)
These equations are exact for the two observation case. Lorenc and

Hammon extend them to more observations by sequential checking, in pairs, at
each step multiplying the current estimate of the probability of gross error
in each observation by the reciprocal of (C7). This involves an approximation
and it has been found that, particularly in data dense areas, this buddy check
becomes over-active - tending to reject some good observations close to
background values (and preferentially passing observations further from the
background if there are several that agree). To alleviate this behaviour an

ad hoc ’damping’ has been introduced. Two alternatives have been tried:

1) raise p(yo|G1nG2)/p(y°1|G1)p(y°2|G2) (C4) to a power n, less than 1
2) raise p(yo)/p(yol)p(yol) (C7) to a power n, less than 1

Method 2 damps ’agreement’ less and ’disagreement’ more than method 1 and it
has been adopted as standard with n2=0.5. It would be better to make 7 a
decreasing function of observation density. However with this modification
the pairwise buddy check works quite well, and it is not clear how much
improvement can be gained without going to the more sophisticated

multi-observation checks described in the main paper.




Appendix D. Adding and removing observations - conditional probabilities

In IQC or SQC (27) would be computed for many slightly different
combinations of gross errors/observations accepted. It is desirable to find a
method of adding or removing observations, so that the most expensive part,
the matrix inverse, does not need to be recalculated from scratch.

It is convenient to consider the normal distribution p(y|u) = n(y|p,2)
and to partition it as in (6) (after any necessary re-ordering). We are
mainly considering cases where y1 contains only one or two observations, and
Y,
(adding observations). Using (9), (10) and (11)

is a much longer vector. We will first calculate p(y|p) from p(yzhi)

ply|n) = ply, |y, nu)p(y,|w) (D1)

where the conditional density

= = B % -1
p(y1|y2np) = n(yll u1+212222(y2 “2)’ 211 212222221) (D2)

and the marginal density

p(y2|u) % n(yzluz,zz) = p(yzluz) (D3)

If we have already computed p(y2|u2) then we have Z;; (or a Cholesky
decomposition of 222) available and (D2) can be computed fairly cheaply. The
required density (D1) is just the product of (D2) and (D3).

We now consider calculating p(yzluz) from p(y|u) (removing
observations). Let
-1 S11S12 S11S12 211212
T =8S-= s s so that ST = s 5 =1 (D4)
2122 31722} | “erida
in particular
8. 2 EBa¥ =70
11712 12722
e S |
» e T (B3}

We have already calculated and used S in the computation of p(y|u) so we
obtain 2%22;; from (D5), substitute it twice in (D2) and calculate p(y2|u2) as
p(y|u)/p(y&|y2nu). As before the matrix inversions/determinant calculations
have the same order as ¥

The calculation of the analysis (using e only) and its variance given
by substituting (D5) in (D2) is the same as that in Lorenc (1981) section 3c,
but in a rather different guise.
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PRODUCT OF OBSERVED AND BACKGROUND PDF
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Figure 1a. p(yo|y) (dotted, o =1 mb), p(y) (dashed, ¢ =1.5 mb) and their
product p(yny ) (solid) for one observation -1 mb from background.
o

p(yo) is area under solid curve, solid curve normalised gives p(y|y°).
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Figure 1b. As figure 1la except that observation is -3 mb from
background.

The figures and tables were produced using the SAS package.



BUDDY CHECK: COLLOCATED OBS: -8.0, —-6.0
POECBIKY = PN (10 12°572198)
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Figure 2a. Dotted curves give p(yr\yo|Ca) for all combinations of gross
error Ca' Solid curve is sum of all dotted curves = p(yr\yo). Observation
increments are -8 and -6. Input pdfs and posterior PGEs as for table 1la.

BUDDY CHECK: COLLOCATED OBS: -9.0, —-9.0, —-6.0
PDF_BK = N(0,2.25)

VAN
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Figure 2b. As figure 2a except for case b, observation increments of -9,
-9 and -6 (compare with table 1b).



BUDDY CHECK: COLLOCATED OBS: -4.0, 4.0
PDF_BK = N(0,2.25)

DIFFERENCE FROM BACKGROUND: PRESSURE
Figure 2c.

and 4 (compare with table 1c).

BUDDY CHECK: COLLOCATED OBS: -3.0, 3.0
PDF_BK = N(0,2.25)

As figure 2a except for case c, observation increments of -4
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Figure 2d.
and 3 (compare with table 1d).

10

T

L

15

As figure 2a except for case d, observation increments of -3



BUDDY CHECK: COLLOCATED OBS: -8.0, —6.0
PDF_BK = N(0,2.25)

DIFFERENCE FROM BACKGROUND: PRESSURE

Figure 3. p(ylyo) (solid-normalised version of solid curve in figure 2a)

and P(Gily) for observations at -8 mb (dotted) and -6 mb (dashed).

QUALITY CONTROL OF SINGLE OBSERVATION
PDF_BK = N(0,2.25) PDF_0B = N(0,0.09)

S -10

10 15
DIFFERENCE FROM BACKGROUND: PRESSURE
Figure 4. Posterior pdf for a single observation of high accuracy (¢ =0.3
o

mb, crb=1.5 mb, k=0.043 mb-l. P(G)=0.04) with an increment of -5 mb.



BUDDY CHECK: COLLOCATED OBS: -8.0, —6.0

10 15
DIFFERENCE FROM BACKGROUND: PRESSURE

Figure 5. Solid line corresponds to the posterior pdf in figure 2a, with
observations at -8 and -6. The dotted 1line is similar except for
observations at -8.5 and -6, dashed line has observations at =9:and -6/

BUDDY CHECK: COLLOCATED OBS: -8.0, —6.0

DIFFERENCE FROM BACKGROUND: PRESSURE ]
Figure 6. Solid line corresponds to the posterior pdf in figure 2a, with
observations at -8 and -6 and 0‘b=1.5 mb. The dotted and dashed lines are
similar except that o*b=1.27 and 1.7 mb respectively. Dash-dotted line
uses background pdf 0.5(N(0,1.27°)+N(0,1.7%)) which has o=1.5.
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