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1. INTRODUCTION

This note describes a finite difference formulation which appears to
be the most appropriate for the unified forecast/climate model. It seeks to
combine the advantages of the present operational scheme in accuracy and
efficiency with the conservation properties required for long-term climate
integrations. Though the scheme is based on the results of an extended
period of research, the effect of changing the integration scheme in a high
resolution forecast is very small, and conclusive experiments are rare. The
scheme set out represents a modification of the present operational split-
explicit scheme on the Arakawa 'B' grid, Bell and Dickinson (1987).
Satisfactory results were not obtained with this scheme on a 'C' grid,
because of stability problems. Insufficient work has been done in the
Office on semi-implicit or spectral methods to justify a change to using
them, and results produced by other centres which use such methods do not
appear to be better than those of the present operational models when the
resolution is similar. Efficient time integration schemes have not yet been
applied successfully to a full forecast model on an unstaggered grid,
though such grids are more convenient for programming, and for ensuring
conservation.

The proposed scheme is to use the Heun time-step for advection, rather
than the Lax-Wendroff. This avoids the complexity of time staggering, and
is slightly more stable in practice. The scheme is set out in hybrid
vertical coordinates, as used at ECMWF, since there is a clear requirement
for the numerical models to extend further into the stratosphere. Mass-
weighted linear quantities are conserved, and the mass-weighted second

moments of advected quantities are also conserved under non-divergent

advection.
2. THE FORECAST EQUATIONS
Define a vertical coordinate n = h(p,ps’, where h(0,p,)=0 and
h(ps, ps)=1.
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The vertical boundary conditions are:
n=0atn=01. 6>
Integrating (5) in the vertical from n=0 to 1 gives:
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The hydrostatic relation is given by:
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3. THE INTEGRATION SCHEME

The variables are held on the Arakawa 'B' grid as in the present
operational model. The variables u, v, 8, q and ® are held at levels Nics
where k is the vertical grid-length index, while the vertical velocity ﬁ is
held at the intermediate levels n,..,. The upper and lower boundaries n=0, 1
are considered as intermediate levels. The pressure 1s defined at
intermediate levels by

Ptz = Bt Bl-*"xp" Cio



where AL e and B are specified constants. Swinbank (private
communication) has proposed a method of choosing these constants for a 20

level model. Thus
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A split explicit integration scheme 1is used, similar to that in the
operational model. The solution procedure is split into two parts, called
the 'adjustment' and 'advection' steps. The adjustment timestep is written
as &t, the advection timestep as At. In the former, the pressure,
temperature, and wind fields are updated using the pressure gradient and
Coriolis terms, and the vertical advection of potential temperature. Only
the final updated values of surface pressure and horizontal wind are used
in the next step. The average horizontal wind from this step is used to
define the horizontal advection in the advection step, and, via the
continuity equation, the vertical advection. This procedure is needed to
ensure conservation. All advection increments are then calculated in the
advection step, together with the horizontal diffusion and divergence

damping.
3.1 The adjustment step

This uses a 'forward-backward' scheme in which a forward step is used
for the p, and 6 equations, and the new values of these variables are then
used in the u and v equations. The 'forward' part of the integration scheme
is: -
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The 'backward' part of the integration scheme is given by
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As in the operational scheme, equations (17) and (18) can be arranged to
allow explicit integration. The hydrostatic equation is approximated by

kst
Qh.' = Q«k 2 zm-—1 C;:-evm (nrn+lﬂ.’.— Tevpe> o+
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The special form of the last term is chosen to ensure angular momentﬁm
conservation.

In order to ensure that 8 and q are conserved under advection, it is
necessary that all advection is done by a three-dimensional velocity field
which satisfies the continuity equation. The average ;ields of wu,Ap,, and
VuBPe over the adjustment steps must be saved for use in the advection
step. The value 6f @ at the end of the adjustment steps is not used, so
that the wvalue at the beginning of the adjustment must be saved. This
allows the vertical advection to be repeated in a conservative manner. The
error made by not doing this is of the order of the time truncation rather

than the space truncation, and therefore may be negligible



3.2 The advection step

The Lax-Wendroff scheme used in the operational model is replaced by
the Heun scheme, which avoids the complexity of time staggering. Though the
Heun scheme has growing eigensolutions of order (1+0(At4)), experiments
show that it is more stable than the Lax-Wendroff. The scheme has two
steps. The advecting velocity for both 1s the average value saved from the
adjustment steps. Mass-weighted increments to 6 and q have to be predicted

to ensure conservation.

Define
W, V> = CuBpe? v.aprPcos @, @
as saved from the adjustment steps. Define
D) .= Eilia
on k%

where E.., 1is calculated using the finite difference formulae ¢15) and
(16). The second order finite difference equations for the first advection

step are then:
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It 1s also possible to use fourth order approximations to the

horizontal derivatives. In the operational scheme, this is done by only

-6 -



modifying the second advection step. In the Heun scheme, it is necessary to
use the same finite difference approximation in both steps, or else there

is an OCAt2) instability. The fourth order scheme for 0 is
N Cet Ak i ? 3¢

9 ) A A
1 (C14c)U. 5,0, — cU.,5,68. + (1+cIV,8,0, - cV,58,6. }, (26)
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instead of the {} bracket in (22), and that for q is similar. The scheme

for u is:
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with a similar expression for v. The value c=1/6 gives fourth order
accuracy, but will increase the amplification rate of the growing solution
from (1+4p*) to (1+%v*) where p is the Courant number and v=1.48u. This
will reduce the maximum timestep that can safely be used. A fixed value
must be used for ¢ to allow conservation, but for forecasting use the
choice c=1/6(1-p), where p is the Courant number, should avoid the need to
reduce the timestep.
The second advection step can be written:
n+l n+l n+l n n #

BAp.. O, = Ap. B - %At (U V6. + U.V6.), (28>
with similar equations for q, u and v. This overall scheme 1s not
conservative with respect to time differencing, though this may be a small
effect. An alternative is set out in section 4. 4.

-~

3.3 Diffusion and divergence damping

Experiments have indicated that the grid splitting problem which
requires special treatment in the operational model is not significant when
the Heun advection scheme is used. However, experience with the operational
fine-mesh model and with higher resolution limited area models suggests
that divergence damping will be needed in forecast as well as assimilation
mode for gridlengths below 100 km. The vertical diffusion will also need to

be reassessed, this is not covered in this note.

ity s




The operational form of diffusion 1is not conservative, but 1is
effective in other respects, The most similar conservative scheme for

diffusing a variable X can be written:

DX = 1 5, 1 VEX]8:.X) + 1 8,(V2X|cosp 8,.X), 29
a2cos?g a2cos ¢
where
vy = 1 S, X + 1 5,.(cos ¢ 8,X). 30>
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The divergence at level k is defined by equation (16). Values D, are
calculated by substituting <(U.,V,) as defined in equation <(21) into

equation (16). Increments

(0] LSS
K 5,.D ,  and Ko5.D
a cos ¢ a

are added to equations (24) and (25) respectively in the second advection

step.
4. CONSERVATION PROPERTIES
4.1 Angular momentum conservation
The requirement is that the pressure gradient term can only change the
angular momentum through the surface torque. This means that we must be

able to write the approximation to the pressure gradient term in the model
which is

TOP
St 09,,8p,. + C. (0d1),.Ap,.} |, (31
D1 N 5
in the form
TOP
D m19.,08p,) — 0,0Ds. (32)
OA O\

The first term in (32) integrates to zero and the second integrates to the
surface torque. This requirement determines how the second term in (31) has
to be calculated at level m, as in Simmons and Strufing ¢1981). Cancelling

terms gives the requirement
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We now substitute for ® in the right hand side of (33) to establish the

required form of approximation to the left hand side. Write (20) as

k-1
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Then the right hand side of (33) becomes
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where we have used the convention that
r=1

> g0,
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The second sum is now just d/dA(p,.w’>. Equation (35> can therefore be

written as:
TOP
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Using the definition of n in terms of p, (41) reduces to

Cofonl D(A(RP).LDT.
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The expression (42) is then approximated by spatial finite differences and
used to approximate the term on the left hand side of (33) in the equation
of motion. The above argument can be carried through in finite differences,

provided that the approximation used is

SHE
C8...[58, (Anp).)], (43)
(x+1) Ap..

as used in equations (17) and (18).

4.2 Conservation of first moments

The requirement is that the global mass-weighted mean of all advected
quantities 1is conserved. The proof is written out only for meridional
advection of 6 and u, since this covers all the possible staggerings of
variables that occur in the other cases. The continuity equation reduces

to:

TOP k
Evan = -Qp) VIR s e R e s i (44)
Qpy 2kt
where
ok
Boree o 3oy (45)
a cos ¢

A simple forward update of 6 by meridional advection, and advection by the

vertical motion associated with the meridional motion, is given by

Bl |
+ + + N R,
Ap.8, = Ap.6, - At[__ 1 V8,6, +
a cos ¢
B{E. .1a (8, .1-6,) + E._1a(0,-6,._,)}] . = (46)
The update of p. can be written
+ TOP
Pu % Pu~ - AF & Folin (47>
a cos o

because of the definition of V, as the average over the adjustment steps.

Then use (12) to give
+ +

Op. = AA, + OB, p..
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Equation (11) can be used to rewrite (44) as
+

Ewsin = B = 8B, (ps - px)/At - D,.. (48)

Multiplying (48) by 6, and adding to (46) gives
+ 4+ +

(A, + AB.p.) (0, - 6,.) + 6, (py - ps)AB, =

SV
A N
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a cos ¢
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+ + AP
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a cos @
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which gives the desired conservation integral when multiplied by cos ¢ and
integrated over g¢.

The integral is conserved if the time derivatives are analytic, or if
a simple forward step is used. With the scheme used in section 3 there is
some loss of conservation due to time truncation, an alternative method

which avoids this is descriubed in section 4-4,

The wupdate of u by meridional advection and advection by the

associated part of the vertical motion is given by

P
+ + + ) O
Ap,u,, = Ap.u,. - Atl 1 Vi 0t B<E s Cu o, = u.) +
a cos @
A
| Sl AT QU e RSN 1 9 = €51 )
9
Multiplying (48) by u. and adding gives
_\p e Ty e
+ 4 __h\o 9 LR
Api. u. — Ap. u. = —Atl 1 Viedu, v 8,V )+
a cos ¢
“Ap ) Ao A
BB .u(Ueay = W) B, = ueoq) # 20, (B - Euo))). (52)
The horizontal advection terms cannot be rewritten in flux form, they will
b
) _\e

only take such a form if the term V,.5,u. is replaced by V, &8,u. , which may

_11_




be considerably less accurate. Momentum is, however, conserved in the case
U=V = constant, (linear advection), or if V is independent of XA and U is
independent of ¢. Similar extra averaging is present in the schemes
presented by Mesinger (1981) for this grid

Now consider the fourth order terms in (26> and (27). Conservation
cannot be achieved if the constant c is a function of p, as is necessary to

avoid reducing the timestep. Suppose that c is a constant. The terms
A 3N

-9 -
(13CIU 650, — i cU,. 0,0

can be expanded as

=9
(1+c) U, ONHRAND (8, (MEAND -8, (X)) -
=9
cU,, (N+372AN) (8, (N+2AN) -8, (A +AN)), (53>

+ +
with symmetrical terms in -AX. When the equations for 6, (\) and 6, (A+AN)

are added to give the conservation law, the terms multiplied by c in (53)

cancel, to give

-9
U (NHBAN) (8, (NHAND -8, (X)),

Thus the conservation property follows as in the second order case. A
similar argument holds for equation (27) in the case of linear advection,
so that the fourth order scheme does not result in any further loss of

conservation.
4:3 Conservation of second moments

We first demonstrate that the integral of Ap62 is conserved using the
second order accurate approximation to the advectionsterms. This will give
a reasonable approximation to the true Lagrangian conservation property of
8, which requires that all moments are conserved by advection by an
incompressible flow. Multiply (48) by 6.2 and add to (46) multiplied by
29, ;

..12_
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The left hand side is a discrete approximation to

Op. €8, 2) + 8,2 _dAp.. (65)
ot ot

However, it cannot be written as exact conservation of Ap.6,.2. The right

hand side becomes

SN AL
-Atl 1 SoVi (20,02 — 0, 2) 46,0, L BiL,, = 0,0 Egs gl (56)
a cos ¢

This 1is 1in conservation form. In order to achieve quadratic conservation
with the fourth order terms included, the E.'s must be redefined (Fisher,
private communication). The resulting scheme is rather less accurate
because it uses a broader stencil of gridpoints.

Consider now conservation of u2Ap by meridional advection by a V

independent of A, so that the first moment uAp is conserved. = Multiplying
-
(48) by u.2 and adding to (61) multiplied by 2u, gives
SN e
+ - +

24p; Ui (U =~ i) U2 (P = Pw)AB. =

9 LA
-9 meak N
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The left hand side is a finite difference approximation to

Ap. _dCu,.2) + u.? dAp,..
bt ot

The right hand side, for V independent of XA, becomes

P =0 S ) e
<AL 1 g o (- U T S BN VLS B, S R PR D i TR S T e B 58)
a cos @
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AP
This is in conservation form. If the averaged form V,. d,u. is used in (51),
the conservation holds for general V. The second moment is not conserved by

the fourth order scheme.
4:-4 Time differencing

The approximation to the time derivatives in the second advection

step, equation (28), can be made to conserve the integral of A4p.6. by

setting
n+l n+l n+tl-n n N n #
Ap. 8. = Opi.  €0.Ap. +%(8,.-0 Ap. )) —%At (U, V8, + U-V8,.) (B9
Apk i1 Ap“: vl

There is no need to alter the first step. Using (59) requires extra storage

for px".
5. SUMMARY

This note has outlined a conservative split-explicit finite difference
scheme on a B grid. There are some restrictions on what is possible, and
choices to be made which require further experiments.

(1) Conservation integrals can only be satisfied with respect to time
differencing if (59) is used, and the integral of Ap® is only conserved if

the vertical advection of 6 is recalculated. Experiments should be carried

" out to see if these extra computations are worthwhile in practice. It is

likely that they would not be needed for forecasting applications, and the
code should be written to allow them to be bypassed.

(ii) The conservation of momentum by advection requires extra
averaging which may be particularly damaging at low resolution. If the
equations were written in flux form this extra averaging would still occur.
This should not be used in forecasting applications and experiments should
be conducted to determine the best option for climate integrations.

(111) The forecast model should use a fourth order scheme with
variable c. Experiments should be conducted to see if climate integrations
perform better with a second order scheme or the fourth order scheme

proposed by Fisher, giving quadratic conservation, or the fourth order
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scheme given here with constant c, giving more accuracy.

(iv) The scheme has intentionally been written using an approximation
to the Lagrangian derivative of momentum in the momentum equation, rather
than using the alternative vorticity/ energy form. The latter form can lead
to spurious sources or sinks of momentum, though it allows enstrophy to be
conserved, If the solutions are not smooth, it is more important to treat

the momentum correctly than the vorticity.
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