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MET O 11 TECENICAL NOTE KO 162

SOME GENERAL PROPERTIES OF SOLUTICNS OF THE SEMIGEOSTROPHIC EQUATIONS INFERRED BY

GEOMETRICAL CONSIDERATIONS. By R J Purser and M J P Cullen.

Summary
The adiabatic semigeostrophic equations used by Hoskins and Bretherton (1972)

and others provide a means whereby processes of frontogenesis may be idealized and
studied using exact analytic solutions of these equations. Examination of the
semigeostrophic equations reveals that there is a usefui and Aatural correspondence
between their dynamically stable solutions and the surfaces of a class of convex
solids. Here we exploit this correépondence to derive a number of rather general
properties of the two-dimensional semigeostrophic solutions deduceable from
geometrical properties of convex solids. The results we obtain are not conditional
on solutions being smooth. Some extensions of these results to three-dimensions

are discussed.



1. INTRODUCTION

It is well known that in certain circumstances fluids behave in such a way
as to generate in a finite time a sharp discontinuity invariables such as temperature
and velocity from an initially smooth flow. The study of such behaviour in a rotating
fluid is of obvious relevance to meteorologists when the result is the formation
of a front, and the ability of conventional numerical models to simulate corre;tly.
the evolution of the resolvable part of the flow in such situations is a matter of
special concern given the intrinsic importance of these features and the difficulty
of handling their effects by finite difference methods. An approach to investigating

the dynamiéal aspects of atmospheric and oceanic fronts that has been demonstrably

successful in recent years is through the application of the semi-geostrophic equations.

Many of the relevant results are presented in the paper of Hoskins and Bretherton (1972)

(which we abbreviate to HB) where the development of discontinuities in a finite time

is demonstrated explicitly for a number of configurations in which the special structure}

of the basic-state frontogenic deformation éllows the solutions to be regarded as
essentially two-dimensional.

Recently Cullen (1982) has extended the study of these equations, using
explicitly Lagrangian techniques, to beyond the instant when a discontinuityvforms
and has shown how exact solutions can £e constructed for a small system of simple
finite elements.in each of which the potential temperature and potential momentum
are uniformf These solutions were then compared with the results obtained from the
intégration of a primitive equation model fromfequivalent initial data in oxder to
_ieveal any significant shortcomings of the latter method aé applied to frontal
regions. From a2 mathematical point of v;ew it is clearly desirable to be able to
make some definite statements about the existence, multiplicity and other gener;l
properties of these reference-solutions to the two dimensional semigeostrophic set
that'are‘valid even after discontinuities have developed. This would then give

credence to the results obtained by the algorithms that tackle those equations



numerically in more complicated cases than those studied so far. This paper is
concerned with such questions and will develop geometrical arguments to define

some important general properties of possible solutions.

Zio THE TWO-DIMENSIONAL FRONTOGENIC SEMI-~GEOSTROPHIC EQUATIONS
In units in which 90 = f = g =1 the equations governing the frontogenesis

1

models of HB become )
DI =0
D¢ (2.1)
Bg - =0
Dt ;
DA +od A= O

where bt

;I_)_E?-*UQ—'+W?— Mz Vv+
Dt ot 0 T /

M is called the 'potential momentum' and A is the area of any fluid element
in the (x, z) plane. Also the x-component geos'trophic equation and the hydrostatic
equations apply:
) : ) .
= DE (2.2)

We assume conditions of no flow across the prescribed boundary. Provided v and 9

are differentiable a consequence of (2.1) is the conservation of potential vorticity:

%ﬂ =0

where ({ - o (’I) Z—)

It is useful to introduce a modified 'pressure' variable -

A 2 :
qj : (Pf’ %% ‘ . (2.4)

So that .
®,0) = ( %ﬁ: %) i

Then if ’_a_qj)_ ‘ X_(Z :

QQ = @ i
30 o

] V2 dx Oz 2 < (2.5)
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is defined, it follows that

q ) (‘9/((@) (2.6)

In the continuous equations the Hessian matrix Q is of special importance
in determining the ageostrophic terms such as u, w and the pressure tendency,
1 :
f1:= E;% . For example, in order to determine [1 from the governing equations

we would get

YF'+ ng = )

—

. A
-~/ D 3 . ~ : R pYe)
where Y‘(\;‘ ) ~2 >; U= (U,..W) ) JZ . (..x =% O> (2.7)
and use the continuity equation which, from (2.1), is:
QUL W +d = O
M DT | (2.8)

to eliminate the velocity components:

V(g vr)=x + T g b @9

To solve equations of this type with appropriate boundary conditions (derived
through substitution of known normal velocities into (2.7)) the differential
operator on the left-hand side should 5e elliptic in character, implying that Q
is positive—definite. In some circumstances_(2.7) may be solved when Q is singﬁlar
by using an integral form of the continuity equation (integrate@ along the line of
thg characteristics between opposite boundarieé) but the problem is indisputably

ill-posed when Q has a negative eigen-value. In the lattef case the corresponding
physical system would be subject to conyective, inertial or symmetric instability
and not properly describable in terms of the semi-geostrophic equations_because-
acceleration components then become of comparable magnitude to the corresponding .

pressure gradient forces.
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A

We may imagine ¢ to be the 'elevation' of a 'surface' in a third coordinate
normal to the (x, z) plane, in which case the matrix Q gives a measure of the
*curvature' somponents of the surface (in the limit in which the scale of elevation
of$ is negligible in comparison with the scale of x and =). Then q is essentially
proportional to the Gaussian curvature of the surface. The condition that an
eigenvalue of Q should nowhere be negative for a twice-differentiable distribution of
é%xnay be equivalently stated:
Definition

For a solution of the semigeostrophic equations, to be dynamically stable within

)

the (x, &) - domain, D, any straight segment in (x, s,¢) space joining two points -
on the solution—surface,(f) = g(x,s), and whose projected (x, a) part lies wholly

within D, must lie entirely above the éolution—surface,
N r~
e, Cb(x,'@) 2 (b(a‘) )

It is natural to expect this condition for stability to generalise to instances
where ((513 not everywhere differentiable. Returning again to the geometrical analogy,
we are assuming that the solution-surface, (lg(x, 8), appears locally convex when
viewed from underneath (where 'up' is the direction of increasing$), i.e. the
volume defined by a‘J? (,f)v(x, %) is a convex subset of RB. The geometrical notion of

convexity is of sufficient importance here to justify a more formal discussion of it

and its consequences.

Definition
A set S of points in the space R® with a Euclidean metric is said to convex
if, for all pairs, X, ¥ € S the straight line segment between them is entirely in S..

The following important properties' of convex sets are implied:

1% The intersection (in the set-theoretic sense) of convex sets is a convex set.

ii. A closed half space, L (x)2o0, is a convex set where L is a linear function

of X.
~
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iii. When a convex proper-subset, S, of R contains its boundary points, then

S is the intersection of half-spaces of the type described in (11).

Proof
Let x be any point not in S. There must be a unique 'nearest point', Y €,S
(there cannot be two because their mid-point would be closer!). The half space

of points 2 satisfying.

(2-9) (v-%) 20 (2.10)

clearly contains S and excludes x. All points outside S may be excluded by

the intersection of such half spaces.

Definition
The oriented hyperplane bounding the half-space of (2.10) is said to be

a tangent-plane of S at y.

iv. To every point on the boundary of a convex set there is a tangent-plane
that touches it. This property enables us to generalise the conventional
definition of a 'gradient' to allow the (multiple) assignment of gradients to

points of a convex surface even where differentiation is undefined,

v. Givenorthogonal coordinates, X, ... X, for points in Rn, let the 'prism',

S1 be the n-dimensional set,

(I’.,- L xh~l) é 82 .
where 52 is a compact closed subset of.Rp'1. Let S3 be a (nop—empty) set of
oriented half spaces (including their boundary points) of Rn_for each of which

the gradient,

oo (2 il B )
ol e )

of the bounding hyperplane is f;nite'and whose orientation is such as to include

any point of fixed (k1...xn_1) coordinates if its x coordinate is sufficiently

Sl



positive. By property (i) the intersection

qu Szl\sg

is clearly convex. The set of tangent-planes to S, with finite gradients is

4
'complete' in the sense that every possible finite gradient as defined by

(2.11) is represented. If S5 is the 'lower' boundary of S4 defined as the set

X = (x1,....xn_1, xn)é S4 such that for all 8) o
('X:;' SR 7C""'5) ¢ S‘f
Then there is a natural mapping from each point x € 85 toa (non—empty) set of

(n-1)-dimensional gradients g (i.e. those corresponding to the tangent planes

~

of S, touching ,L() Conversely, there is a mapping from each gradient g to a

4

non-empty set of points in S_ (i.e. those points which the tangent plane with

p)
gradient g touches).

iv. The gradients at a point on 85 form a set that is convex in gradient-space.

vii. For any continuous directed curve C in the set S_ of (v) between end points

5

i] and X5 the mappings in (v) permit us to assign at least one continuous directed
curve C" in the space of gradients such that each point .')‘c'ec maps to a gradient
§€C'. The curves may be jointly parametrised by a continuous parameter
o€ [a, b]cR' such that :
%(0):?\9. oy ?VCU?):'E}

and both x and ,—9, are continuous functions of & with X=X (o’) implying
5(0') is the ‘gradient of a tangent pla.né at X (v.B. g need not be a continuous
or univalued function of x for this property to remain true).

If x', the project of x, is a straight segment in the subspace (x1,...xn_1),
for any pair ic_(o’z) £ 5(0’1-)':

(860 = 3+ (¥letr— %) 2 © he
in words, the forward component of gradient increases monot'oniéa.lly or is

‘ »
stationary along any straight line of (x1,....xn_1) in the set S, of (v).

s
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viii. In the natural extension of result (2.12) to m-dimensions we state
without proof the following generalization, using the definitions of the sets
established in (vi):

An image, G C{g} may be found under the gradient-mapping of any compact
directed subset A C 82 with AC 865 an «~dimensional subspace intersecting
S2, such that if the 'measure' of A is defined positive in S6 then the measure
of G also has non-negative magnitude in its orthogonal projection onto 86.

By 'measure' we mean m-dimensional 'volume'. We make no attempt to
justify this assertion rigorously., In the case of.a two dimensional manifold
SS’ i.e. a plane of 82, the assertion for w =2 is equivalent to the state-
ment that a circuit on S2 enciosing positive area corresponds to a closed curve
in gradient space enclosing a non-negative area (there may also be an image-
circuit in gradient-space enclosing negative area but in such a special case all
the gradients enclosed by this part.of the circuit are also images of a point on
the circuit in S2’ so the direction may be reversed to recover a positive area).

The properties listed in (v), (vi), (vii) and (viii) are of particular

interest when we make the correspondence

:r‘lsx)X1£Z>DC3£$ with m=3
We shall deliberately limit ourselves to physical domainé, D in (x, 8)-space
which are convex (but see remark 5.5). From the general definition of a
dynamlcally stable solutlon and the deflnltlon of convex1ty it is clear that the

set of points in R3 QD(x 8) satisfying,

A ~
bx,2) > O(x,2) , (x,2)eD

is convex.

(2.13)

EXISTENCE AND UNIQUENESS OF SOLUTIONS

Assume we are approximating solutions of (2.1) in the manner of Cullen (1982)

‘ A
using finite elements in which M and 9 ‘are uniform, i.e. the variation of q)in

each element is linear in x and s. The problem is specified by prescribing for each

-
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element | its area, A; its potential momentum', M; and its potential temperature 9;

?
together with the restriction that no two elements have both the same M and same 9 .
The solution-domain Die specified and assumed convex. Itsarea is .Ab and must satisfy

AD = 2 A[ (3.1)

| =
where N is the number of elements. In the geometrical picture each’ element is

associated with a flat facet of a polyhedral shell spanning domain D. The location
of this shell is uniquely determined given the gradient components M,8 and the‘
coordinate of the associated tangent plane at some reference location, say (x, s) =
(0, O). To show this, let'ai(x, 2, q>:) be the (II\)of the plane containing element I
with gradient (M, ©,) and satisfying (',b:(o,o, 43’_’)=¢)i’ The EGSLL Te thew the Guatite
d) (x,2, 4>I) such that for each fixed x, &, t@’:

B2, 80 < max { 3, (=,2, 40

& (3.2) .
where (,be (Cb,/, d>2/>
This is ill:strated schematically in the 'cross-section' of Figure 1. By property
(i) of Section 2each facet of any shell constructed in this way is itself a convex
region and is therefore simply connected, and each edge between facets is a striaght
segment. Consider an arbitrary arrangemeht of the set of element-planes specified
by the coordinates, { M,’, G,‘, (b,, } in which a particular element, say K, has
finite area, AK
O sl :

then, :

Lemma 3.1

’ 4ing
Any increase in _¢Kwith the other.coordinates, d); , 1 ZK and Mi, 8; kept

constant will result in an increase in the area AK balanced by a decrease in the

areas of each of the neighbouriné facets. .




Proof

The normal component of the change in gradient across the boundary between
neighbouring elements K and L is
A N . <$ Co
oV — D_SbK> = AB__K'- 70
M M M
where WM is the distance in the direction pointing outwards from K. It is strictly
a positive change in gradient because the set of points defined by (2.13) would not
/ /
be convex otherwise. Increasing dh( by amount 8QQ<1noves this boundary by a
distance
N
Jd= oP«.
A
40P
on

and therefore increases the area of element K at the expense of the area of L and K's

other neighbours. Figure 2 shows this.

Theorem 3.2

‘ re :
Given the intended slopes and areas g F?;/fa;; /L-} of the set of elements,

/
then if a solution characterised by the set {(ﬁ;f exists it is unique within a uniform

Fe
change in all the Cp .

Proof

/(1)
Let .7; = {d%( }be one solution. Consider the hypothesis that another solution

T
Ea’ for which the difference

/() 0 g
P 9
is the maximum, and the remainder, E, . We transform solution T, to solution T,
in two stages: first add F to the ¢’ of both Eg and Ej to form T;. Clearly this
does not materially affect the solution (areas of elements remain the same). The

’
step from T{ to T2 now requires only negative changes in d>to elements of the set

: /
E,. However, we showed that the area of an element changesmonotonically with its (b

at the expense of its neighbours. Thus if E, is non-empty at least one element of it

B

/()
5 = {’d% } also satisfies the equations. Divide the set of elements into those



must be in contact with an element in Eg4 and hence the area of an element in Egq

will be increased, contrary to the hypothesis. Hence E, is empty and the theorem is

proved.

Theorem 3.3

~ £ /
Given slopes and areas {H;l 0‘./ A;’}wi‘th Z A‘- = Ab a solution g(b‘} exists.

Proof
A 'feasible' solution is any surface of the type (3.2) formed from planes possessin;
the correct slopes gf'};) 8; } but not necess‘arily yvielding elements with the correct
areas. Each feasible solution is determined by the set {be } and we may assume an
arbitrary sclution of the form (3.2) as a first guess. In the proof that follows:
we shall assune that the gradients {f’l,v ) 9,} remain correct and we iterate towards
a set {d7,’} with the correct areas. Then for a given set of d)/ we define the error
norm:

N, () = & AR

(Each A; is a function of all the (Dj ). Within a uniform change in d)/, all
possible comb,ina.tions of intersections of the elementary planes can be obtained in
a finite range of QD/ so within this range N2 attains its minimum.
Let (33}

Divide the elements into two sets: Ea contains elements for which E is the
maximum, Ea; Eb -contains the remainder. Suppose N2 attains its minimum. Then if
E2 is not empty at least one member, k, of Ea. borders members of Eb' Element k may
~ also border other members of Ea' By ;educing (b:( we may reduce AK by an

arbitrary amount, say (a+b). By doing so we assume we increase the combined areas

of other elements of Ea by a and of elements in Eb by b. The resulting change

in the norm N2 comprises three parts.

(@)

1S ANz due to changes in areas of elements in Ea excluding K.

e

Y

. : ; :
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i ASNz(k) the change due to area k.

iii. éﬁNz(b) the contribution from set Eb.

Let El be the maximum error for membders of él ( Eb < é} ). Then using the

simple inequality of the form: : 2 ' 2
!
(5(h 10 SA) € (Max A+ Z0:) = (Max &) (3.)

such that aj >0

It follows that . 2
AN,® €2 & d + d

an,” 2 & p + b°
ANQ(K) -2 & (a+b) + 0%+ LE 24k

N

N

{y

hence ) ,
> 2 & )
any € -2(E~8) +2(at b+ al
(3.5)
/
Since the rate at which an element's area changes with respect to its (b
/
is bounded, there is always a sufficiently small change in d) , and hence in

and a such that

(ga - Eb>lo > ( at+ Z’Z 5 qL) ; (3.6)

i.e. AN, <O

Therefore benust be a null-set and the errors of areas are equals. But since
they sum tb zero these errors vanish when N2 attains its minimum. Thus a solution;
" exists.

The conditions of existence and uniqueness established for the discrete case
are not by themselves sufficient to justify the same assertions for solutions in which
the distribution of physical-area per unit area of gradient-space (which is the inverse

of potential vorticity) is generalised to allow continuous variation in the gradient-

R s




space, nor to cases in which the number of facets is countably infinite. This is
required to complete the existence proof for the eyuations (2 1). For this it is
desirable to demonstrate that solutions possess a certain degree of continuity

with respect to any variations in the gradients. At present the required conditions
have not been proved but we shall nevertheless outline a plausible way by which the
necessary connection between the finite discrete cases and the general cases might'

be made.

The discrete problem ‘may be expressed-in terms of an iré:pulsive distribution of

the quantity, (1/?), in gradient space composed of a finite number of delta-functions.
Each delta-function is associated with a facet of the solution whose area is the
coefficient of the delta function and whose gradient is given by its location in
gradient—space. The integral of the distribution gives the physical area of the
solution domain, D. Within a compact doﬁlain of gradient space we may associate with
any non-negative distribution G—oo(g) of (1/ C‘) (including impulsive components)

a sequence of finite discrete approximations, G(K) y TO G(w(g) with

Kzl in the following unambiguous way:

(k) : ; :
Compose G- (g) with a regular array of weighted delta-functions:

6%, 6)+ 2 LY 8- (hage), 0= )as(2™)
9

(3.7)
“(K) ' : (0)
where (, i is the total physical area of the distribution G- (g) with-
in the set,'
Ck) < ( ~K k)<
S sim0] (.)43(2 M < (i+)ag (@) () as (2 D<r)as @)
) (3.8)
the delta-function, S(g) y.0f" _(3.7) sa.tisfies the usual definition:
§(9)= 0o g #0  but ﬁg(g)=|
; (k) =
The subsets S A% for a given k are dis,joint and completely cover the

Y
. (k~1)
gradient-domain. For k>1 the dlstmbutlon Cr may be transformed to G—

k]

S



i m—a s e e
p b 5y

by translating each impulsive element in gradient-space keeping the intensity

constant. This translation (which corresponds to a change in the shape of each
facet keeping their areas constant) is by an amount less than or, equal to,

") _ Ag)
63 = AT'ZZ( (3.9)

as may be seen in Figure 3. If it can be shown that relative differences in the

solution surface between any fixed pair of points in the physical domain D during this

transformation are always bounded by
/ 85 e gg(k)

\ (3.10)
where o 'is not a function of k,vthen it is clear that the solutions aS(K)
corresponding to C;(k) form a sequence that converges uniformly to a limit
that we may consistently define to be the solution ag(w) corresponding to the
original distribution C;(“” . A proof of (3.10) would be sufficient, though
not perhaps necessary, to extend the theorems on existence and uniqueness to any
compact non-negative distribution C}Oﬂ) . (3.10) is plausible because the
perturbations in slope cause a small change in Eﬁ' unless the facets have to be
rearranged to ensure convexity. If they do have to be rearranged, the facets

: s
involved must all have similar slope and the effect on (D will still be. small.

It is trivially true in one-dimension, as illustrated in Figure 4 with & equal

to the length 6f the domain.

4.. THREE-DIMENSIONAL SEMI-GEOSTROPHIC THEORY.

The three-dimensioral équations are the -natural generalization of the two
dimensional set we have studied so far. . The potential momentun M generalises to the
'geostrophic coordinates', X and Y, which change non-trivially in time.. A detailed
study of the three-dimensional equations is given in Hoskins and Draghici (1977).

For our purposes the essential equations are:

Sy



dx 2y 3!'_
and
biia'y 35,
e T Ugv'-Uag))_ -1 (Vg‘r Vag ) 2 + W2
Y Ix 5) % =
with y

iu=u9+ua3 P

<
"
<
@
+
<
p>]
i

!
Defining,

(4.2)

(4.3)




It is natural to solve thisset by a splititing method. The terms > -S?

are straightforward to evaluate and unlikely to cause existence problems provided
é{é remains bounded. We concentrate on E{us'z? terms which are

really implicit equations for Uag  since (X, Y, ©) must satisfy the definition,

(= =

"

= = Bd) (4’8)
(Y-y) o
o - ¥
Rz .
To isolate this problem we consider the following sub-problem of (4.6)
1 Ues - VX = A
| U, - VY= B
~dy " X
‘ (4.9)
Uy - VO = C
‘7' 905 =0

A, B, C given

then we seek a solution of (4.9) for Uag  such that (X, Y, ) satisfy (4.8).

If existence of this solution can be proved it is likely that it can be exténded to
a proof of the existence of a solution of (4.6) by a splitting technique.

The natural definition of potential vorticity, generalizing equation (2.3), is

q. e EL!E:LL:Z&L_gig |

A3(x,4,2) . | (4.10)

with the conservation law,

D¢ : | (4.11)

A .
d) = Cb +}2(xz+9z) (4.12)
_then . & ad,} 'a/\
: X - ?a_-i /' y: _9 5 9 = 5; | (4.13)
Hence

P
ﬂ
a..'
i
~
9]
e

TV
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where C\) = dxdx 40y PEer:
I R 2 )
dy dc 9%y dy2
24 ln‘ % o
o ¢ AL 3_@ (4.14)
2k ey o2

Just as in the two dimensional equations the elements of the inverse of matrix
Q determine the coefficients of the equation for ‘the principal ageostrophic
quantities. Therefore, as in the two-dimensional case, dynamical stability of the
system for twice differentiable Q requires that Q nowhere has a negative eigenvalue.
A ~

For a general (not necessarily smooth) solution, (P = (1) (x, y, &), the

condition for stability may be formally stated:

Definition

For a solution of the tbree—dimensional semi-geostrophic equations to be
-’dyna.mically stable within the (x, ¥ 8) - domain, D, any straight segment in
(x, v, &, {Iﬁ) - space joining two points on the solution manifold (/ﬁ - a)’ (x, v, @)
and whose projected (x, ¥, &) part lies wholly within D must be entirely within
the four-dimensional region, (f) (¥, 0) 2 (’5 (x,y. 2)

A
The arguments concerning the convexity of the region of ( X ,d ) bounded
~

N
(toward negative (b ) by the solution manifold, d) , that we applied in section 3

will follow also in three dimensions so that:

Theorem 4.1
“Inside a convex three-dimensional domain, D,there is a unique arrangement of a
given finite collection of elements of the fluid, each with a uniform prescribed
'gradient’, (X,‘}Y," 6‘. ) and volume, ’(; , that is dynamically stable provided that -_
=T -0
I
where Tb is the volume of domain D, 5
The proof is identical to the proofs of theorems (3.2) and (3.3). This theorem

B~
as yet remains unproved for the continuous case (although it seems plausible) in

which an arbitrary non-negative (but possibly impulsive) distribution of (1/7) is

SO S




prescribed in (X, Y,) - space. A rigorous proof of this result would immediately

verify the existence of solutions for the adjustment problem (4.9).

5 FURTHER RESULTS

The motivation fer studying the semi-geostrophic equations has been primarily
to simplify the dynamics of frontogenesis to their bare essentials. This section
will discuss some general properties of the semi-geostrophic equations, resulting
from the arguments of convexity that are related to the formation or existence

of discontinuities in.two-dimensions.

Theorem 5.1

If the potential vorticity is bounded, solutions to the semi-geostrophic equations
cannot possess localized internal discontinuities in M eor 9 . Any discontinuities
necessarily extend along an entire chord of the domain.

Proof

Suppose at some point the gradient of the solution &5 changes.discontinuously.
Because of the symmetry in the equations we may for convenience consider a coordinate
transiation and rotation and a redefining of a; by the addition of a linear
function of position S0 that the discontinuity occurs at Efef (0,0) with gradients

g 2 -3,00 5 Srsda,e) L DG D

R

By the convexity property (vi) of section (2) the gradients of point xo occupy
only the straight segment (G- 5 G ) (The only convex sets of zero area are

" line segments).

By convexity the solution qD satisfies
D 2y 2 %9 =0
= . (5.1)
.,(])(x,z)z Scd - Gk a0

and the gradient 9 at X nust satisfy’

9-x 2 ¢ (=) o . (5.2)



e X N

Since otherwise CD(?&) would be less than the d) - A O of the

tangent-plane touching X . Consider the rectangular circuit formed by the vertices:

Az (-8 ,0)
& L=a's -}
c = (& ,¢)
PR L ;8 ) '

as shown in Figure 5.

"~ Suppose that on segment BC

& 5
d)(x) > 9 | (5.3)

Then at each point on the circuit, inequality (5.2) defines a half space from
which the possible gradients are excluded in gradient-space. The intersection of

these excluded regions for the entire circuit is the triangular area in gradient

‘ space whose corners are:

X (-9 ,c)
B, 920
YE (9; O)

as illustrated in Figure 6. The potential circulation inside this triangular region

Hl

Vi

is:

C (87 () 2 32 .§.

4 (5.4)

Since the potential vorticity everywhere is.bounded, say by qma.x, and the
vk ot pluit pondn 1S e

1

54 s

for all (5.5)
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Conversely, for any ( , with I(/ < 9’/,‘/%:”

(1 £ (11,,“ =$ “6(5) < 93 ' somewhere on BC for all ; S | (5.6)

b, V=0 [l < 973 ; (5.7)
e |




(5.1) and (5.7) together imply that the discontinuity in gradient extends along
this line segment between ( O, “'9//QG¥;21 ) and ( O, 9{9@&:;). The
argument can then be applied near the ends of this line segment to continue it as
far as the boundary, thus completing the proof.

Analogous constructions may be made in the three-dimensional equations of
Hoskins and Draghici {1977), initially by replacing circuit ABCD by the surface
of a disc formed by rotatirig ABCD about AD. The corresponding excluded domain of
gradient-space is the double-cone formed by rotating triangle.c(/g 3/ aboutcx'ﬁ/.

This theorem is é stronger statement than the statement in HB (p. 16) as it

| prohibits fronts even at a finite discontinuity of potential vorticity.

Definition
The 'convex-hull' of a set S is the minimal convex set Sc containing all the
points of S. The 'convex-hull' of a distribution is the minimal convex set Sc
¢

such that the integral of the distribution over any region outside Sc vanishes.

This concept is illustrated in Figure 7.

Theorem 5.2

Elemente of the fluid with gradients on the convex-hull of the distribution
of (1/ﬁ) in gradient-space remain in contact with the boundary of the convex

physical domain, D.

Proof ,

For any element, e, with éradient,‘ge 3 At the boundgry of the convex-hull of
‘the distribution of (1/?), fhen any outward véctor,23 , normal to a tangent there
is sﬁch that this element has fhe maximum possible component of gradient iﬂ this

direction. Take any point Xe¢ € €  and consider the line,

o 2Se + av
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Eianes



@
on the tangent-plane to the solution-surface g;uching Efe . The solution-surface
cannot depart from this line for positive O since this would require a gradient
component in the direction of 1ﬂ exceedipg @he maximum., Thus element € is in
contact with the boundary. |

The process of frontogenesis involves the pinching together of boundary points
of the fluid usually followed by the intrusion of the resulting contact discontinuity
into the interior of the domain. VWhen the initial potential vorticity is bounded
the possible locatiors of onset of front formation are restricted by the following

theorem:

Theorem 5.3

Given that the initial distribution of gradient, (M,8) is continuous with
respect to 2§ and that the potential vorticity, (7 , 1s bounded, then if the
region, of gradient-space where (1/9) is strictly positive is delineated by the

closed curve, C:G ,» a front can only form at a position corresponding to a

concave portion of Cl}.

Proof
Under the gradient mapping, the image of the open set of points strictly inside

the domain D is initially the set of gradients strictly inside GD’ By a corollary

of theorem 4.1, vhen a discontinuity has formed the potential vorticity in its

neighbourhood is no longer bounded so it may be concluded that the image of points

strictly inside D now contains gradients-that afe outside GD. The extra gradients

clearly belong to points of the discontinuity since these are the only points that

are new to the interior of D. The extra gradients belonging to a particular point,

ng y of the front lie on the straight segment joining a pair of gradients & ;nd

8, of the curve CG’ where g & are gfadients on each side of the front at‘ff.

The onset of development .of an intruding discontinuity is therefore éséociated with

a concave portion of CG'
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This last theorem generalises the observation of Hoskins (1971) (p 143) that
- .
in studies using the td¥ (X) profile of potential temperature the surface front
forms in the warmer half of the fluid and the.upper front forms in the colder half

of the fluid as shown schematically in Figure 8.

Remark 5.4 )

An important and rathef paradoxical feature of these frontogensis models concerns
the total potential circulation, C, associated with the entire cross-section of the
fluid. From a glance at equations (2.1) one would expect C to obey the modified

conservation law,

D (cot) = o

and this would certainly be the case if the circuit in (X, Z )-space associated with

(5.8)

£ were purely advected. However, if C is associated with a circuit at the domain
boundary, equation (5.8) is no longer obeyed after a front forms because its
development is associated with the injection of a new region of (M ) 9 )-space

(i.e. the shaded area of Figure 8b). into the fluid interior as an impulsive line-

source of potential vorticity. Thus while the potential vorticity is conserved followir

each fluid-parcel the mean potential-vorticity may actually change!

Remark 5.5

The uniqueness theorem 3.2 was shown to hold for finite-element solutions at
the semi-geostrophic equations in. avconvéx domga.in. It is worth remarking that
uniqueness cannot generally be guaranteed in a non-convex domain because éoncave
regions of the boundary can separate distinct elements of the fluid with the same
M and 6 . A continuum of possible solutions exist according to the apportioning :
of the total area of fluid with given M  and @ vetween the two or more distinct "

regions. The principle is illustrated in Figure 9.



Remark 5.6

The solutions we have considered are those corresponding to dynamically stable
conditions and, under certain restrictions, these solutions have been shown to be
unique. They can formally be found from an initially unstable configuration of
the fluid by a rearrangement of the fluid elements. However, in these 'unbalanced'
conditions the assumptions that restrict the validity of the semi-geostrophic
approximation no longer apply so the consequent rearrangement of fluid elements is

unlikely to proceed realistically.

6. CONCLUSION

In this paperwe have shown that the definition of dynamical stability in the
semi-geostrophic equations in two or three dimensions may be interpreted as a
statement of the convexity of an associated region in three or four dimensions.
This correspondence allows some general properties of semigeostrophic solutions
to be inferred from results in geometry. It has not yet been possible to prove the
existence and uniqueness of continuous solutions in a convex domain buta tentative

approach has been suggested by which the desired proof might be obtained.
I
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igure Captions

} Figure 1.
|
|

Figure 2.

Figure 3.

Figure 4.

Figure 5.
t

Figure 6.

Figure 7.

Figure 8.

Figure 9.

.2
Schematic cross-section of solution-surface, showing its composition

from the elementary planes:
(a) Plan and (b) Cross-section illustrating Lemma, 3.1.

Plan view showing locations in gradient ( r‘,@ )-space of impulsive

IK) (K"l) ,
components of distributions C; and C} and the region
of this space (shaded) associated with the particular impulsive element

K-1) (k-0
of G.¢ with coefficient C i .

Schematic illpstration of (3.10) in one-dimension with a bounded change

in the gradients of 'facets' (without change in their lengths) and P< !

given by the span of the domain.
The circuit in (x, s)-space for theorem (5.1).

The triangle 0(/33/ of gradient-space from which gradients on the

circuit ABCD of Figure 5 referred to by theorem (5.1) are excluded.
(a) An arbitrary set, S, and (b) its convex-hull, Sc.

Schematic illustration of a .stage in.the growth of the frontal
discontinuities for a uniform potential-vorticity, ﬁm;tX) temperature-
profile case, showing the correspondence'between points a, b, ¢, d, e
in (x, &)-space (a) and a', b', ¢'y d', e' in (M, § )-space (b). The

shaded regions of (b) correspond to the frontal discontinuities.

A particular example of the non-uniqueness of solutions when the solution -

domain is not convex. MM is uniform, @ . takes either of two values:

6, (shaded) or 31( >e, ¥

Y






x Locations of points of distribution, G(k) :
o Locatiors of points also in G(k"1)

Region of gradient space associated with C

(k=1)
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