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Some theoretical considerations of vertical dispersion of pollution in

convergent flow.

by D.J. CARSON and F., PASQUILL

1. Statement of the problem in relation to modelling of urban air

pollution,

It is now widely accepted that over a modern urban area the flow
field is modified, as a consequence of increased roughness and 'heat
island' effects, with a tendency for an inflow and a corresponding up-
flow to be superimposed on an otherwise quasi-uniform horizontal wind
field when this is weak. Thus (see MeCormick 1970), ‘'a light indraft of
as much as 1-2 m :3ec>.1 ' may occur towards a city centre. Also work on
urban temperature fields has shown the existence of an elevated 'heat
plume' downwind of a city in otherwise stable conditions at night. Again,
Gronskei (1972) has reported several case studies of the wind field in
winter time in the Oslo region, in which marked convergence of the wind

field was observed.

Modelling of air pollution from multiple sources is currently
attempted with various degrees of elaboration in the representation of the
dispersion, but (in practice) usually with the assumption of quasi-uniform-
constant wind. At one extreme there is the full numerical summation of
the individual (plume) distributions from designated source points - at the
other the simplified, partly algebraic, summation advocated and developed
into simple form by Gifford and Hanna (1971). Discussion continues on the
relative merits of these 'models' as they stand, but the additional problem
of adequately allowing for a non-uniform wind field has also been recog-

nised. Attempts to overcome this diffioculty follow various lines :
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(a) use of 'sequential puff' representations of the travel and dispersion

(e.g. see discussion in Stern 1970).

(b) detailed numeriocal solution of the K-type diffusion equation (Lamb
and Neiburger 1971).

(e) finite-difference solution of the continuity equation in a grid
system, specifically allowing for divergence in the wind field and

consequent finite mean vertical velocities (Gronskei 1972).

In disregarding mean vertical motions Lamb and Neiburger assume that
upward motion accompanying convergence must result in a reduction of con-
centration, hence that neglect of the effect will give a conservative
(high) estimate of the concentration. Also, Gronskei regards his calcu-
lations as demonstrating the beneficial effects of the organised vertical
lifting of the air over 0Oslo in keeping concentrations low. On the other
hand in some quarters there seem to have been misgivings, qualitatively
at least, that the reduction of wind speed in a city would lead to adverse

effects on pollution.

If one considers a marked volume of air which is supposed to contain
pollution, it follows from mass continuity that the volume can never
change purely as a result of divergence in the wind field. Thus the con-
centration of pollution for unit volume cannot change purely as a result of
wind divergence. Strictly this implies incompressible flow but even in
compressible flow the same constraint applies to mixing ratio. In other
words there must be a mixing process leading to an effective change of the
volume occupied by a given amount of pollutant. It is accordingly not
immediately obvious from any simple considerations that there should be
any effect of convergenoce on concentration, The following mathematical
analysis has been undertaken with the object of obtaining some further
ingight into this rather obscure point, and specifically to examine whether
the complication of convergence may be satisfactorily incorporated in the
algebraic integrations of the effect of an area source.
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2. Two-dimensional equations

For simplicity we will confine our analysis to the two-dimensional
case of advection in the x ~direction and vertical transfer in the
Z -direction, for which in the usual notation the steady state equation

of conservation is

G X 4w X .o (W) o~ A_(Ka) (1)
dx 0.7 2 p.y 4 DZ 32 2

the eddy flux term in the x ~direction being as usual neglected.

Analytic solutions for i other than constant are not immediately
available, and in any case we do not have at present any information on

the magnitude of the effect of a divergence on the properties of K .

An alternative approach is to write the expression for the vertical
- spread of the cloud. In the horizontally uniform case this procedure is
followed in Lagrangian similarity analysis, the mean vertical displacement

Z  of particles being expected to follow the relation (in neutral

conditions)
dz 2
s = buy (2)
and the mean horizontal travel
di o o=oinlez)
= (3)
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As a crude representation of the foregoing, but otherwise neglecting the

variation of wind speed with height, and removing the restriction to

neutral flow, we may write speculatively

é_&_ = a_’ ')E(u-) (A)
7 3 (5)

where A is now the effective upper limit to the plume of particles

from a ground-level source. The —)C(u.) term represents the effect of
mean wind speed (for convenience the bar is omitted from here onwards)
on the level of turbulence at a given height and the 3(‘\) term the
variation of the effect of turbulence with height (which latter will

implicitly be dependent on stability).

Vie now assume that the process of convergence in the mean flow
does not affect the functions -(4) and 3(‘\) and therefore write,

for the convergent wind case

cL_ﬁ il u.ﬁ = aﬁﬂu)%(ﬂ) + w(R) (6)
dt dx
with
wih) = —dx &

T (7)

Together these equations form

d(ue\) SR ‘F(u) 3(&)

——— i (8)
dx

We are thereby allowing the convergence possibly to affect the rate of

vertical mixing through its affect on the wind speed and its (non-mixing)

effect on the resultant height of the plume of particles.
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To analyse the effect on concentration of material from a2 contin-
uous source, we take the case of a crosswind line source of effectively
infinite extent and rate of emission Q@ per unit length. Assuming
similarity in the vertical profiles in terms of Z/‘g\ (i.e. at any
distance x X(z)/)f(o) is a universal function of Z/f ) it

follows, from rearrangement and applying conservation, that

Alzx) = & -‘)C,(Z/e\) (9)
amx) f(x)

where ":l » i1s another universal function with some constant value }

at z=0 | and therefore

Xlox) = & B = (10)
) ’} u(n)‘f\(x)

The simplest case for solution of (8) is with +(u) = ‘3“‘) =1
i.e. basically the rate of turbulent spread is not dependent on either A
or ‘2\ itself, and as they are the only factors which convergence is
assumed to affect we would expect the solution to indicate no effect of

convergence on concentration. Equation (8) then gives

U.‘a\ = a,%x (11)

and so

X (o:x)

I
o,
X

(12)

which is indeed exactly the same as if there had been no convergence to

start with and we had written (6) without the W -term.
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To investigate the more likely case that neither -F(UJ nor
ca(,{\) is unity it is necessary to introduce simple forms for these

functions.

3. Solutions for linear convergence

Consider f(w = a,u (13)
o
and %(!\) = a3f\ , Where o« { | (14)
then Eq. (8) reduces to
Al Gl
1
T (15)
which when integrated gives 2
-a -2
(uk) = a(i—oc\j W(x) <’ (16)
(o]
—e
(where o is a constant with dimensions L) Y
For the simple case of linear convergence,

where b is a constant (to be distinguished from that in Eq. (2)) with

=
dimensions [L] , equation (16) yields
'/(.-a)

2-a
= 1-w) — (1= bx)
e e, .[‘ J
u T : (18)

Vh~«)
i e
Therefore hoo = { = : [ e -]} (19)

b (2-<)
(1= bx)
- 72'0
- £ uqQ Q(l—*)' o _b"
- X (0%) t{b(‘--«t} [‘ ten J} o
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Equations (19) and (20) then, are general solutions for the height to the
top of the plume and the surface concentration, respectively, for the case

of a linearly-converging horizontal wind field.

Since one of our main aims is to relate the convergent case to the
non-convergent case it is convenient at this stage to introduce the
general solutions to equation (15) when there is no convergence of the
uniform wind 4, i.e. b=0O . 1In such circumstances, Eq. (15)

reduces to

dh .ok

dx (21)
which gives

he = [a G- "]'/(m (22)
for the height of the plume in non-convergent conditions and

x, (o) = j%_ [a -y x] et (23)

for the corresponding surface concentration at X . These solutions can
of course be directly obtained from Eqns. (19) and (20) by taking the

limit as b— 0 .

The combination of Eqns. (22) and (23) with (19) and (20) gives

%|-d.)

A (x) = A 60 [‘ - ("‘bx)l—.‘ (24)
I-=bx (2-a) bx
'/Ll—u)
™ X = lem | e |
1= (- bx.)z"‘ :

(25)
o




Therefore we can write

2-ol l(.._d)
}l- = i‘_ (o) = s \- & / s
&* hx (2-) (1-6)
and
'/(:-ot)
X = 1(0,6";0&) = [(a—«)(\-—o‘)
T o (27)
where ~ : ;

Ao

is the fractional reduction of the horizontal wind due to the linear

convergence.

L. Practical interpretation of the solutions for the infinite cross-wind

source.

It follows immediately from Eqn. (27) that

x s x* ﬁ 0-2-’:. (2.—0()0- -\'(‘—OL) =i (29)

The only solution to Eqn. (29) for «< | , is the trivial solution, 6= | ,
which holds for all o . Therefore, when b# O , X = X, only at x=0
and trivially X = X,  for all values of X only if there is no

convergence i.e. b= O ,

Further, the solutions are such that

X (o,55) D1 for a1l <1 O<&<| .  (30)

L
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Therefore our solutions to Eqn. (15) imply that the surface concentration
at any distance x downwind from an infinite cross-wind line source in
a linearly-convergent flow is always greater than the corresponding
concentration with no convergence ; provided of course that the rate of
turbulent spread is a function of .4 . The range of o« of interest can
be estimated. In the non-convergent wind situation we expect 4 o< 'tP
where 's { p< | ( p="a implies the parabolic growth for 4 of the
classical Fickian diffusion case and p: | implies & linear development).
Therefore cw\lo(t o &L;L and so & = L;L is assumed to be most
probebly in the range —/ { o« £ O , Fig. 1 illustrates X /X, as a
function of o for several values of o« in the range of interest and
we note that this ratio is insensitive to the value of o when the
convergence is not too large. For example, for & as low as 0.5, Xf X
ranges only from 1.31 to 1.33 as « varies from -1 to 0 . Therefore,
if the advecting horizontal wind is reduced to half the value it had at
the line source then the surface concentration will be about 33% greater

than in the non-convergent case with the same i, .

An interesting feature of Figure 1 is that

T fow o)y > Li(0Fia) » Liles i) (31)
j p 55 X
for O« »-1\ and O £ 6 L\ , Thus for < | the lowest

values for X /’X,* are for o« ==\ which is the parabolic growth case for
f in non-convergent conditions and the highest values are when o= O
which corresponds to a linear growth in non-convergent conditions. The
result that the concentration is affected relatively more for ot= O than
for ¢=~1| is perhaps surprising but it should be remembered that

these are ratios and not absolute values.

Indeed specifio examples indicate that the differences in the

S
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concentrations between convergent and non-convergent cases are such that

[x (o,x;—l)—x*(o,x-)-\)] i [X (0,x;0) - X*(o,x-,o)] (32)

Therefore the absolute values of the concentrations react in the expected
manner to the inclusion of convergence even although in terms of percent-
age changes the greatest effects are experienced where the concentrations

are least.

5. Extension of the Model to an Area Source

In this section we consider a uniform area source with a unifiorm emission

rate q per unit horizontal area and whose upwind edge is at the origin
xX=0O . The area source is of infinite extent in the cross-wind direction
and is considered as a distribution in the x -direction of elemental
cross-wind strips of width $x and emission rate q &x per unit cross-

pS
wind length such that Q(X) = I Qdx = q X ., See Figure 2.
o

The surface concentration X(0,X) at X is determined as the
integrated effect of the contributions %X (0,XyX) from the elemental
strips at 0 { X { X , as determined using the model of the previous

sections.

From Eqn. (10) the contributions to the surface concentration at

X from the elemental strip source at X is

St e xy = 498%

) A (X x) (33)
where from Eqn. (16) X B ’/(l-d)
m) (X)) = [“ (1-e) ] Mx') "("1]
2 -l A~ ‘/(""")
S a (1-e) [(l-bx) ~ (1-bX) J (34)
b (2-o0) /
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Therefore, integrating Eqn. (33)

X
X(oX) = jz dx
b w(X) A (X5 x)

= 41 a(1-«) I/(ot-l) » 2-& 2-a l/(d-l)
o [b(z—«d] [('—m A J dx.  (35)

(4]

If we now put = I-bx = 4o ’ (36)
Mo
2oE ot s 2l (37)
and o8 B g Ul (38)
2 w (X)
i.e. dx = X o (39)
b Y

then Egn. (35) becomes

' (S ast et
X(eX) = LloE;«) = 42 [ala) Z 2 dr, (@0)
A u»o 2-a& Lq/(d-'l)

I
The integral in Eqn. (40) generally cannot be expressed in terms
of elementary functions and must be evaluated numerically. The integration
cen be expressed in terms of elementary functions only for « =0 in the
range of o¢ of interest to us however then the definite integral becomes

infinite. We shall return to the case o= O Dbelow.

The corresponding solution, 'X 1,(_(O,)() for the surface concentra-
tion at X due to the area source when convergence is absent and the

wind speed is the same W, 1is, from Egn. (35),

X
Yol = 41 j' .
e oo ‘!.*(X',X) X (41)

l -1
L[a(u—a)]'/“‘"’J(x—x)/“ Yax

Uo

i

where &* has the form of Egqn. (22) after integration of Eqn. (21).
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The integral in Eqn. (41) is finite only if o« { O , when

I/(«-t)

=%
ACTIE I G G S D

ol

Therefore for o { O , the ratio of the surface concentration in the
convergent case to that in the non-convergent case with the same M o

can be written

'/(l-ol) 5
& LRy = =lad) TR L (Rye0) (43)
Xx Xx o (R—l)“/(u-')
fo s W
where I(R')o() :‘[(Y’ail)( )o(d' (44)
-l
s, ik o e s (45)
4(X)

The function I_(_K’,o{) » X£O , must generally be evaluated numeriocally.
However as R—>1 i.e. either X—>0 or alternatively the convergence is
small, then we may write Y= |+¢ and R= |+ § where €,8<K{ and the integrand in
Eqn. (44) can be expanded in powers of g and the integral expressed

as

L(Rw) = Il(S')o() = (o¢-1)(2-2)

ol

Y-ty p/
e (R TER STee
20e-1) 24 (30-2)

(46)

and so

1—_(0,2‘,«) = (HS) e D e ¢ (ot+6) g" + O(S’)
Xy 2 (2at-1) 24 (3e-2)

2 (2e-1) 24 (3a-2)

Therefore for small values of § » We would expect I/x* to behave as



desoribed by Eqn. (47). (Note that Lim 7‘/x*——> | , as of course it
§—=0

should.)

It is interesting to note that although Eqn. (47) has not been

derived for (=0 it does hold for all &< O and indeed it implies

Boe il s R m v lle (48)
w0 Aw U(X)

for small values of § . In fact, although X (0,X) and X; (0,x)
are infinite when o«=0 , which we recall corresponds to 4 oct in the
non-convergent wind situation, their ratio X /X, is finite for all
values of R and the integrals in Egns. (40) and (41) can be expressed

in terms of simple functions.

Thus R
o |
LifoR,0): = 28 f,("") it
i R
. () 4
-1
c en [Ln(RY)
Dy

2 4. GlRo - L RS v vy F
W=ro k- - o

= R e (49)
WA

Therefore when o = O we have the simple result that ’X/'x % is the inverse
of the fractional reduction of the wind at X from its value o at

the leading edge of the area source. For example, if the convergence is
strong enough, or X is far enough down wind from the leading edge such

that the wind has dropped to half of its original value then X = 2 X*
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i.e. the inclusion of a linearly convergent wind field in this case would

double the expected concentration at X .

In general we would not expect the convergence to be strong enough
to produce a value of R » 2 and most probably we would be concerned
with values much closer to unity where Eqn. (47) could be used to deter-
mine the ratio X/’,t’,*_ . Figure 3 gives the ratio X/x* as a function
of R€I'3 and « , as determined from Eqn. (47). The deviation of
the curves for < O from the line X/y, = R for ol= O increases with
increasing R  and decreasing & ; however even at R = /-3 the lower
limit to the ratio is 1.24 for &« = -1 , Therefore, in practical
terms, the ratio 'x/x & is effectively independent of o for typically

experienced degrees of convergence, and a good first approximation is
x = Mo .
o fu(x)

Figure 4 shows ’X/ Xy @s & function of the probable extreme values

of ol viz O and -1, for a much larger range of R . The ourve for

&L= —| was evaluated from Eqns. (43) - (46) as
R
X (ory) = 37 R i LT (50)
A, 2 () ()™
145

where 1.(S ',—I) was evaluated for $=0-1 and the integral term was
integrated graphically from 1.1 to R . We note that even for our example
of very marked convergence when W (X) = ;T Mo i.e. R=2 |, the ratio
X /Y%, is as high as 1.74 for & =-| , our considered lowest value.



6. Summary and concluding remarks

As a starting point for discussion of the effects of convsrgence

we have assumed, (a) that the rate of vertical spread is a function only
(the degree of
of wind speed and height, (b) that this functional form is unchanged Qy%

convergence, (c) that the vertical profile of concentration exhibits

similarity when height is scaled with respect to the height of cloud.

With the rate of spread function linear in 44 and a simple power
law in height (o< [ b ), and with a linear convergence of wind, it
appears that ground level concentration from a crosswind line source, at
ground level, of effectively infinite extent acrosswind, is higher than
would occur with a non-convergent wind having the same speed at the

source,

Algebraic integration for an area source with uniform rate of
emission per unit area results in a corresponding increase in concen-
tration, which at any position on the area is by a factor roughly equal
to that by which the wind speed is reduced from the speed at the upwind
edge. This is consistent with the point that the accummulated concentr-
ation at any position must be dominated by the sources immediately
upwind (unless vertical spread has become slowly varying with distance
at distances similar to the downwind length of area source involved).
The results suggest the working rule that the correct accummulated
concentration on an area source would be calculated by assuming the wind
speed at the sampling position to apply over the whole source area
upwind.

speed
The interpretation for the case when wind%is reduced to zero by

the convergence is not obvious. Also there are other questions, such as
the effect of assuming no dependence of rate of spread on wind speed but
retaining dependence on height,and the significance of an elevation of

the sources, which need further consideration.
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Figure 1

Figure 2
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FIGURE LEGENDS

}’,/x* » the ratio of the surface concentration at x ,

due to an infinite cross-wind line source at the origin, in a
linearly-convergent wind to that in a uniform wind, as a
function of o = u.(x.)/uo , the fractional reduction of

the horizontal wind due to the convergence, for several

values of the parameter ¢ 5

Schematic representation of an area source as a distrib-

ution of elemental, crosswind, infinite strips of width
®x and emission rate q 8x per unit cross-wind

length. The surface concentration X (0,X) at X

is estimated by assuming a continuous source with uniform

emigsion rate q per unit area between O and X .

X /_x* » the ratio of the surface concentration at X |,
due to a uniform area source between O and X ,

in a linearly-convergent wind to that in a uniform wind,
as a function of R=Me[ iand & . The curves for X/ %y

are derived from Equation (47).

X / x* s the ratio of the surface Qonoentration at X -
due to & uniform area source between O and X , in a
linearly-convergent wind to that in a uniform wind, as a
funotion of R= Mofypy and the two 'limiting' values of

o ., The curve for o= -| is derived from Equation

(50).
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