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1 Introduction

1.1 Background

Numerical weather prediction models solve a set of governing equations to ap-
proximate the state of the atmosphere at some future time. The hypothetical
perfect model of the atmosphere would be a multi-dimensional non-linear func-
tion, mapping an atmospheric state from one time to another. Given enough
hidden nodes an artificial neural network can approximate any continuous map-
ping from input to output domain. A neural network could therefore be used to
approximate the evolution of the atmosphere. The size of network and required
training data needed make this infeasible, although some studies have shown
success in predicting complicated single meteorological events, such as El Nino,
[Hsieh].

Useful results may be achieved by using the current model output as a start-
ing point and using an artificial neural network to produce a correction, in a
similar way to a Kalman-Bucy filter. The artificial neural network could also be
trained to estimate the absolute value of error which could be used to predict
possible forecast error.

Linear regression methods have been used to estimate the size of forecast
errors, [McNair]. This has included model corrections, in the form of a constant
wind speed multiplier, and absolute error estimation, in the form of increasing
uncertainty with lead time. The application of a multi layer perceptron to pre-
dict forecast error is the next step from using these linear regression techniques.

The ability to predict forecast skill has many applications outside the in-
tended aims of this project. Error estimation is very important in the appli-
cation of variational assimilation [Grooms| and ensemble computation. Indeed
the process of neural network training is very similar to the minimisation of the
cost function which occurs within variational assimilation.

1.2 Avms

This work was conducted in an attempt to provide aviation customers with
skill forecasts. Aviation operators use the output from the numerical models to
make routing and fuel loading decisions. Currently contingency fuel is loaded to
account for forecast wind errors. The ability to estimate the confidence of the
forecasts would allow contingency fuel loadings to be varied, producing consid-
erable cost savings and safety benefits. Previous work has shown some benefit in
using linear regression to model forecast errors [McNair]. Improvements should
be gained by extending the number of predictors and using a non-linear regres-
sion method, such as an artificial neural network. The eventual aim is to provide
prior warning of possible forecast errors so that extra fuel or routing precautions
can be taken.

1.3 Simple example

Consider a very simple chaotic system, the Lorenz attractor, described by the
following 3-dimensional differential equations.

dz
me —10z + 10y (1)
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Figure 1: x-z plane of the Lorenz attractor

dy :

—C_E = IR0y Y Tz (2)
dz 8
’d—t = —Ez + Ty (3)

Solving eqns 1, 2 and 3 numerically gives rise to the famous butterfly shape
shown in Figure 1. The system consists of two orbital planes, identified here by
A for z < 0 and B for z > 0. Consider a point x(¢) and we want to predict
if x(t +t') is in A or B. Unlike numerical weather prediction the equations
are explicitly defined so this is simple to determine given any #', subject to
the numerical accuracy of the system used to integrate the above equations. If
instead we consider a point x'(¢) such that 0 < |x'(#) — x(t)| < r for some small
r > 0, where r represents the observational accuracy. Now if we try and predict
x(t + t') using x'(t) as a starting point the solution x'(¢ + t') will diverge from
x(t+1') as t' = oo. The accuracy of predicting which plane x'(t +¢') will reside
will gradually reach 50%, i.e no skill. The value of t' at which this happens
depends greatly on the value of x'(¢). If x(¢) is just beginning an orbit of plane
B (i.e 2 > 0 and £ > 0) then we know that x'(t + ¢') will stay in plane B
for longer that for a point close to the cross over point (z > 0 and % < 0).
Therefore by analysing the behaviour of the model we can predict the accuracy
of the system at time ¢ + ¢’ from its state at time ¢.

Although numerical weather prediction is a more complicated chaotic system
it is possible to envisage that certain characteristics of the system are harder
to model than others. Being able to recognise these characteristics would allow
estimation of the confidence in the model from a given state.



Figure 2: Global distribution of Mode C observational data

2 Method

2.1 Data

Actual observations or model analyses are required to train the network. Ob-
servations have the advantage of representing measured values, although some
preprocessing must be carried out to protect the neural network from erroneous
data. Using analyses allow the forecast and ’truth’ domains to be matched
exactly, providing ’truth’ values for areas of the globe with relatively few ob-
servations. If the difference between the forecast and the analysis is the same
order of magnitude as the difference between analysis and observations, then
the use of analysed fields as “truth” would be ill advised. A predictor such as
data density might help the modelling of analysis error, although this has not
been carried out in this particular study.

The observations used in this study are GADS' Mode C data, high density
observations of wind vector retrieved from British Airways Boeing 747-400 series
flight data recorders. This data is not used within the assimilation process and
is collected post flight, removing many of the problems inherent with real time
aircraft data. The dataset includes measurements of wind speed and direction
at 128 second intervals. The data is also organised into individual flights so the
take off time can be used to more accurately determine the numerical forecasts
likely to be used in flight planning.

These forecast fields were then interpolated onto these observations. The
fields were chosen to represent the fields used when flight planning. Selection
criteria were:

e data time at least 6 hours before take off time (00Z or 12%).
1Global Aircraft Data Set
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Figure 3: A example of the neural network topology used (in this example 3
predictors, 2 hidden nodes and 2 predictands).

e 4D linear interpolation between 200, 250, 300 and 400hPa pressure levels,
and 6,12,18,24,30 and 36 hour forecasts. Observations outside these ranges
were discarded.

e exclusion of all data from units with flight data that was clearly unphysical.
This was checked by comparing recorded airspeed with airspeed derived
from groundspeed and observed winds.

At each data point further information was derived from the forecast fields from
which the predictors would be selected. This included u, v and the first partial
derivatives in each dimension (derivatives in the horizontal plane were combined
to form 2D divergence and vorticity). Lead time, longitude, latitude, pressure
and orographic height were also stored. The error values could then be derived
from the absolute value of forecast minus observation.

A similar method was used to produce the data from analyses. A regular grid
of pseudo observations were created over the area of interest at a given pressure
level (in this case 300hPa). These were then interpolated from the 00Z and 127
analysis fields for January and February 1999. The predictors could then be
derived from the forecast fields as described above, but without a specific take
off time only 12 hour forecasts were used.

2.2 Neural Network

A multi layer perceptron was used, a detailed description of which can be found
in any good book on artificial neural networks, [Bishop]. A single hidden layer
was used between the input and output layers.

All inputs and outputs were normalised to [0,1]. Preprocessing by nonlin-
ear scaling was not carried out on inputs or outputs. Each active layer had a

constant bias input attached, set to 1. The sigmoid function ( f(z) = l+e+,,,)
was used as the activation function on both active layers. The weights were




incrementally adjusted to minimise the training error function using the back-
propagation method. Momentum and learning rate were set at 0.5. The spread
factor of the sigmoid function was set to 1.

As the purpose of this work was to prove a concept these values were not
tuned although they are consistent with the choices made in a similar study using
surface data, [Grooms|. The other network parameters needed to be selected
with reference to the training data set sizes.

2.3 Training

The data was split up into training, validation and test sets. The training data
had to be kept small when testing, due to the length of time the network takes
to train, at least when assessing different configurations. The training data
consisted of a random selection of 50,000 points from February 1999. Another
50,000 points were used for validation as the network trained. The rest of
this month was used for final testing before using the data from the whole of
January 1999 to produce the final results. Ideally more data would be used for
the training stage, but the associated increase in computation time made this
infeasible.

It has been suggested that for noisy data a network with a larger number of
hidden nodes and training epochs performs better, [Lawrence]. In fact the opti-
mal training may be achieved just before the data becomes over fitted (although
without care the data will be over fitted to both training and validation data
without being able to generalise well to other data). By testing the network on
a range of different data sets the possibility of over fitting should be reduced.
A range of hidden nodes and epochs lengths were tested. One problem is that
the optimal network configuration varies depending on the size of training data.
Generally the more training and validation data used, for a given number of
hidden nodes, the greater the number of training epochs can be iterated before
over fitting occurs.

Rather than binning the data into latitudual bands, as in [Grooms|, the
data was selected by geographic region. A box of 20W to 130E and ON to
85N was chosen as this represented a region where forecast errors have serious
implications to aviation customers. This also had the effect of excluding regions,
such as the data poor Southern Oceans, where the forecast error characteristics
were likely to be different. Overall this gave a complete data set for February of
300,000 points usisng analyses (from a 100x50 grid), and 172,912 points using
observations.

2.4 Choice of predictors

A selection of predictors to model forecast errors needs to be made from all the
values derived from the model.
For example, forecast errors can occur,

e Over high orography, due to sub-optimal model parameterisations.
e Around jet cores, due to their small relative size and steep wind gradients.

e Near rapidly changing features, such as fronts.



The predictors need to represent as many of these kinds of problems as possi-
ble. The number of input nodes has a large impact on the number of training
epochs required to train the network. The selection of appropriate predictors is
therefore of prime importance.

A rough estimation of the usefulness of a range of predictors can be gained
by working out the correlation coefficient between the inputs and outputs. For
simplicity the vector components were combined to form magnitudes and ev-
erything squared to make inputs and outputs all positive. The following table
shows how each compared for all the Mode C observational data, ranked in or-
der of linear regression correlation coefficient against absolute wind speed error.
The overall correlation coefficient using multiple linear regression is also given.

| Ranking | Predictor Squared |

1st Wind speed
2nd dwdp
3rd Divergence
4th dwdt
5th Vorticity
6th Orography
Tth Latitude
8th Lead time
9th Pressure
10th Longitude
Overall R 0.205

The following shows a similar table for the subset of observational data
falling between 20W to 130E and ON to 85N, again ranked in order of correlation
coefficient.

[ Ranking | Predictor Squared |

1st Divergence
2nd Wind speed
3rd dwdt
4th dwdp
5th Orography
6th Vorticity
Tth Longitude
8th Latitude
9th Lead time
10th Pressure
Overall R 0.210

Synoptic predictors appear to outperform spatial predictors in both cases.
Interestingly lead time appeared quite far down the list and although it is where
a relationship with error would be expected it is not as good as the other predic-
tors. This is probably due to the distribution of flight data, in particular with
the middle of routes typically over more data sparse areas that the beginning
and end. Many of the long lead time observations were over, the relatively well
forecast, Europe. The distribution of the observations was such that the use of
spatial predictors, such as longitude, increased the possibility of poor network



performance due to extrapolation between flight paths.
The following, mainly synoptic predictors were chosen, which all rate highly
in the above rankings.

du v

° m—and by

du, du
o ap and ap

e divergence and vorticity
e u and v
e Orographic Height

Similar results were obtained from ranking the predictors from the analysis
dataset, though the lead time and pressure were not included when using anal-
yses as these were kept constant. The same choice of predictors were used for
both analyses and observation based training, mainly for simplicity but this also
allowed the results of the two networks to be compared.

More complicated predictors, including different fundamental quantities such
as humidity, temperature or potential vorticity were not included. The first
derivative predictors should be able to model timing and position errors. Oro-
graphic height gives a measure of the influence orographic parametrisations upon
the forecast.

2.5 Network configuration

A range of hidden nodes needed to be tested, as well as various combinations of
analyses and observations in predicting errors. The performance of the network
can be measured as the training progressed. The normal way of measuring
performance is by using the coefficient of determination (the R-Squared value),
and measures the proportion of the total variance explained by the model. It
takes values between 0 and 1, with 1 indicating a perfect fit.

The actual metric minimised during the training is the mean square error
between the training network output and the actual outputs. Therefore the
validation R-Squared value does not necessarily increase through training as
the network can become over fit to the training data. Comparing training and
validation R-Squared values is a good method of assessing if over fitting has
occurred. It was desirable to be able to separate the errors in the u and v direc-
tion. This would enable flight planners to resolve possible errors in head wind
and cross wind components, and therefore assess more fully the likely forecast
flight time errors. Having more than one output does however complicate the
training as we need to assess more than one R-squared value. It may therefore
be desirable to train a different network for each output component, although
this would again add to the computation time and has not been carried out at
this stage.

A plot of validation u error R-Squared value as training progressed, for a
range of number of hidden nodes is shown in Figure 3. There is some variability
of final R-Squared value after 500 epochs due to the randomness introduced
from the initial weights and data split.

To illustrate the effect of this randomness the training needs to be performed
a number of times with the same network configuration. The results were similar



Figure 4: A comparison of the final R-Squared values achieved for different
numbers of hidden nodes
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Figure 5: Final validation R-Squared values using network trained for 500
epochs.

for each case. The final test R-squared values for 3 different training experi-
ments, using different data splits and initial weights, are shown in Figure 4.

Over fitting did not occur, mainly due to the large amount of data used rel-
ative to the number of epochs. The best validation error was therefore achieved
on the last epoch. This inferred that benefit could still be gained by increas-
ing the number of training epochs even further. By reducing the training and
validation data sets from 50,000 observations to just 1,000 the effect of over
fitting can be illustrated. A plot of R-Squared value as training progressed for
a network with 10 hidden nodes is shown in Figure 5.

The network configuration of 10 hidden nodes with 50,000 observations for
both training and validation was then tested to see how much improvement
could be gained by increasing the training epochs to 5,000. The results as
training progressed are shown in Figure 6. In this run the validation R-Squared
value began to decrease after around 4,500 epochs, indicating that the network
had become over fit.

The trial results indicate that enough data is available to train for a large
number of epochs. This would also indicate that benefit can be gained from
increasing the number of hidden nodes. Due to the large amount of time to train
these networks the use of these larger networks was not tested. The network
configuration explored above consisting of 10 hidden nodes was used for the
rest, of this study. The training shown in Figure 6. took just under 3 days to
compute, so the amount of possible experimentation was limited.
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Figure 7: A long run of 5,000 epochs shows sign of over fitting after 4,500 epochs,
using 50,000 data points for both training (solid) and validation (dashed).
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3 Results

3.1 Using Analyses

The network was trained using the configuration described above. The weights

e ; ¢ : du Ov du y vl
were obtained for a network of 9 input nodes (u, Vs3> dp> Bp? Op div, curl and

Orography), 10 hidden nodes and 2 output nodes (|tfore — Uanails [Vfore — Yanat|)-

A randomly selected 50,000 points from the February data was used to train
the network whilst another 50,000 points were used for validation whilst train-
ing. The weights which achieved the greatest validation R-Squared value were
taken to be the best trained weights. The final R-Squared value achieved for
all the training and validation data using these weights was 0.1785 whilst the
R-Squared value using these weights on the remaining two thirds of February
was 0.1723. This occurred after around 4,500 epochs.

The trained network could then be used on the data from January, of which
the trained network has no experience. It is the performance of the network
in predicting error for this month which is important in terms of network eval-
uation. The final correlation coefficients for the trained network prediction of
absolute u error and v error in January was 0.418 (R-Squared=0.174) and 0.335
(R-Squared=0.112), respectively.

3.2 Using Observations

The same network configuration as described above was used to test the network
performance using observational data, i.e 9 inputs, 10 hidden nodes, 2 outputs.
A training and validation dataset size of 50,000 observations was used, as with
the analyses. The maximum validation R-Squared value occurred after 2,500
epochs. This shorter training time was probably due to the distribution of the
observational data (along flight paths) requiring a smaller set of error features
to be learnt. Multiple runs using data from different period would be required
to confirm this.

The final R-Squared values for the training and validation data was 0.152,
with the remaining February dataset giving a R-Squared value of 0.135. A num-
ber of reasons could cause this poorer performance, principly the error surface
using observational data is more complicated due to errors introduced from us-
ing the observations. Further complications may be due to the minimal quality
control performed on the observational data. In similar studies, [Grooms| and
[Parrett], all errors over a predefined level were removed. In this study however
only clearly unphysical measurements were removed as it was desirable to in-
clude many of the large forecast errors in the training dataset, as these errors
were the most desirable to predict.

The observation trained network was then tested on the data from Jan-
uary. The correlations coefficients for the trained network prediction of abso-
lute u error and v error in January was 0.318 (R-Squared=0.108) and 0.280 (R~
Squared=0.078), respectively. These were again lower than the results achieved
using forecast minus analysis errors.
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Figure 8: Plot of predicted vector error against actual vector error for January
1999 analysis dataset.

3.3 Uses of the network output

The skill of the network is heavily dependent on the forecast errors being gen-
erated by the features it has previously learnt, i.e those which are characterised
by the chosen predictors and have occurred in the training data. There will
be errors caused by factors which are not identifiable from the predictors, and
therefore will not be forecast by the network. The distribution of the data, with
a large proportion of the errors being small, also causes the network to favour
underestimating the forecast error. This is shown more clearly by plotting the
results for whole of January, combined to form vector errors. The performance
of the network can then be studied by comparing individual points, see Figure
70

Geographic plots of network output are more encouraging. The network
seems quite successful at identifying regions of error, even if underestimating
the actual size. Figure 8 shows one example forecast from January where the
analyses network seems to have performed very well compared to the actual
vector wind error derived from the forecast and analysis. It is also clear from
this plot that the network sometimes predicts regions of error which are close,
but do not coincide exactly with the regions of actual forecast error. In these
cases any point based verification system would indicate a failure, where if used
for flight planning the aircraft would most likely fly through the whole region of
interest and the information would still be useful. This could be due to the lack
of information about the model leading up to the forecast, with errors advecting
along the flow. For example you would expect larger errors downwind of an area
of high orography, even though the actual orography downwind is small.

13



%
%
Z
%
X
g3

Average Actual Above/Below
T T
1 1

T
|

0 ™ L L L i L L L L 1 L i L L
0 5 10 15
Significant Predict Vector Wind Error

Figure 10: Average actual vector wind error above (X) and below (A) significant
value

The network can be tested as a method of predicting error by using a contin-
gency table. The average predicted vector wind speed error for January is 2.47
ms~! whilst the average actual vector wind speed error is 2.86 ms~!. Using
this as our warning level gives the following results.

| | Actual above mean | Actual below mean || Total |

Predicted above mean 69351 48448 117799
Predicted below mean 47853 134348 182201
[ Total ] 117204 ] 182796 H 300000 ]

Using the above threshold gives a hit rate of 58.9% and a false alarm rate
of 26.3% of predicting above average vector wind error. Different results will be
gained from using different significance levels. This can be shown by varying
the significant value of predicted vector wind error and calculating the average
actual vector wind error above and below this level. This is shown in Figure 9.

4 Conclusions and Recommendations

Compared to multiple linear regression, improvements can be gained from using
a multi layer perceptron to model forecast errors . There is certainly scope for
further improvements, both to the system and in investigating how the output
could be used.

Adding more predictors would allow the network to identify errors caused
by different types of features, but this would also add more complexity to the
network. It would also be necessary to train and test the system on a wider



range of data, in particular data from different seasons. Using the network
to predict error on a continuous training cycle could also be tested, assuming
that forecast error features are consistent over a number of weeks. In this case
including geographic predictors such as longitude and latitude could be of use.
An estimate of the errors leading up to the forecast would also be useful, as
many cases of poor forecast performance can be traced back to a poor original
analysis.

The stability of the trained networks also needs to be investigated. Some
testing was carried out by adding small perturbations to the inputs but this
needs to be tested further. With such noisy data it is often beneficial to train
a network many times, using different data splits and configurations. Using
this ensemble of networks to produce the final output reduces the risk of over
fitting, as well as indicating the confidence of each network output by producing
a probability distribution of predicted error.

Forecasting numerical model error is a complicated and challenging task.
The non-linear statistical estimation performed by using an artificial neural
network goes some of the way to highlighting areas of the forecast where errors
are likely to occur. Further work needs to be carried out in the training, tuning
and validation of the neural network, in particular assessing how the results may
be utilitised.
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