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1. Executive Summary 
 

 The next set of UK Climate Projections, UKCP18, will include a set of plausible 
realisations of 21st century climate formed directly from climate model output, in order 
to provide a flexible multivariate dataset with full spatial and temporal coherence for 
impacts analysis. 

 This product, hereafter Land Strand 2 (LS2), will be based on a new perturbed 
parameter ensemble of variants of the HadGEM3 climate model (HadGEM3-PPE).   

 By augmenting the core 15-member HadGEM3-PPE with subset of the CMIP5 multi-
model ensemble (MME) we can include structural uncertainties that the PPE cannot 
capture, and potentially expand the range of projections offered in Land Strand 2 at 
both global and regional scale. 

 The CMIP5 subset will also act as a ‘benchmark’ when evaluating the performance of 
the HadGEM3-PPE.  CMIP5 models are known to vary considerably in their 
representation of regional climate processes we thereby consider the benchmark for 
good performance in the PPE to be at least as good as the ‘good’ CMIP5 members.  

 31 CMIP5 models with sufficient data availability have been screened for their 
performance against relevant regional and global performance criteria, and near 
neighbours in order to identify a subset of 10-20 members capable of providing 
credible additional realisations for use across a range of assessments of UK risks 
and impacts  

 The regional criteria that the models were assessed against included the 
climatological circulation patterns of the N. Atlantic/European sector, distribution of 
daily storm track latitudes, mean temperature biases, frequencies of daily weather 
types, blocking frequency and the realism of the AMOC.  Global criteria included 
global mean climate variability and drift, and SST errors. 

 Three models were found to be too unrealistic in their representation of key 
characteristics of the regional climate to provide useful projections for the UK. These 
were IPSL-CM5B-LR (UK affected by a cool bias of 8-9°C and very unrealistic 
summer circulation), FGOALS-g2 (very unrealistic circulation patterns in both 
summer and winter) and MIROC5 (unrealistic summer circulation, lacking westerly 
flow direction over UK). 

 A further six models were rejected due to very poor performance across multiple 
regional and/or global criteria. 

 From remaining models, 13 were selected, sampling from groups of ‘near-
neighbours’. 

 The subset of 13 models recommended for use in Strand 2 is: ACCESS1-3, bcc-
csm1-1, CCSM4, CESM1-BGC, CanESM2, CMCC-CM, CNRM-CM5, EC-Earth, 
GFDL-ESM2G, HadGEM2-ES, IPSL-CM5A-MR, MPI-ESM-MR, MRI-CGCM3. 

 The 13 members selected capture much of the full CMIP5 range of seasonal mean 
changes in temperature and precipitation, but the exclusion of poorest models does 
impact the range of regional projections for the UK  by discounting the member with 
lowest warming in the region (INMCM4) and those with the largest temperature and 
precipitation increases (MIROC-ESM and MIROC-ESM-CHEM).  
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2. UKCP18 Strand 2 Overview 
 

The next set of UK Climate Projections, UKCP18, will include a set of plausible global 
realisations of 21st century climate formed directly from climate model output, in order to 
provide a flexible multivariate dataset with full spatial and temporal coherence for impacts 
analysis. This product is referred to as Land Strand 2 (from hereon ‘LS2’) and will be 
provided alongside probabilistic projection information (Land Strand 1) and downscaled 
regional projections (Land Strand 3). 

The LS2 simulations will consist of a core 15-member Perturbed Parameter Ensemble (PPE) 
based on HadGEM3-GC3.05 (from hereon, HadGEM3-PPE).  A key requirement in the 
design of the LS2 projections is that they should be ‘plausible’ and ‘diverse’.   By ‘plausible’, 
we mean that the models should be sufficiently realistic in their representation of the key 
characteristics of the UK climate that they are useful for climate change impacts studies; by 
‘diverse’ we mean that the projections should capture as wide a range of characteristics of 
plausible future climate changes as possible in order to reflect uncertainty and provide useful 
inputs to decision making.  

In the design of the HadGEM3-PPE, the plausibility and diversity of model variants using 
different parameter combinations was assessed via several stages of modelling and 
assessment.  This process is described in more detail in the UKCP18 Projections Report 
(Murphy et al, 2018), but briefly for context here, parameter combinations were ‘ruled out’ 
based on the following steps and criteria: 

 Quantitative screening: Initially, several thousand 5-day ‘Transpose AMIP’-style 
experiments were used to identify plausible parameter combinations based on global 
and regional-mean-square errors across a range of key atmospheric variables. 
Thresholds for acceptability were established relative to the performance of the 
model variants using standard unperturbed values for the model parameters. A 
similar quantitative assessment was applied to 495 5-year atmosphere-only (AMIP-
Style) experiments. 

 Qualitative screening: 49 members passed the quantitative screening based on 
AMIP-experiments.  These were assessed qualitatively, via an assessment of key 
regional characteristics such as circulation patterns and significant local temperature 
biases to identify and reject members which demonstrated significantly poor regional 
performance   

 Sampling of diverse members based on idealised experiments: Idealised 
experiments for the AMIP members allowed the quantification of aerosol forcing, CO2 

forcing, components of feedback and regional responses to SST warming patterns. 
From the remaining 49, 30 members were selected in order to best sample metrics 
representing aerosol forcing, components of feedback, and 9 quasi-independent 
Giorgi-Francisco regional responses in temperature and precipitation. 

 Screening of coupled simulations: A final screening of the 25 coupled runs as they 
progressed allowed for any remaining members that were demonstrating implausible 
characteristics when run in coupled mode to be eliminated.  While the intention was 
to provide a core PPE of 20-25 members, several issues resulted in a larger number 
of models being dropped at this stage than expected.  Two members suffered 
frequent instabilities which made continuing the run unfeasible to complete in good 
time while three other members were found to exhibit a spin-down of the AMOC and 
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resulted in unrealistic extended Northern Hemisphere sea-ice extents.  5 further 
members were dropped at later stage following more extensive regional evaluation of 
temperature biases over Europe, AMOC strength and hemispheric cooling over the 
20th Century (See Murphy et al, 2018 for further details). 

The range of projections that could be offered in LS2 at both global and regional scale can 
potentially be expanded by including a subset of members of the WCRP CMIP5 coupled 
multi-model ensemble (from hereon, CMIP5-MME) (Taylor et al., 2012, thus adding a range 
of structural model uncertainties to the parameter uncertainties captured by the HadGEM3-
PPE. The CMIP5 ensemble of future projections under RCP8.5 consists of 42 models that 
vary significantly from one another in their performance in reproducing recent climate - 
particularly at the regional scale (e.g. McSweeney et al., 2015a). However, the ensemble 
also includes closely-related pairs or clusters of models that share significant parts of their 
code, and consequently share similar error and projection characteristics (e.g. Sanderson et 
al, 2015a&b). A subset of 10–20 models that are (a) reasonably independent of one another 
and (b) perform well against a set of criteria that are judged to be relevant is certainly easier 
to apply and interpret in impacts studies, and likely to be at least as skilful (if not more skilful) 
as using the full ensemble (Sanderson et al., 2015a). 

A further consideration in augmenting the UKCP18 Strand 2 projections with CMIP5 is the 
consistency in the projection ranges across other products within the UKCP18 project.   
Land Strand 1 will consist of probabilistic projections that will reflect modelling uncertainties 
diagnosed from earlier PPEs that are based on the HadCM3 model, in combination with 
results from emissions-driven earth system model projections from CMIP5.  These 
probabilistic projections will be provided for several emissions scenarios including RCP8.5, 
in which the ranges of response represent the combined effects of uncertainties in physical, 
aerosol and carbon cycle processes to a given emissions pathway. Including projections 
from concentration-driven CMIP5 models (many of which are the same, or closely related, to 
their emissions-driven earth system model counterparts) in the UKCP18 Land-Strand 2 
projections is therefore likely to improve consistency between the Strand 1 and 2 products in 
UKCP18.  

The HadGEM3 PPE simulations in Strand 2 are constructed from a physical ocean-
atmosphere model lacking an interactive carbon cycle, and using prescribed CO2 
concentrations. However, in contrast to the CMIP5 simulations considered in this report, the 
HadGEM3 PPE members use a range of prescribed future CO2 pathways designed to be 
approximately consistent with the range of CO2 outcomes projected in Strand 1.  This design 
choice was made to improve consistency between Strands 1 and 2, although it does mean 
that outcomes for future global temperature rise in the PPE reflect uncertainties in both 
physical and carbon cycle feedbacks, whereas the corresponding CMIP5 outcomes reflect 
only physical feedbacks.    

 

3. Approach to Selection of CMIP5-MME subset 
 

In order to be able to include any CMIP5 model in the UKCP18 Strand 2 ensemble, we 
require that daily data for core variables (precipitation, mean, daily min/max temperature) are 
available from both historical and rcp85 experiments. 31 models meet this requirement and 
therefore form the inital pool of models from which the subset is selected.   
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The selection of suitable parameter combinations for the HadGEM3-PPE follows the 
principles that ensemble members should be ‘plausible’ and ‘diverse’. For the CMIP5-MME 
sub-selection, we apply a two-stage screening process. 

 Firstly, all models are screened qualitatively for significant performance 
shortcomings at global and regional scale that are judged to significantly 
compromise the usefulness of those model projections for regional climate change 
studies relevant to the UK. The use of global information reflects our assumption 
that global performance provides evidence relating to the general plausibility of the 
physical assumptions built into a climate model, while the subsequent regional 
analysis indicates the extent to which a combination of remote and local drivers of 
error might compromise credibility relating specifically to UK applications.       

 Secondly, remaining models are screened for ‘near-neighbours’ which share 
significant portions of code, and are known to generate simulations with similar error 
and projection characteristics. This stage of the screening is intended to reduce the 
number of models in the subset whilst maintaining the diversity of the projections.  

Judging the ‘plausibility’ of projections is a significant challenge in climate change studies, 
and inevitably requires a level of subjectivity in terms of both the criteria/characteristics that 
are selected for assessment and the thresholds for plausibility.  This study follows the 
approach of McSweeney et al. (2015a, 2015b) in using a qualitative performance 
assessment across multiple criteria to flag models with poorer performance.  This approach 
lends some transparency to the subjective assessment. The following categories of 
performance ‘flags’ are used: 

• Red: Model clearly not fit to provide useful regional projections for Europe because a 
feature is so poorly reproduced that relevant changes in regional climate can’t be 
usefully diagnosed or applied in impacts assessments 

• Orange: Significant bias/error, but its impact on the reliability of projections is 
unclear, or information not available for all/most models 

• Yellow: Relatively poor/unrealistic compared with other models 

• Grey: data/analysis not available. 

The performance assessment draws on information available in published literature where 
possible, with some additional analysis of seasonal mean fields of key regional variables 
such as SST, near-surface circulation and precipitation patterns, and annual cycles of 
regional mean temperature and precipitation. In published studies, typically only a subset of 
CMIP5 models are considered, and so the ‘grey’ classification above becomes important 
where models are consistently excluded across multiple assessments (e.g. this may have 
occurred where models were later additions to the CMIP5 archive).   

Where possible the criteria applied to the CMIP5-MME reflects equivalent criteria applied in 
the design of the HadGEM3-PPE. However, for several reasons relating to fundamental 
differences between MMEs and PPEs, the process and criteria must differ somewhat 
between the two ensembles. In particular: 

 The CMIP5-MME displays a wider range of structural errors than those found in the 
HadGEM3-PPE. This is partly because the HadGEM3-PPE members are flux 
adjusted in order to suppress the development of systematic biases in sea surface 
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temperature. The range of error characteristics exhibited by each ensemble may well 
not be sufficiently comparable to apply equivalent performance thresholds for 
inclusion to both ensembles. We see this in a comparison between SST errors 
between the CMIP5-MME and the initial set of 25 flux corrected coupled PPE 
members, whereby the lowest mean square error seen in CMIP5 is similar to the 
largest seen in the 25 coupled PPE simulations.  

 We assess plausibility at different stages in the experiment in the two methods.  For 
the CMIP5-MME, the assessment is post-hoc – this means that we have a data from 
full coupled historical and future simulation for all CMIP5-MME members to draw on 
when the assessing the models, as well as existing published literature to draw on.  
For the HadGEM3-PPE, the ensemble is designed by ‘ruling-out’ parts of parameter 
space or specific parameter combinations, using cheaper (i.e. shorter 5-day and 5-
year) experiments that are run in advance of any coupled model experiments, in 
order to try to identify parameter combinations that we can expect to produce a set of 
plausible and diverse coupled runs. However, once the coupled PPE simulations are 
completed, it will be possible to compare their historical performance on a more like-
for-like basis (subject to caveats associated with use of flux adjustments in the PPE), 
against the CMIP5 members selected in the present report. This will be done in 
future journal papers.  

 Projection diversity was used as an a priori selection criterion for the HadGEM3-PPE 
for CMIP5 this is instead done by filtering for ‘near-neighbours’.  For the PPE, a 
relatively large number of members passed the performance criteria (50) which 
allowed remaining members to be filtered against further criteria which explicitly 
sampled a number of projection characteristics. For CMIP5, only 22 passed 
performance criteria, of which several were known to be very closely related. This 
smaller number of remaining members did not allow for a more explicit sampling of 
projection characteristics. 
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4. Evidence Relating to CMIP5 Model Performance 
 

4.1. Global Characteristics 
 

4.1.1. Global Variability and Drift 
 

Figure 1 shows timeseries of annual global mean surface temperature from pre-industrial 
control runs that provide useful information about (a) drift and (b) internal variability. 

Models which exhibit significant drift in the pre-industrial period are GFDL-CM3, IPSL-CM5B-
LR, MIROC-ESM and MIROC-ESM-CHEM (orange).  

Models in the CMIP5 ensemble display a wide range of different characteristics in their 
global mean temperature variability on interannual-multi-decadal timescales (Figure 1).  
Direct comparisons of internal variability on decadal and longer timescales between 
observations and long control runs such as these are limited by the lack of availability of 
observations records of equivalent length, and difficulties in separating internal variability 
from forced responses given the significant uncertainties in forcings and responses (Sutton 
et al., 2015).  We can, however, look at the characteristics on inter-annual variability, and 
given the wide ranging characteristic of the ensemble, identify some models which are 
clearly not demonstrating variability on interannual timescales which is broadly in order of 
that in the variability of observations.  For example, several models in Figure 1 exhibit 
particularly low interannual variability – these include inmcm4 (orange), FGOALS-g2 
(orange) and the GISS models (the latter are not part of our analysis here but are noted). 
This very low variability indicates a poor representation of the key modes of variability such 
as ENSO and the PDO, and/or poor representation of the atmosphere-ocean coupling. 
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Figure 1: Internal variability and drift in annual mean global mean surface temperature anomalies for 
CMIP5 pre-industrial control experiments. HadCRUt4 observations are also shown for comparison. Taken 
from Sutton et al., 2017. 

 

 

4.1.2. Remote SST errors 
 

The Southern Ocean is the site of a climatically important interface between the ocean 
interior, the atmosphere and the cryosphere. The strong ocean–atmosphere coupling in the 
region means that the Southern Ocean makes a disproportionately large contribution to 
maintaining the global climate (Meijers, 2014).  However, many models in the CMIP5 
ensemble suffer from a pervasive warm bias in the Southern Ocean. We identify those 
models with the largest annual mean warm biases, as inmcm4, IPSL-CM5B-LR, MIROC5 
and GFDL-ESM2M (orange), and to a lesser extent, CNRM-CM5, HadGEM2-ES, 
HadGEM2-CC, MRI-GCGCM3, NorESM1-M and GFDL-ESM2G (yellow). 
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Figure 2(a): Annual mean SST biases in CMIP5 models relative to Had ISST for the period 1940-1960. 
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Figure 2 (b): Annual mean SST biases in CMIP5 models relative to Had ISST for the period 1940-1960. 
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Another region where pervasive SST errors persist in global coupled models is the 
equatorial pacific.  An excessive and narrow SST cold tongue that extends too far west into 
the western Pacific in comparison to observations is a common bias in coupled GCMs. 
Whilst this feature is not evident in Figure 2, due to the relatively coarse scale of the plot, the 
cold tongue biases are clear in analysis McSweeney et al, 2015b , where CSIRO-mk3-6-0 
and inmcm4 are identified as the most extreme examples of this error (orange).  

 

4.2. Regional characteristics 
 

4.2.1. Atlantic/European climatological circulation 
 

The UK climate is characterised by the transit of large-scale weather systems across the 
North Atlantic, and capturing the climatological prevailing westerly/south-westerly surface 
wind direction can therefore be considered to be fundamental to representing UK climate.  
Here we look at the climatological mean (1981-2000) 850hpa circulation compared with 
ERA40 (Figure 3).  

In winter (DJF), a southern bias in the latitude of the region of strongest south-westerly flow, 
and a tendency for flow to be too zonal are common to many of the CMIP5 members. One 
member is flagged for particularly unrealistic performance - FGOALS-g2 (Red), in which the 
region of strongest flow is so far south that it misses all but the very southern edge of the 
UK. 

 Other members with orange or yellow flags are: 

- MIROC5 (orange), which contrary to the common error toward a too zonal pattern 
has a strongly ‘omega shape’ pattern such that flow over the UK is too weak and 
north westerly. 

- CSIRO-Mk3-6-0 (orange) – too far south and turning southerly over Northern 
UK/Scotland 

- MIROC-ESM-CHEM/MIROC-ESM/BNU-ESM (orange) – flow is particularly too far 
south and too zonal, so flow weak over northern UK and Scotland. 

- CCSM4, bcc-csm1-1, bcc-csm1-1-m, MRI-CGCM3 (yellow) excessively strong flow. 

 

These members can be compared directly to examples of model variants which were 
rejected in the design of the HadGEM3-PPE (Figure 4).  Rejected members in the PPE 
display similar characteristics and magnitudes of errors as models with ‘red’ and ‘orange’ 
flags in the CMIP5-MME assessment. Similar errors in both ensembles are instances of the 
exaggerated ‘omega’-shape in MIROC5 and PPE-member 1102900, and the overly zonal 
characteristic of the CSIRO-Mk-3-6-0 and FGOALS-g2 models and PPE-member 1102823.   
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Figure 3: 850hpa circulation in December-January-February (DJF) 1981-2000 for ERA40 observations and 
in selected example models (a-h) from CMIP5. (a)-(b) indicate acceptable models, (c) is rated ‘yellow’, (d)-
(f) are ‘orange’ and (h) ‘red’.  For a full set of plots see Appendix. 



15 
 

 

Figure 4: Examples of ‘unacceptable members’ DJF circulation patterns in 5-year AMIP experiments used 
in the design of the HadGEM3-PPE.  Plots show DJF mean for years 2004-2009, errors relative to ERA40. 

 

In summer (JJA) the prevailing westerly in the mean circulation is less strong but remains a 
significant driver of weather systems across the Atlantic. Some models fail to capture flow 
extending across the UK (Figure 5), either because the latitude of peak flow is too far south 
(e.g. FGOALS-g2 - red) or is too weak and dissipates too far west or because flow is too 
weak or both (MIROC5, IPSL-CM5B-LR – red). 

Other flagged models are: 

- MIROC-ESM, MIROC-ESM-CHEM, CMCC-CESM, flow too far south, thus very 
weak over northern UK/Scotland (yellow) 

- bcc-csm1-1-m flow consistently too strong throughout region (yellow). 
- CNRM-CM5 – flow too far south and southerly over UK (yellow). 

 



16 
 

 

Figure 5: 850hpa circulation in June-July-August (JJA) 1981-2000 for ERA40 observations and in selected 
example models (a-h) from CMIP5. (a)-(b) indicate acceptable models, (c)-(e) are rated ‘yellow’, (f)-(h) 
‘red’.  For a full set of plots see Appendix. 

 

 

4.2.2. North Atlantic Storm track 
 

The north Atlantic storm track in the storm seasons of autumn and winter is characterised by 
a tri-modal latitudinal distribution, with peaks at around 38-42, 55-60 and 70-75°N. While this 
will in part be determined by the realistic representation of the climatological circulation 
already assessed in Section 4.2.1, this additional analysis tells us about the variability within 
the season.  

While most CMIP5 models broadly capture the three modal peaks in the distribution in some 
form, (Figure 6), almost all over estimate the frequency of tracks occurring at 40-50°N. 
FGOALS-g2 (red) is notable for its absence of either of the more northern peaks, reflecting 
the exceptionally too-far –south mean circulation in Figure 3. Four other models are distinct 
from the ensemble in failing to represent the two distinct modal peaks at 35-40 and 55-60, 
with too many tracks occurring throughout the 40-60°N latitudes – bcc-csm1-1, BNU-ESM, 
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MIROC-ESM and MIROC-ESM-CHEM (orange), while bcc-csm1-1-m fails to capture the 
northern-most peak (orange). 

   

 

 

Figure 6: Zonal mean (5-25°) storm track density in CMIP5 historical simulations versus ERA-Interim. 
‘least realistic’ models (those with highest RMS and lowest correlation between observations and cmip5 
member) are highlighted in colour/markers. Figure originally appeared in McSweeney et al., 2015a). 

 

4.2.3. Regional mean temperature biases 
 

CMIP5 models span a range of biases in mean air temperature of around +- 2.5°C (Figure 
7A notable exception to this is IPSL-CM5B-LR (red) which displays a more significant cold 
bias of -8-9°C in winter (Figure 7). This extreme cold bias takes mean winter temperatures 
well below zero. Figure 8 shows the geographical extent of the cool bias; surface air 
temperature is cooler than observed throughout the North Atlantic and European region but 
the most excessive cold biases of more than 12 degrees particularly affect northern Europe, 
including Northern England and Scotland. 

Looking similarly at SST biases in the north Atlantic sector (Figure 2), there is a tendency for 
several models to demonstrate significant cool biases. The larger biases are negative, 
notably IPSL-CM5B-LR demonstrating extreme cool temperatures, but also 8 further models 
in which there are significant cool regions in the north Atlantic of 4-6°– CMCC-CM, CMCC-
CMS, CMCC-CESM, IPSL-CM5A-LR, IPSL-CM5A-MR, MRI-CGCM3 (orange), and to a 
lesser extent, bcc-csm1-1-m and CNRM-CM5 (yellow).  
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Figure 7: Mean near-surface air temperature 1981-2000 over UK land grid points between 10W-5E, 50N-
63N in CMIP5 models and E-OBS observations (Hofstra et al, 2009). 

 

Figure 8: DJF mean temperature bias versus E-OBS observations (Hofstra et al, 2009). 1981-2000 in IPSL-
CM5B-LR. 

 

 
 



19 
 

4.2.4. Weather type frequencies 
 

Weather typing provides the opportunity to assess a models ability to reproduce the 
variability in synoptic states in the North Atlantic region which cause the wide range of 
meteorological conditions in the UK.  Perez et al. (2014) use a classification system based 
on 100 weather types applied to daily mean sea level pressure from members of CMIP5 and 
ERA40 data sets to assess the relative realism of each member.  Perez et al. (2014) 
calculate a performance ‘scatter index, normalised by frequency,’ that accounts for the 
overall frequency of weather types and also the interannual variability.  A relative entropy 
score is also provided, which representing the models ability to capture low-probability 
weather types.  

Given that these indices represent an aggregated view of performance over many individual 
weather patterns, we use the information in do not attempt to make absolute (red) 
judgements on credibility, limiting ourselves to relative judgements (orange, yellow).  
FGOALS- g2 and IPSL-CM5B-LR (orange) performed significantly worse than the other 
models in the frequency of the weather types (Figure 9), which is perhaps not surprising 
given the errors in mean climatological circulation shown in section 4.2.1.  Other models 
which appeared in the bottom 10 models by this index are bcc-csm1-1-m, BNU-ESM, IPSL-
CM5A-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM (yellow). Inmcm4 demonstrated 
particularly poor scores in summer (not shown), offset by good performance in other 
seasons, so this is also flagged (yellow). 

 

4.2.5. Blocking Frequency 
 

Blocking events can be responsible for extended periods of settled UK weather, which often 
lead to damaging impacts such as dry, cold snaps in winter and heatwaves in summer.  
Blocking frequency is, however, typically underrepresented by GCMs largely as a result of 
biases in the mean state (Kennedy et al., 2016; Scaife et al, 2010), such as errors in the 
latitude of the tropospheric jet (Masato et al., 2013). 

Annual mean blocking frequency is summarised in Figure 10 from the IPCC AR5 WGI 
report. While a number of the models underestimate the magnitude of blocking frequency, 
several mis-represent the longitudinal position of the key blocking region in the Atlantic 
sector (-60-60); MIROC-ESM-CHEM  and FGOALs-g2, and bcc-csm1-1-1m (orange) 
demonstrate significantly underestimated blocking frequency in both the Atlantic and Pacific 
sectors. BNU-ESM (red) shows almost no blocking at the longitudes of the UK (-10 to 5). 
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Figure 9: CMIP5 models sorted by models performance (higher performance gives a lower ‘SI’).The mean 
Relative Entropy is marked with a black dot. The vertical dashed and dotted lines show RE and SI scores 
obtained by comparing alternative reanalyses of observations. Figure reproduced from Perez et al., 2014. 
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Figure 10: Annual mean blocking frequency in the NH (expressed in % of time, that is, 1% means about 4 
days per year) as simulated by a set of CMIP5 models (colour lines) for the 1961–1990 period of one run 
of the historical simulation. Grey shading shows the mean model result plus/minus one standard 
deviation. Black thick line indicates the observed blocking frequency derived from the National Centers 
for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. Only 
CMIP5 models with available 500 hPa geopotential height daily data at 
http://pcmdi3.llnl.gov/esgcet/home.htm have been used. Blocking is defined as in Barriopedro et al. 
(2006), which uses a modified version of the (Tibaldi and Molteni, 1990) index. Daily data was interpolated 
to a common regular 2.5° × 2.5° longitude–latitude grid before detecting blocking. Figure reproduced 
from Christensen et al. 2015. 

 

4.2.6. Atlantic Meridional Overturning Circulation (AMOC) 
 

The AMOC plays an important role in transporting heat northwards in the Atlantic Ocean, 
exerting significant influence on the regional mean temperature, but also influence dynamical 
aspects of the regional climate e.g. via its influence on the storm track (e.g. Brayshaw et al., 
2009).  

Global coupled models vary in their representation of the AMOC in terms of both the 
magnitude of the circulation and its variability. Time mean streamflow functions shown for 
some CMIP5 models, indicate significant diversity in both magnitude and structure across 
the ensemble (Menary and Wood, In Press) (Figure 11).  Some models exhibit a stronger 
streamflow than others –those models with stronger flow tend also to be those in which the 
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flow also extends to deeper levels (e.g. NorESM1-M, FGOALS-g2).  Available observations 
of the AMOC for evaluation of these features are limited, but are available for a short recent 
period of 2004-2015 at a 26.5°N transect via the RAPID project (Cunningham et al., 2009). 
These are shown as timeseries’ from the models and this observational dataset in Figure 12 
indicating that, aside from the underestimation of the interannual variability by almost all 
models, the magnitude of the AMOC is also significantly too strong in the Norwegian models 
(NorESM1-M), and FGOALS-g2 (orange). Apart from these outliers, while the models exert a 
wide range of AMOC magnitudes, they are broadly in line with the range of values during the 
short observation period recorded via the RAPID project.  One further characteristic is the 
‘noisy’ nature of the streamflow in the inmcm4 model, which although difficult to verify due to 
a shortage of observations, is unlikely to be realistic (Matt Menary, pers. comm.). 
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Figure 11: Time Mean Atlantic Overturning stream functions for models for which data were available 
from the CMIP5 archive (Menary and Wood, 2018). Black contours show the projected change under 
warming scenarios (not referred to in this report). 
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Figure 12: Timeseries of AMOC as volume transport at 26°Nand below 500m in CMIP5 simulations in both 
historical and projection simulations (NB only the period up until present day is considered here). 
Observations from the RAPID project dataset between 2004 and 2015. 

 

4.3. Performance Summary 
 

The qualitative performance flags red/orange/yellow allocated for regional and global 
performance criteria are summarised in Table 1.   

Models which are clear cases for elimination based on this assessment are FGOALS-g2 and 
IPSL-CM5B-LR based on significant misrepresentation of European large-scale behaviours 
which drive key aspects of the regional weather and climate.  For IPSL-CM5B-LR, the very 
large cool bias of around 8-9° affecting the European region means that it is hard to justify 
using projections from this model in climate impacts studies – while smaller biases might 
justifiably be mitigated for the purpose of applying these projections to impacts assessments, 
it would clearly not be appropriate to attempt to treat such a large bias in this way. 

FGOALS-g2 and MIROC5 exhibit very unrealistic structure in the climatological circulation, 
and in the case of FGOALS-g2, the distribution of storm track positions. BNU-ESM exhibits 
almost no blocking events affecting the UK region.   The unrealistic representation of these 
key features of these key drivers of regional weather and climate indicate fundamental 
issues in the representation of the UK climate, which again make it difficult to justify using 
these projections to diagnose or explore plausible future climate changes for the region. 

For several other models, indications across multiple evaluation criteria indicate they exhibit 
significant shortcoming across several of the assessed criteria.  MIROC-ESM, MIROC-ESM-
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CHEM, CSIRO-mk3-6-0, inmcm4, and bcc-csm-1-m have all been flagged with an ‘orange’ 
tag under at least two criteria in Table 1.  While it may not be clear what impact these 
significant errors individually might have on the plausibility of the projections for the UK, 
overall confidence in the credibility of these projections is reduced as a result of these 
multiple significant shortcomings.  These 6 models are therefore rejected for inclusion in the 
CMIP5 subset. This leaves 22 models for further consideration in the following section. 
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Table 1: Summary of qualitative performance scores for CMIP5 models  

 Regional Criteria Global Criteria 

 NE Atlantic 
Weather 
Types 
(Perez et al, 
2014) 

Annual 
mean 
blocking 
frequency
: IPCC 

Mean DJF 
circulation  

Mean JJA 
circulation 
 

 Mean 
temp 
bias - 
regional 

Atlantic 
SST bias 

AMOC 
(Menary and 
Wood, In 
press 
 

 Storm Track 
(McSweeney 
et al, 2015a) 

 Global 
temperature 
variability and/or 
drift in piControl 
(Sutton et al, 2015) 

Remote  SST 
biases – 
southern ocean 
and Tropical 
pacific 

High latitude 
temperature 
variability 
(Jones et al, 
2013) 

bcc-csm1-1            

bcc-csm1-1-m            

BNU-ESM            

CanESM2            

CESM1-BGC            

CMCC-CESM            

CMCC-CM            

CMCC-CMS            

CNRM-CM5            

ACCESS1-0            

ACCESS1-3            

CSIRO-Mk3-6-0          (CT)  

EC-EARTH            

inmcm4          (CT &SO)  

IPSL-CM5A-LR            

IPSL-CM5A-MR            

IPSL-CM5B-LR            

FGOALS-g2            

MIROC5            

MIROC-ESM            

MIROC-ESM-
CHEM 

           

HadGEM2-CC            

HadGEM2-ES            

MPI-ESM-LR            

MPI-ESM-MR            

MRI-CGCM3            

CCSM4            

Nor-ESM1-M            

GFDL-CM3            

GFDL-ESM2G            

GFDL-ESM2M            

CESM1-CAM5            



 

 

5. Screening for near-neighbours 
 

Some pairs /groups of models within the CMIP5 ensemble are known to share significant 
parts of their code, and therefore also share error and projection characteristics (Sanderson 
et al., 2015a; Sanderson et al ., 2015b; Knutti et al., 2013). Sanderson et al. (2015a and 
2015b) use a multivariate metric of present day climatology to quantify similarity between 
pairs of models from the CMIP5 (and CMIP3) ensemble (see Figure 13), showing clear 
relationships between some groups of models.  These groups of ‘near neighbours’ include 
sets of models from particular centres, but also highlighting some groups of models that 
come from different centres but still share significant portions of code, which may not be so 
easy to identify without this type of analysis.  Sanderson et al 2015b extends this analysis to 
future projections, demonstrating that the degree of dependence between models in their 
present-day climatology applies similarly to projection characteristics. 

In order to minimise double-counting of structural modelling assumptions, we therefore 
sample a subset of models from the remaining 22 by excluding some of those ‘near 
neighbours’. Groups of models with calculated distances in the order of <0.6 are shown in 
Table 1.  The three CMCC models (CMCC-CESM, CMCC-CM and CMCC-CMS) are not 
shown in Figure 13, but appear in an equivalent figure in Sanderson et al, 2015a. EC–Earth 
similarly does not appear in either Sanderson analysis, thus in the absence of this 
information, is treated as an independent ensemble member. 

We can now use the additional performance information from Table 1 to select preferred 
members from each group, i.e. those which have fewest poor performance flags or those 
which have been included in most studies. We identify 2 members from groups of 4 or more, 
and one from each other group (shown in green in Table 2).  This process results in a 13 
member subset: ACCESS1-3, bcc-csm1-1, CCSM4, CESM1-BGC, CanESM2, CMCC-CM, 
CNRM-CM5, EC-Earth, GFDL-ESM2G, HadGEM2-ES, IPSL-CM5A-MR, MPI-ESM-MR, 
MRI-CGCM3.  

Figure 14 gives an indication of what impact the 2-stage sub-selection has on the range of 
projected changes in mean temperature and rainfall indicated by the ensemble.   The sub-
selection process does narrow the range of projections of both of these quantities 
somewhat, and this is mainly due to the exclusion of poor performers which have projections 
at the extremes of the range.  The large increases in summer precipitation are excluded due 
to the poor performance of MIROC-ESM and MIROC-ESM-CHEM, and similarly, the coolest 
end of the range of temperature projections is excluded with inmcm4.  The reduction in 
range due to the filtering of near-neighbours has a smaller impact on the range of 
projections.  While we have filtered for near-neighbours based on existing quantitative 
information about near neighbours, other similar studies have explicitly sampled models to 
span a range of projections for specific variables, seasons and regions (e.g. McSweeney et 
al, 2015a, 2015b; Whetton et al., 2012).  Those sampling approaches may maximise the 
spread captured for the very specific regions, seasons and variables on which the selection 
is based but here we have used an approach that draws on information about the 
relationships between models across a wider range of variables, regions and seasons and 
may reasonably be expected to be less sensitive to the specific choice of region, variable or 
season. 
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Figure 13: A graphical representation of the intermodal distance matrix for CMIP3, CMIP5, the multi-
model mean, and a set of observed values. Each row and column represents a single climate model (or 
observation). Each box represents a pairwise combination, where warm colours indicate a greater 
distance. Distances are measured as a fraction of the mean model bias in the combined CMIP3 and 
CMIP5 ensembles (taken from Sanderson et al., 2015b) 
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Table 2: CMIP5 models clustered according to near-neighbours identified from Sanderson et al 2015a&b. 
EC-EARTH and CNRM-CM5 are grouped based on a shared atmosphere model (Knutti et al., 2013). 
Models in red had already been excluded based on evaluation against key performance criteria outlined 
in Section 4.3. Green models are the preferred remaining models for each cluster.  

bcc-csm1-1  
bcc-csm1-1-m 
 

BNU-ESM  
CCSM4 
CESM1-BGC 
CESM1-CAM5 
Nor-ESM1-M 

CanESM2 CMCC-CESM 
CMCC-CM 
CMCC-CMS 

CNRM-CM5 
 

IPSL-CM5A-LR 
IPSL-CM5A-MR  
IPSL-CM5B-LR 

MIROC5 
MIROC-ESM 
MIROC-ESM-
CHEM 

FGOALS-g2 MPI-ESM-LR 
MPI-ESM-MR 

MRI-CGCM3 

EC-EARTH 
 

inmcm4 CSIRO-Mk3-6-0 GFDL-CM3 
GFDL-ESM2G  
GFDL-ESM2M 

ACCESS1-0  
ACCESS1-3 
HadGEM2-CC 
HadGEM2-ES 
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Figure 14: Regional mean changes in mean temperature and precipitation by 2070-2100 relative to 1961-
90 under RCP8.5 in CMIP5 GCMs. Models included in the selected subset shown in blue, models which 
were rejected on the grounds of performance are shown in grey. 

 

 

 

 

 

 

 

 

 



 
 

31 
 

6. Summary 
 

In this exercise, a set of 13 members of the CMIP5-MME has been identified that will be 
used to augment a 15-member PPE to provide a set of plausible and diverse projections for 
UK climate impacts assessments.   The 13 member subset has been selected using a 2 
stage approach in which the models were initially screened qualitatively for global and 
regional performance to exclude poorly performing models, and then to reduce the size of 
the remaining ensemble by removing some models which are near-neighbours.  The 
regional criteria that the models were assessed against included the climatological 
circulation patterns of the N. Atlantic/European sector, distribution of daily storm track 
latitudes, mean temperature biases, frequencies of daily weather types, blocking frequency 
and the realism of the AMOC.  Global criteria included global mean climate variability and 
drift, and SST errors. 

Three models were found to be too unrealistic in their representation of one or more key 
characteristics of the regional climate to provide useful projections for the UK.  These were 
IPSL-CM5B-LR (UK affected by a cool bias of 8-9°C and very unrealistic summer 
circulation), FGOALS-g2 (very unrealistic circulation patterns in both summer and winter) 
and MIROC5 (unrealistic summer circulation, lacking westerly flow direction over UK). Six 
further models were found to perform very poorly against several of the regional and/or 
global criteria.  From the remaining 22 models, 12 were selected by sampling from groups of 
‘near-neighbours’, in order to reduce the reliance on shared model components in the final 
chosen subset.  The 13 members selected capture much of the full CMIP5 range of 
seasonal mean changes in temperature and precipitation, but the exclusion of poorest 
models does impact the range of regional projections for the UK  by discounting the member 
with lowest warming in the region (INMCM4) and those with the largest temperature and 
precipitation increases (MIROC-ESM and MIROC-ESM-CHEM).  

Ideally, the criteria for including MME members would be equivalent to those applied to 
members in the design of the PPE. However, in practice, differences in the experimental 
design, structural differences between the two ensembles and differences in availability of 
performance information mean that it is not practical to apply the same absolute thresholds 
for inclusion to each ensemble. While some qualitative criteria applied to both ensembles 
(e.g. the European seasonal mean circulation patterns in Section 4.2.1), similar thresholds 
for acceptable/unacceptable performance could be applied. However, in other cases, such 
as for global SSTs, this was not practical because the RMS errors were systematically larger 
in the CMIP5-MME compared with the coupled PPE members, due to use of flux 
adjustments in the latter. A model sub-selection activity is inevitably a balance between 
eliminating some models in which we have reduced confidence and while retaining enough 
models to provide projections which are both plausible and diverse.  In order to achieve this 
balance, the assessment of  performance of members within a given climate model 
ensemble (as carried out here) inevitably becomes an assessment of relative performance. 
We note that UKCP18 users will use our CMIP5 subset in combination with PPE members to 
evaluate impacts and risks, so it will be important to extend the assessment in subsequent 
work using a common set of metrics applicable to members of both ensembles once the 
PPE simulations have completed.  In these evaluation activities, the CMIP5 subset will also 
act as a ‘benchmark’ for gauging  the performance of the HadGEM3-PPE.  The CMIP5 
models are currently considered to represent the ‘state-of-the art’ in climate modelling, but 
are also known to vary considerably in their representation of regional climate processes.   
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We therefore consider that a reasonable benchmark for acceptable performance in the PPE 
to be that which is as good as these ‘good’ CMIP5 members or better across a range of 
evaluation metrics that will appear in UKCP18 documentation (e.g. Murphy et al, 2018). 

  

Selecting a subset of models based on performance criteria is challenging for a number of 
reasons. One of these is that the sub-selection process requires subjective judgements at a 
number of stages, in (a) the choice of evaluation criteria (b) allocating flags to particular 
models and (c) deciding on inclusion/exclusion of models based on the flags across multiple 
assessment criteria.  However, while differences in these subjective choices could influence 
the outcome, it is clear that several models clearly exhibit shortcomings across multiple 
criteria, which suggests some robustness in the judgements that these are weaker models 
we should have less confidence in.  The criteria used here were chosen specifically to 
identify models sufficiently realistic to be useful in impacts studies for the UK – other sub-
selection activities may make different subjective decisions where the purpose  differs.  The 
selected 13 CMIP5 models will be augment the 15-member HadGEM3-PPE, resulting in a 
28-member ensemble of global realisations in UKCP18 Land Strand 2 which can be used to 
explore potential impacts of these future climate scenarios.  A more detailed account of the 
design of the HadGEM3-PPE, and evaluation of the historical performance and future 
projections in the resultant 28-member ensemble can be found in the UKCP18 Science 
Report (Murphy et al, 2018). 
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9. Appendix 
 

Table A1: Models and modelling groups 

 

Modelling Group Group 
Acronym 

Model 
Designation 

Commonwealth Scientific and Industrial Research Organization 
(CSIRO) and Bureau of Meteorology (BOM), Australia 

CSIRO-BOM ACCESS1-0 

Commonwealth Scientific and Industrial Research Organization 
(CSIRO) and Bureau of Meteorology (BOM), Australia 

CSIRO-BOM ACCESS1-3 

Beijing Climate Center, China Meteorological Administration BCC bcc-csm1-1 

Beijing Climate Center, China Meteorological Administration BCC bcc-csm1-1-m 

College of Global Change and Earth System Science, Beijing 
Normal University 

GCESS BNU-ESM 

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2 

National Center for Atmospheric Research NCAR CCSM4 

Community Earth System Model Contributors NSF-DOE-NCAR CESM1-CAM5 

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CESM 

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CM 

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CMS 

Centre National de Recherches Météorologiques / Centre Européen 
de Recherche et Formation Avancée en Calcul Scientifique 

CNRM-CERFACS CNRM-CM5 

Commonwealth Scientific and Industrial Research Organization in 
collaboration with Queensland Climate Change Centre of 
Excellence 

CSIRO-QCCCE CSIRO-Mk3-6-0 

EC-EARTH consortium ICHEM EC-EARTH 

LASG, Institute of Atmospheric Physics, Chinese Academy of 
Sciences and CESS,Tsinghua University 

LASG-CESS FGOALS-g2 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2G 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2M 

Met Office Hadley Centre  MOHC HadGEM2-CC 

Met Office Hadley Centre  MOHC HadGEM2-ES 

Institute for Numerical Mathematics INM inmcm4 

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR 

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-MR 

Institut Pierre-Simon Laplace IPSL IPSL-CM5B-LR 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University of 
Tokyo), and National Institute for Environmental Studies 

MIROC MIROC5 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University of 
Tokyo), and National Institute for Environmental Studies 

MIROC MIROC-ESM 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University of 
Tokyo), and National Institute for Environmental Studies 

MIROC MIROC-ESM-CHEM 

Max-Planck-Institut für Meteorologie (Max Planck Institute for 
Meteorology) 

MPI-M MPI-ESM-LR 

Max-Planck-Institut für Meteorologie (Max Planck Institute for 
Meteorology) 

MPI-M MPI-ESM-MR 

Meteorological Research Institute MRI MRI-CGCM3 

Norwegian Climate Centre NCC Nor-ESM1-M 
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Figure A1(a): 850hpa circulation in December-January-February (DJF) 1981-2000 for ERA40 observations 
and CMIP5 models. 
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Figure A1(b): 850hpa circulation in December-January-February (DJF) 1981-2000 for ERA40 observations 
and CMIP5 models. 
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Figure A2(a): 850hpa circulation in December-January-February (DJF) 1981-2000 for ERA40 observations 
and CMIP5 models. 
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Figure A2(b): 850hpa circulation in December-January-February (DJF) 1981-2000 for ERA40 observations 
and CMIP5 models. 

 

 


