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Finite difference approximations in numerical prediction

by E. Knighting and D. E, Jones.

Introduction

The differential equations which occur in numerical prediction of the pressure
field cannot be solved by means of analytic solutions except in a few trivial
cases: they are usually solved by replacing the differential equations by their
finite difference analogues and then carrying out the solution numerically. The
link between the differential and difference equations is provided by the Taylor

series e.g.
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For practical use such series as that on the right must be truncated after a few
terms, usually after a single term. The solution of the difference equations is
then only an approximation to the solution of the differential equations and the
errors arising from such approximations to the derivative are known as truncation
errors. }

In forming equation (1) the values of the function >< have been considered at
points distant LL apart, The finite difference analogues of the differential

equations will usually refer to values of the co-ordinates X, , %, )y Kyeoen -

at distances apart of '1.) h; ) k3 Ve e - and the solution of the finite
difference equations will be functions of hﬂ )‘12) h3 oo g A as well as
of 35.) - AR SR It is sometimes possible to choose

lx. ) ,Ll ) "\3 ...... so that as H., ; hz, 3 A‘b ... O the solution

of the finite difference equations approaches that of the differential equations
and this is the solution that we require. It is also possible for the choice to
be made in such a way that the solution of the difference equations does not
approach that of the differential equations, and indeed so that small errors are
magnified indefinitely and ultimately the solution appears as rapidly oscillating
with increasing amplitudes: the process of solution is then said to be computa-
tionally unstable,

The object of the present work was to examine a number of finite difference
approximations, which could be of practical value, in order to determine the

truncation errors introduced and the criteria for stability in computation,

ot



A simple conservation equation

The typical equation arising in numerical prediction is

& - -V.UX +F 2

where the figlds of X and [ are known and v is a function of X « Whatever

limitations there are in solving this equation when \/ is a constant must apply

also to the case in which \/ depends on X and we will investigate the much

U‘i‘% =0 (3)

where U is constant. Later we will test the conclusions drawn by computations

simpler equation

using equations similar to (2) rather than (3).

The finite difference equation usually associated with (3) is

Ci)(x,t*r‘t)*Cb(?C\t*'& 4 U Ci)(ac+h)t)-d>(x-h)t>
2. 2 h

where the time and space derivatives have been replaced by centred differences.

=0 (4)

We assume that the solution is of the form
b= c(t)ws kx +5(t) sin kx (5)

where the right hand side may be generalised by summation. Since the equation is
linear there is no interaction between terms of different wave number. It is
convenient to write L=m and CY) +L5MT) = A ) = Arm :

Then

q') = reol Part LA °ka (6)

and (4) gives the recurrence relationship

A‘rw—! i A'n.-‘l o 2 L/M— A'r\. =0 (7)

where

U=z sinkh
s h (8)

The solution of (7) is

A, = ALwssimE] + Bliw-fioa | o

where A and B are arbitrary constants, independent of ‘1L .

£ /LA. exceeds unity we may put = (0dh where \_}/ is real and (9) becomes

A, [A ™Y+ R “4’] (10)




Hence
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It can also be shown that if A is unity, A, |"= 0 with M* and in
neither of these cases will the finite difference computation converge. Clearly
S : : n I h
it is necessary that }'L and v be chosen so that the inequality L.J_"E__sl':':_"_lf..- < I
is satisfied. In the more general case cbtained by summation of the right hand
side of (5) this inequality must hold for all values of k and hence the
inequality L—)LT,’E % must be satisfied, This condition is well-known

for hyperbolic equations of the second order, such as the wave equation, If

‘/L.L|<| ,wemaywrite/j.:sink_‘.)and
= At + BE D' 6—'m+ (11)

+
}Antz lies between the values {‘ P[l +|B|} and, {‘F’l = \Bl}z so that the

amplitude of the solution is bounded; the phase speeds may, of course, be in error.

The differential equation (3) corresponds to a single wave of constant shape
moving along the x-axis with constant velocity U . The solution of the finite
difference equation given by (11) corresponds to two waves moving along the x-axis.
The first of these is represented by A exp L(nq/—kx) and has a velocity
l_‘)/krc where sin \IJ = U_}' sinkh, . As }L and 7 approach zero this

h

velocity approaches U . The second is represented by B exp —L(TIL‘J 5.5 nTT-.-k'I)
and has a velocity - (L{; ITF)/k'r which may be regarded as moving in either
direction, This second wave has no counterpart in the solution of the differential
equation and can only vanish under very special conditions.

Simple forward time step.

It is possible to set up a finite difference analogue of (3) using a forward-
time step instead of the centred-time difference of (4): it is necessary that some
such analogue exist for the difference formula (4) cannot be applied until (b
is known at two times, say £ = O and L = T , and the value of ¢ at

‘t = 1/ is often computed by using a forward-time step. We have

CP(x,t-rt’) - Cb (’L,@ o C‘)(‘x-rh)f) _q)(x-h,t)
T 2 h
and after inserting (5) we find

(H"/bb\nAo (13)

so that computation is unstable since |A,|— ©C with Y . Since M

- O (12)

increases with k , the amplitudes of the short waves are increased more quickly
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than those of the long waves: this gives rise to typical computational instabil-

ity shown by a pattern of short waves of increasing amplitude swamping the long
waves.

Nevertheless, 24 hour forecasts have been successfully carried out by use of
formilae similar to (12) and the instability has not been apparent; this mist have
been ‘because/u, was generally quite small, owing to the small velocities and long
wave lengths,

As a simple example illustrating the use of a forward-time step followed by
the use of a centred-time step consider the solution of (3) which has the value
cos koc at L= ; it is cos k(x—-Ut).

Using (13) we have
Cl) (@) = ws kx
:_‘P(’t:) = (v KL+ sin kX (16)

and these equations are sufficient to solve for the arbitrary constants in (11)
giving
CP(Z"""“) = 60‘52%\}/ sk + sin2my secy smkx
(15)

b (Zn+] ©) = sec J cos(nedy eoskac + sim (Rred  sim kx

‘ : S 2
The amplitude varies between unity and <ec LP or 1/(4 -/u,) and
since/(A. increases with k the amplitudes of the short waves have the greatest

variation, If we write (15) as
i -kx (g +k
¢(n'r:)=rea1, Part‘ﬁ{(l +S€U7L)€(m{) / )+(I-S€CLD (“Te (d JC)} (16)

the first term appears as a wave with velocity \4/ /k'u . The additional
term, which it does not seem possipie to avoid, has its amplitude reduced as k

is reduced, so that it adds less truncation error for the long waves.

An implicit finite difference scheme,

A centred-time step with the space derivatives computed at the central time
will always produce two waves insead of the single wave which is required. A
forward-time step will produce a single wave, whether the space derivatives are
computed at the initial or final time. As we have seen above, if the space
derivatives are computed at the initial time the computation is unstable:

similarly, if the space derivatives are computed at the final time the amplitude

of the wave decreases to zero with time. If we take the formula
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(17)

writing CJn as tnc amplltude factor after a time 1€ s then

j . t i \
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Where /;y
'/ o
i!f(l.’l 5/ ’ A
2 s (19)
Hence ‘(4 I‘" i G ’ whatever the value of Here /ﬂ” corresponds to tne
p I = ; hatever the e o /ﬂ . espc
tangent of an angle and hence may run from zern to infinity. In the previous

oriterion//l‘ corresponded to the sine of an angle and hence conuld lie only between
zero and unity. The vhase speed frou (18) is g)/llt' , which is less than tnat
found for the wave using tké centred-time step, in itself an undercstimate. Some
actual values are given in Table I and there is a serious underestimation of the
phase speed at high velocities. At velocities of 50 K&, or less tnere is little
to choose between tnis implicit method and tnat of the centred-time stcp. "Tne
gain in using the implicit method is tne absence of a second wave solution,
awplitude preservation and ability to move forward in comparatively large time

steps; the loss is in tne time needed to perform the couputations.

One-gided snace derivatives

When carrying out couputations »n the mndel including tropopause effects

( ¥nighting (1) ) noted that snort wave features of large auplitude appeared
where gradients were large. In regions of ravid space change the two-sided space
difference which we have used hitherto is not a good avproximation to the derivative
Figure 1 snows the effect of advecting a field defined at tne grid points for toree
time steps with a speed equal to 1/3 grid length per unit time. The field snhould
then move on one grid length, but large discrepancies are aoparent and at the grid
point warked fﬂ the pressure has risen to 300 mb, instead of falling slightly.
One might expect a better result by approximating to the space derivative by a
finite difference using grid points upwind of the point in guestion rather than a
finite difference wnich uses symuetrical points. There are two simple approxima=-
tions. The first has a centred-time step and is

ﬂiff‘c)“st'(x f'r) L/ l"/,rf) Sb(-?“/" [.') O

1

(20)

Ine awplitude increases exvonentially and the computation is unstable. The
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second has a non-centred-time step and is

P ¢ pE,t) - P (D

=0 (21)

T h

The amplitude factor is given by

= (- -] @

and  |H. | > o with m if ¥ 5 ) . X
L_J.S < | lHnl-—-;v O as YL -y © so that the wave is damped with
time.  Writing WX __ . we find
e
|HW| = {l-»?ux(n d)(l-cmkh)j “‘l (23)

so that the amplitudes of the long waves are less reduced than those of the short

waves and short wave features due to errors (perhaps round-off errors) are removed.

The phase speed is given by tam: {'OC S‘I“kh/\«oo (1 “kh\}/k’t’

which is correct for of = "i 5 | . As k-0 the phase speed approaches
the correct value. Phase speeds for a particular wave length are given in Table I.
It is possible to use an implicit time derivative together with the one-sided space

derivatice but the results are similar: the phase speeds are given in Table I.

Quadratic interpolation

It is possible to approximate more closely to the time derivative with little

extra trouble, Taking the first two terms of the Taylor expansion
(t »‘CP(Q = T -a—(-'-t + & o
P (t+e ot Z ot
- G \ (24)
8%

e e R

il

by use of (3), Introducing finite difference approximations for the space

derivatives
%
Blted)~b(O = - % [derd= e+ LELblerR)rdee) 24} ()

a formula which uses only three points in the space derivatices, The amplitude

factor is given by
|3, = {i-e2 (-0~ mkh\"} | 3,

showing that the amplitude decreases with time, provided that o¢ = uf < | i
but less rapidly than in the forward-time backward-space formula, The phase speed
-1 . 2
is e e and some values are given in

tan {ob Svn.kh/y ol (‘..cmkh)}/k,‘:
Table I.
P
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Some general considerations

Table I gives the pnase speeds computed for various actual speeds taking
H’l — -lT/j § A = 200 n.mi.cnrresponding to a wavelengtn of 1200 n.mi., and
il i These nunbers have been chosen as representative of large scale
atmospheric motions and of the grid size wnicn we euploy. The conclusion to be
drawn is that as far as phase-speed is concerned tne forward-time backward-snace
finite difference scheme is the best, the quadratic~-time intcrpolation the next
best, followed by tne usual centred-time, centred-snace formula. All foramulae
give mucn the same results for winds of 20 kt, and 50 kt. Table IT(a) snows now
tne phase speed varied with the time interval emplonyed, keeoving the velocity and
space interval constant. The upper lines in this table give tne nnase specds
corresnonding to an actual speed of 50 kt, and the lower lines give those corres-
ponding to an actual phase specd of 100 kt. Table II(b) gives similar data for
an actual phase specd of 50 kt and a snortcr wavelength of 800 n.ai. corresponding
to kih = '"}61 « It apvears from botn tnese tables tnat if the centred
difference formula is used then the pnase speed is more nearly correct as the time
interval anproaches the maximum allowed. Use of tne forward-time step leads to
exactly tnhe opposite result, tnat the time sten used snould be as snort as conven-
ient. If the i:plicit time dérivative is used the time step should be as short
as possible; quadratic-tiwe intermolation forimulae benave similarly to tne
centred-time difference formulae while the backward-space forward=-time formulae
show that the phase speed may be exceeded in certain cases. Use of tne
forward-time and implicit-time derivatives leads to phase speeds wnicn are less
than L!itn"'ﬁ //L<H » Whereas use of the other formulae leads to speeds
greater than foNM~fnh b , and generally less than EZ . For rorecast-
ing the position of trougns and ridges the latter are preferable.

Table III(a) shows tne amplitude factors, i.e. the change of auplitude wnich
occurs in one time step, for various finite difference schemes. The amplitude
Tactors given for tne centred-time difference do not refer to the change in
amplitude in one time step but to the upper limit wnicn the awplitude may reach;
the lower limit is unity. The advantage of using as short a time step as is
convenient is snown up in tnis table; for example, using L hr. time steps, one
may advance 5 steps or.1& hr. making the same error as a single % hr. time step.
The exception appears to be with the forward-time, backward-space wnere little
advantage is gained in using very short time steps and where it may be a positive

advantage to use a long time step. If the awplitude of the pnenocmenon in
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question is of importance the centred-time derivative and the implicit-time

derivative are superior to the others.

So far we have been considering the effect of replacing the diff'erential
equation by the difference equation on a single wave. The displacements thnat
are considered in numerical weather prediction will be made un of tne sum of such
waves, and each . Tavelength will have a corresponding pnase speed and auplitude
factor, so tnat distortion of the original pattern cannot be avoided. Ve have
also been considering a wave of infinite extent wnereaé in nuwerical weather
prediction we usually nave boundarics wnere the values are fixed without
reference to the advective wotion. Waves are then reflected in both directions
and may obscure the differences arising between the various finite differcnce

analogues of the differential equations.

Sowe experiuental results

Explicit results could be obtained for a serics of waves in place of a single
wave but the expressions become very complicated even for two or tnree waves.
It is easier to avoid the analysis and compute directly from the difference
equations tneuselves. Commutations have been made in thnis way using actual data
representative of the large scale atmospheric motions. A steady west to east
velooity of one tnird of a grid length per hour has been assuncd, so that the
effect should be to translate cach value one grid lengtn to the east after each
3 time steps. The assumption corresnonds to a grid length of 180 n.mi.
velocity of 60 kt. and a time step of 1 br., except in the comnutations with the |
implicit~-time derivative. The data were nine east-west cross sections of a ficld ‘
of trovopause pressure which had shown instability when used in a time integration.
Most of the cross sections had snarp gradients and changes of gradient and a typical
one (row 1, wnich will be used as an exauple throughout tne paper) is snown in
Fig.2. For computational purposes the value at the left hand end point was
assumed to remain constant, and where the finite difference equations required
the value at the right hand end point to be specified that value was also assuued
to remain constant.

Striking differences between the different solutions have not nad time to
arise in 6 hr., but there is already a grouping of the curves according to the
space difference used. Tneory predicts that the centred-tiae, non—oentred;spaoe
finite differcence scheme will be unsteble and there is a hint of this instability

in one of the rows. The amplitude of the one-sided space and time derivatives
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appears to have been reduced as predicted but there is no sign of instability

in the curve for the centred-snace, forward-time scheme.

Tne results of computing with tne various finite differcnce scheies over a
12 hr. interval (see Fig.3) show that tne centred-tiue, non-centred-space scheme
is clearly unstable and of no furtner interest. The other curves are well in
phase, the differences in position of maxima and minima being only one grid
length, excent near the end-points. The non-centred=tir.c, non-cecntred-spade
schenie shows a decrease in amplitude as expected, but is well in phase with the
actual curve. The curves corresponding to the centred-space differences are
nearly always in phase and agree remarkably well except tnat the amplitude of the
curve corresponding to non-centred-time differences is greater than that corresnond-
ing to centred-time differences, as predicted.

It is possible to apply the implicit-time derivative scheme in a single step
of 12 hr. or two steps of 6 hr; each computation was carried out. The under-
estimation of tne phase speed is appnarent in Fig. 3. In each case the forecast
made by using two 6 hr./steps was better than that made in one 12 hr. step as
regards phase while the amplitudes were well-forecast and of similar values.

The finite difference scheme using quadratic-time interpolation gives good fore-
casts both as regards phase speed and amplitude, better than are given by using
an implicit-time derivative.

The twelve-hour changes are shown in Fig. 4, the clearly unstable scheme
having been omitted. The agreement in nhase is well-marked, except for the two
curves corresponding to implicit derivatives, while the decrease in amplitude of
the backward-space forward=-time difference schemc and the increase in awnlitude
of the centred-space, forward-time scheme are apparent.

The correlation between the actual and computed 12 hr. changes are given in
Table V; the rows have been grouped for tne computation. The 12 hr. statisties
show the instability of the non-centred-space, centred-time difference scheme.
Tne non-centred space and time scheme has a hign correlation coeffioient at 12 nr.
as has tne quadratic-time interpolation scheme and the usual centred-space and
centred-time scheme. The position of the waves is well-forecast by these
schemes. The comparatively large regression coefficients for the non-centred
space .and time schewe compared with the other two indicate that the amplitude of
tne disturbance is underestimated. On the other hand tne centred-space non-centred

time finite difference scneme leads to an overestimation of the amplitude.



Although theory predicts that the centred-space forward-time scneme should

.
% be unstable with increasing amplitude, some early time integrations using the
> Sawyer-Bushby model showed little diff'erence in the forccasts made by tnis
scheme and tnat of the centred-time, centred-space scheine. It was decided to
. test the two non-centred-space finite difference scheues by carrying out a time
integration using the barotropic model with the data of 1500Z January 31st, 1953.
“ The non-centred-snace, centred-time scheme failed after 6 nr., owing to
non-convergence of the solution of the Poisson equation. The non-centred space
| - and time scheme led to a good forecast of the position of tne trough over the
e North Sea but the amplitude was grossly underestimated. Fig. 5(a) snows tnis
. forecast, the actual contour chart to which it corresponds and the forecast made
v using the usual centred-space centred-time scheume. Clearly the latter forecast
is mucn superior as regard the amplitude of the trough; the error in the rormer
9 exceeds 1000 ft.
= Summary: Of the finite difference schemes examined those using centred-space
and centred-time or quadratic time interpolation appear to give tne best all
2 round results, and the former is vreferable on account of its simplicity.
Y
Table I
; Commuted and actual phase speeds (kt.'il
- Actual speed
_ Time step used < 200 150 100 50 20
s Computed speed
Centred 1 hr. 200 135 86 k2. 47
\ Forward 1 hr, 136 110 (o i B
& Implicit forward 1 hr, 156 120 8. 4kt ]
3 hr. 116 98 iy S 0 et o
“@ Iuplicit-time, backwardespace 1 hr. 164 124 (o 5 AR % R
Quadratic 1. hrs 00 440 - 88 kR 1]
9 Forward-time backward-space 1 hr. 200 154 100 4T 18
. l) = 200 n.mi. l‘(h R W/s Wavelength = 1200 n.mi.
-
‘e
5 «10-
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P Table II (a)
The variation of phase speed with time interval
- T (hn)
| Time step used ;. . e g A %
Speed (kt.)
- Centred difference A L7 45 L4 43 L2 L2 41 1
B -— == == 100 90 86 83 83
i Forward difference A 36 37 38 39 40 L 41 4
. B B 5 63 6 73 B 8 83
" Implicit time derivative A 4O 42 40 42 41 LA 41 |
& B 7M1 73 76 78 80 81 83 83
Backward-space, forward-time A 51 51 51 50 48 L6 4 43
B 81 88 95 100 102 100 92 88
© Quadratio=-time interpolation A 4L8 47 45 L L3 I Pl [ 11
B - == == 100 9. 88 86 83
2 l’ = 200 n.mi. kh = Tr/_g wavelength = 1200 n.mi.
& A actual phase speed 50 kt.
& B actual phase speed 100 kt.
’ Table II. (D)
. = The variation of phase speed with time interval
Time step used 3 3 2% T(g Y')*l‘g 1 x 3
il Speed (Kt)
& Centred difference 39. 36 3 AR SRR T N 40 - 8
. Forward aifference 26 27 28 30 % B 4s
" Implicit time derivative 30 % 3 M 3 B B a0
4 Backward-space, forward-time LY G W TR R Y e T e R
: Quadratio time-interpolation 18 LN e e 3R aa ap ag
B = 200 n.mi. kh = ‘ﬂ'/z wavelength = 800 n.mi.
Actual phase speed =:;§0 kt.
k :
‘v
¥e 1=




Table III (a)

Amplitude factors

: S ) |
Time step used 3% 3 27 2 1% 1 z *
% Centred difference 2°35 12729  1°434 1°232° 4418 40h9 1012 1705
Forward time 14255 1192 1°*137 1°089 1°051 1°023 1°005 1°001
- Implicit time derivative 1 1 1 1 1 1 1 1
L
Forward-time,backward-space  '9447 °*901 ‘876  *866 ‘875 901  *9LL ‘970
. ¥ Quadratic time interpolation ‘977 969 ‘970 ‘976 ‘985 ‘994 ‘998 1°000
™~ b=200nmi. kh=T/2 U=50kt. Wavelength = 1200 n.ui.
e Table III (b)
Amplitude factors T (In“)
b 3 Time step used 2 1 2 3
& * Centred difference 1°073: 1°A9 1°005. 40N
Forward time 1°181 1°040 1°010 1°003
] Forward time, backward-space b - MO AR
.é Quadratic interpolation ‘999 1°000 1°000 1°000
3 :
h =180 n.mi. kh=T/ U=60kt. Wavelength = 1800 n.mi,
FN
Table IV
9 Phase speeds corresponding to Table III (b)
'C"(/hft)
. Time step used 2 1 3 0
Centred difference 57 57 56 56
o Forward difference B kg7 6 Bk
Implicit time derivative 57 56 56 56
-q Backward-space, forward-time 61 59 58 56
Quadratio time interpolation 58 57 56 56

b = 180 nint, kh = T/5  U=60kt. Wavelength = 1800 n.mi.

¥ The amplitude varies between unity and the tabular value.




Table V

Regression coefficients
Actual = A (computed) + B
Comp. Scheme Corr, Coeff. 3 hr, 6 hr, 12 hr,
Space Time 3hr, 6hr. 12hr, A B A B A B
osntred centred +964 +980 +989 1¢14 020 101 -1+44 100 =0+83
non-centred centred ‘960 +966 222 1-12 1+36 1+10 0-85 010 10-11

non-centred non-centred «966 981 +998 1.07 1:07 109 088 1+21 653

Quadratic t *980 -990 -994, 1-12 0-27 1-05 -0-93 1+04 -0-38

(
(
(
(
g
: g centred non-centred +950 +962 +973 1.07 -0:12 0:97 =-2-27 0-:90 3422
g Implicit time 6 hr, <966 +925 111 1:54, 1:02 =3+16
(

Implicit time 12 hr, 897 107 <375

( centred centred *970 +983 990 1:10 0:60 1:01 -1-15 1:02  2:28

gnon—centred centred +962 +965 +185 1+11 1:55 1:09 1+15 0:05  0+12

gnon-centred nor-centred +969 -982 +996 1:07 1:¢19 1-09 071 1:23 051

E centred  non-centred *961 968 977 1:07 0O-<41 0:97 2:13 093 -6:18

' g Cuadratic t +982 -990 +994 110 0+66 1¢06 -0:38 1:04 -0-91

5 Implicit time 6 hr, <969  +963 1:10 129 1+16 524

5 Implicit time 12 hr, *91h 1:03 =5-07

centred centred 968 +987 989 1:10 0-32 1:03 0+71 0:99 =270

non-centred centred *958 <973 <272 1-07 0<06 0°99 1:78 0:11 =9:57

non-centred non-centred 968 984 997 107 090 1-10 176 1-22  7-03

centred non-centred +963 968 982 1:12 1:34 1+12 2:56 0:92 -5:37

Ouadratic % +972 +994 <996 1:09 €15 1:05 -0-47 1:03 -0-48

Implicit time 6 hr, £975 952 1:13  0:49 1:06 12-20

o Implioit time 12 hr. 925 1:15  7-89
b3y
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