o

I..J\F\ O
e ¢ MET O 11 TECHNICAL NOTE NO, 72

A Plus—one Algorithm for Matrix Multinlication
R DIXON

e Introduction

Almost everybody knows how to multiply two matrices together to get the ordinary
matrix product, and on the face of it there appears to be little scope for innovation
in the general case. Nevertheless, the demands made on computer science have led to
quite a variety of different ways of carrying out matrix multiplication. The variant
described in this note is aimed at avoiding the housekeeping arithmetic wnich has to
be done when using the customary approach, This housekeeping arithmetic either has
to be explicitly written into the program in the customary method or else the compiler

arranges for it to be done. Either way it has to be paid for.

The Plus—one method is worth examination because it may well be advantageous in
2 low-level language on the IBM 195, and it may have some relevance to a vector pro=—
cessor machine since it does effect a kind of vectorization of the process of matrix

multiplication.

NB This paper has not been published. Permission to quote from it must be
obtained from the Assistant Director of the above Meteorological Office
branch,

2o Basic 'I‘heogx

It is first necessary to set forth the connections between the handling of
arrays considered as matrices and dealt with according to the usual matrix SYMDee
olism and rules for matrix manipulations and the handling of arrays considered
as dyadics and dealt with using the symbols and formalism of the standard Gibbs

notation for vectors,

Using 2 x 2 arrays to keep down the amount of writing, let us start with two
matrices A and X

201 *00 *01
A = LS i (1)
20 211/ X140 *11

The ordinary matrix product Y, usually denoted in texts by AX is
(@00 *oo + 21 X19) (3o X1 + 294 Xq4)

Y= AX = , (2)
(@10 Xq0 + 29 %10) (240 Xpq + 344 x;4)

by the usual rule for ordinary matrix multiplication,

Now express the arrays A and X as dyadics, using two orthogonal unit vectors
i and j. Ve then have

Bnoid 24l xooi] X544d

e .). X = s »
310dd 2q4dd /1 X103 X494
Note that the insertion of the unit dyads ii, ij, Jji and jj does of itself completely
specify the kind of geometrical entity involved., It is not, as with matrix notation,

actually necessary to write the dyadics down as rectangular arrays, nor is it necessary
to stick to any conventional order., A can Just as well be written as

A = ayii + agidd + aypdi + a,,dd (4)
or

A = a8yl + 8.Q] +apdi +e5.i] (5)
or

29dd 20dl
: : 6
aooli 8'01.’a1 (6)

It makes no difference, A in (3), (4), (5) and (6) is the same dyadic. The product
of the dyadics A and X which corresponds to the matrix product (2) is the scalar
product Y = A¢B where © is the Gibbs symbol for the scalar product, Thus, using
the form (4) for both A and X

I (aoo—i‘i'.*_‘ 20131 *+ 390l + 241000 (xgodi + Xg4dd + x0dL + x;4d) (1)

from which, taking into account the simple rules

ded = degied (®)
Pl =0 (9)

there results

Y = (apg¥oot 291%10)ik +(20p¥g1+ ag9Xqq)id +(aggxyr agqxgo)id +(agoxgq* a9yx 000 (i

and this is the same as (2) since (2) is simply (10) written as an array in a com~
ventional order with the unit dyads suppressed.

In matrix notation another type of product which has found increasing use over
recent years is the direct product, also called the Kronecker product, It is denoted
by & and it is defined by

A®X = a.iJ_X igj = 041 (11)

Thus for the two matrices in (1) the direct product is,specifically
a.-X a..X
ARX = (aOOX a01x) (12)
10 1
i.e.

AR X =

#00™00 200*01 20100 201%01

%00™10 %00™11 %01*10 %01*11

%10%00 *10%01 #1100 *11%01 (13)
*10*10 #1011 %1110 21111

Notice that AKX is a 4 x 4 matrix, and in general if A ismx nand X is s x t

then A® X is ms x nt, This stepping=up of the size of the matrix has a significance

which is not always appreciated if an exclusively matricial view of the matter is
taken.

Viewing A and X now as dyadics, as in (3), the product corresponding to the
direct matrix product (11) is usually denoted by AX in bold Clarendon type and is
given by
AX = (ap0ii + ag ij + a,,di + a,,00) (ppid + Xo1dd + x40di + %4440 (14)

(14) is (7) without the scalar product ® between the brackets, and it is evaluated
to give

AX = aooxooiiii + a00x01iiij - aoox1oiiji + 300111iijj
+ 3011 ijii + ao1xo1ijij + ao1x1cijji + a01x11ijjj
- a1ox iii + a1oxo1jiij + a1ox1ojiji + §1Ox11jijj

+ a44% jjii + a11xo1jjij + a11x1ojjji + a11x11jjjj

(15)

The expression (15) could, were it possible, have been typed out in one long line
with the terms in any order, No confusion can arise, The individual tetrads un-
equivocally determine what is meant by the collection of terms in (15) however they
are set out, In particular the terms in (15) can be set out so that the subscripts
occur in the same pattern as in (13)., We then have, with the plus signs understood.

AX = fao 2o ia8) et 4is e diit 8 . i
apo*iodddl SpoTydddd spymiollll 301%144ddd
21o%oodddd 340%0edild agq%poddid 849%p4dild
210%10d0lL Bqo%qqddld B44%qodlid ay9%ddid

(16)

P .

Y

It is now clear that (13) is simply the product (14) evaluated and written out in
the order (16) but with the unit tetrads suppressed, Then in any subsequent manipe
ulations (13) is treated as a larger dyadic, with the unit dyads suppressed, This
brings out an important difference between the matricial and Gibbsian formalisms,
The Gibbs notation makes it explicitly clear that the result of directly multiplying
two dyadics is a different geometrical entity, namely a tefradic, This aspect of
the matter is easily lost in matrix notation. At any ordinary level of derivation
and manipulation this does not matter at all, As long as the matrix rules are stuck
to the answer will come out right., But there are situations where the triadic or
tetradic nature of the algebra is very relevant to the physical circumsiances of the
problem and in such cases the Gibbsian formalism is advantageous,

3. A recursive form of the scalar product Y = AX B

It will be noticed that if the scalar product indicating ® is placed between
the second and third unit vectors in each tetrad in (16) or (15) and the indicated
operation is carried out according to (8) and (9) then (15) and (16) reduce to (10),
Thus the usual scalar product of two matrices is a particular function of the
tetradic quantity which results from taking the direct product, We can thus invent
‘a bit of notation which makes this explicitly clear, and instead of writing the
scalar product Y of A and X as Y = A®X we can write it as

.1 (A®X) (17)
where:;; means that the scalar product @ is to be placed between the second and third
unit vectors of each tetrad in (A & X) and the indicated operation carried out., In
the parlance of yet another formalism, namely tensar analysis, this is said to be
contraction on the second and third indices,

If now a third matrix (dyadic) B is introduced where

boodl Poqdd

P\ volt Pyl .
then the matrix product

Y= AXB (19)
is the same thing as

Y= AexeB (20)

To evaluate this in Gibbsian style, note that (20) is the same as

Y= (aeX)eB (21)

and that (AeX) is already given by (10). All that remains to do is to take
o (B it s boodd + b i b, S0 (22)

through (10) from the right, whereupon taking (8) and (9) into account again there
results

Y = [(a00%00t 201%10M*010 (Boo¥o 1+ 201%112/4ilP01 (Bpo%o0* 201%10)+011 (Boo¥o1* “"01‘11)-7ﬁ

LoooB10%01* B11%10)+P10 (B10%0 1+ aL11"11-)7:'“-501(“1(;)’_‘01" 819%11 4044 (Bq0%0 1+ 899%4Fdd

(23)

- .. . , P
: 4

Ao 4

and of course this is exactly what is obtained (with the unit dyads suppressed) if
(19) is worked out purely matricially.

Just as the scalar product of two matrices or dyadics can be represented in the
style (17) as a function of a tetradic, so the scalar product of three matrices or
dyadics, (19) or (20), can be represented as a function of a sexadic., The direct
product of Ay X,and B is A® X &B and it is the sum of 64 sexads of which a typical
one is,for example,a, x, b, ijiijj. It is then found that (20)is the same as

Y= © ¢ (A@X@B 2
2 s (1@xeD) (24)
which means « in each of the 64 sexads insert a scalar product @ between the second
and third unit vectors and between the fourth and fifth unit vectors and apply (8)
and (9). Doing this reduces the sexads to dyads, most of them vanisa because of (9)
and in fact the only terms which survive are the four dyads which appear in (23),

It is also found that (20) can be written as
Y= 2 (a®(.2 (x@B5))) (25)

(25) is equivalent to (24) and (20)., Tt must be understood to imply the following
sequence of operations = first form the tetradic (X& B) of 16 terms, then take the
scalar product of the second and third unit vector in each of the 16 tetrads, thus
reducing the tetradic to a dyadic. Then form the direct product of A with this
dyadic getting another tetradic, and finally carry out @ +to reduce this tetradic
to the final required dyadic, 3

The significant point about (25) as compared with (2) or (24) is its obviously
recursive character, The form (25) will extend to any number of factors., Thus

Y= ABCIEFG (l;n malsx mo%) (26)
may be written as
Y= 30O HBO(N4F-===2(F®0))))))))) (21)

As an example the evaluation of

T e (mabrx motalom) (28)
wlase A fX‘Y“)BC:‘mK'?'l,Cl;ﬂKfJ,%p/@l—.oFK%

can be effected in Fortran by some coding sequence such as is given on the §ollow1ng
page. Programmers/scientists studying this sequence should understgnd that tham

not a programmer and that the sequence is.not 1n§ended to be anythlng.moreh a? iy
a section of pidgin - Fortran, the intention behind the sta?ements being, opefully,
sufficiently clear for the sequence to serve as an epexegesls to the foregoing

algebra.

JH=1

DO 78 IM=1, N-1
ID=1
K=1
DO 39 IP=1, NA(1)
J=JH
DO Ly IQ=1, NA(IM+2)
I=ID
A=g. g
DO 5@ IL=1, NA(IM+1)
A=A + H(J) = D(I)
I=I + 1
J=J + 1
59 CONTINUE
"S(K)=A
K=K+1
L CONTINUE
_ ID=I
3% CONTINUE
DO 64 IM=1, NA(1) + NA(IM+2)
D(IM)=S(IM)
6g CONTINUE
JH=J
7% CONT INUE
Notes

(a) N is the number of matrices involved, so in this case N=k,

(b) NA is a one-dimensional array containing the N+1 independent parameters q, p, n, m,
1, in that order.

(¢) 1Initially the array D contains the elements of the matrix D in (28) stored column
by column. Intermediate results are also put into this array column by column.
I counts through the elements of whatever vectors are in D.

(d) The index K counts serially through the elements of the intermediate results,
column wise.

(e) Here the assumption is that the matrix D has been read into the store by columns
and that A, B and C have been read in by rows starting with the first row of C and
finishing with the last row of A. This area of store constitutes the array H. The
index J counts serially right through this array. It will be apparent that a ¢
corresponding routine could be written for the situation where the matrix D is

stored by rows and A, B and C are stored by columns. Routines can also be

written for the cases where all the matrices involved are stored column-wise or
row-wise, but in these cases it is not clear whether there is any advantage in

this style of routine. e

(f) The salient feature of the above routine is that the string of matrix multiplications
is accomplisned without doing more than add one to any index. It should be possible

to take advantage of this in Assembler code on our present machine,.and it may be
relevant to the vectorized operations of projected machines.

(g) The copying across done in the DO 6@ loop is an unwelcome overhead in the above
version but in many practical situations it could be avoided.

(h) A competent programmer could clearly rewrite the above section of coding as a
SUBROUTINE which would deal with the general case of N matrix factors of any conformable
dimensions. :

)
R Dixon % 0‘"

Met O 11

