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ON THE USE OF THE NORMAL CURVE OF ERRORS IN
CLASSIFYING OBSERVATIONS IX METEOROLOGY.

By CAPTAIN E. H. CHAPMAN, R.E.

It is not possible to eliminate completely the element of chance1 
in dealing with meteorological observations. Accordingly when 
judging as to whether an observation is unusual or not unusual 
due regard ought to be paid to the fluctuations which may arise 
from chance, and from chance alone.

The theory of chance fluctuations attains its greatest simplicity 
when each observation dealt with is entirely independent of every 
other, and when the classification is but two-fold.

To take a common and extremely simple example, suppose four 
pennies are tossed and the resulting number of heads noted. 
Suppose that they are tossed a large number of times. Then in 
any one throw of the four pennies we can get either 0, 1, 2, 3 or 
4 heads. AW should not be surprised if we got fo\ir heads, but 
we should not expect to get this number of heads as often as we 
should expect to get two heads. Jn fact the number of times 
0, 1, '2, -i, 4 heads would occur in the long1 run would be pro­ 
portional to the successive terms of the binomial expansion 
(i + i)S <> » to 1, 4, 6, 4, 1.

The chance of a head at any one throw of a penny is £. The 
mean number of heads in a throw of four pennies would tend 
towards 2. The standard deviation of the number of heads in 
the four throws would tend towards ^/ ^ ' ^ ' 4,

•i.e., to 1 
The range of the number of heads in the four throws is from

Oto4, 
i.e., within the limits 2 + 2,

or m + 2d,
where m is the mean, and a the standard deviation of the number 
of heads in the four throws.

In general, using the conventional terms, if p be the chance of 
a success in an event, and q the chance of a failure, so that 
p + q = I, then in a series of sets of n events the mean number 
of successes would tend towards pn, and the standard deviation 
of the number of successes in the n events would tend towards <r, 
where <r 2 = pqn. It is known that most of the observations in 
cases of this sort lie within the range m + 3<r, where m is the 
mean, and a the standard deviation. Unless an observation lies 
well out-ide this range we cannot be sure that it has not arisen 
from chance, and from chance alone.

Examples of the fluctuations due to chance in their simplest 
form can be obtained from Meteorology. In the Meteorological 
Office Calendar for 1916 the number of times each particular day 
of the year was rainless at Kew2 during the 35 years 1881-1915 is

1 SeeM.O. 223, V., pp. 13-14.
2 It should be noted that Kew Observatory referred to in this paper ia not at 

Ke>\ but at Richmond.
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given. Thus January 1st was rainless 20 times out of the 35, 
January 2nd 15, and so on for each day of the year. In these 
data^we have o two-fold classification "^rainless day" or "rain 
day," and we have observations which are totally independent 
since the rainfall for any particular date of a certain year is 
unaffected by the rainfall for the same date in any other year. 

Consider these Kew data for the 31 days of January. Tho 
number of times each day of the month was rainless in the 35 
years is in order :  

20, 15, 15, 15, 15, 20, 19, 13, 14, 16, 12, 2>, 19, 23, 
16, 18, 16, 20, 16, 7, 20, 19, 23, 18, 18, 18, 13, 16, 
15, 17, 18.

By addition we have 525 rainless days in the 35 Januaries. 
Hence the chance p that a day in January will be rainless at
v • • , 525 15 Kew   g1Ven by p = --j   = _.

The chance q that a day should be a rain day can be got from

the relationship p + q = 1 which gives q =  .
o 1

We should expect then that any date in January would be
15 

rainless on the average   x 35 = 17 times in 35 years. The
O 1

standard deviation here is / ~"~ '35 = 3. The numbers of
^^ o 1 o L

rainless days for each date of January at Kew should therefore 
practically all lie between 17 ± 9, i.e., between 8 and 26. There 
is only one number outside this range, 7 on the 20th, anrT this is 
only just outside the range so that it cannot he said that it is not 
due to chance fluctuations. At first sight one might have been 
inclined to think that there was something unusual in the differ­ 
ence between the 14th and 20th of January at Kew. The 14th 
was rainless 23 times in the 35 years, the 20th was rainless only 
7 times. The difference between the 23 and the 7, though con­ 
siderable, may have arisen entirely through chance fluctuations. 

Another illustration of this kind can be given from the same 
Calendar. At Falmouth the last six days of April were sunless 
in the 35 years 1881-1915 respectively 5, 5, 3, 1, 6. 4 times.
The average for these six days is 4. For the six days then the

4 
average chance of a sunless day is p, where p =  . As before

OL)

we have a =—• The standard deviation a = / \ . iL. 35 = 2. 
35 V 35 35

The range for the six days is from 1 to 6, which is covered by 
4 + 3, i.e., by »( ±l'5<r, where in is the mean. Hence there is 
nothing- unusual in the difference between the 28th and 29th 
of April for which the numbers of sunless days in 35 years are 
1 and 6 respectively.

Descriptive words such as unusual, very unusual, etc., are 
frequently used in Meteorology to describe either single observa-

(21347 1^) Wt. 40659 S.O.P. 521. 600. 5/19. D & S. Or. 3.
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tions or means of a number of observations. For example, the 
practice of the Meteorological Office3 in characterising the weekly 
values of mean temperature, rainfall, and sunshine for the 
several districts of the British Isles is shown in the following 
table:  

TABLE I.

Number of times the
value occurs on the
average out of 12

possible occasions.

i
3
4
3
1

 

Descriptive adjective for

Temperature.

Very unusual 
Unusual

. '   Moderate
Deficient

. ! Very deficient

Rainfall.

Very heavy 
Heavy
Moderate
Light
Very light

Sunshine.

Very abundant 
Abundant
Moderate
Scanty
Very scanty

This table, however, is not used outside the Weekly Weather 
.Report,4 and there does not appear to be anything similar to it 
in use elsewhere in Meteorology.

Summarising this table, and replacing the word moderate 
by the words not unusual, we have that a value is not unusual 
if it occurs once out of three possible occasions, whereas a value 
is unusually large on the one hand, or unusually small on the 
other hand, if it occurs once oxit of four possible occasions. A 
value is described as very unusual (either excess or defect) if it 
occurs only once out of 12 possible occasions.

If we apply this method of classification to the measurement 
of stature5 of 8,585 adult males born in the British Isles we get 
the following result:  
Very small | Small | Moderate | Tall | Very tall

K' Q 1" K f G 1 " f\ f Q 1" f\' 11"

Height in feet and inches.

To take a second example, barometer readings6 at 9h. at 
Southampton for the years 1878-1890, 4,748 observations, the 
method of classification of Table I. gives:  
Very low [___Low | Moderate | High | Very high

1000 1010 - 1020
Millibars.

1030

The second example will show that the classification of Table I. 
is not intended for general use. The terms as defined in this 
table form an extremely simple and convenient classification of 
mean weekly values, a classification which is easily applied and 
easily understood.

The probability values given in Table I. are subject to chance 
fluctuations from one period of years to another. Take the case

3 Weekly Weather Report.
4 An account of the method of and reasons for the selection of there limits is 

given by R. G. K. Lempfert in the Journal of the Board of Agriculture. 
Vol. xiv., p. 1. ' 01

  Yule, Theory of Statistics, p. 88. 
n it » it P- 96.
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of the moderate values which occur on the average four times 
out of 12 possible occasions. For such values we have p = £, 
p = §. Suppose that this value of p is obtained from a period 
of 18 years. The,standard deviation <r would be given by

y i 2       .18 = 2. If other periods of 18 years were available 
o o

the range which would cover practically all the numbers of times 
the moderate values would occur is 6 + 3x2,

i.e., 0 to 12.
Thus a value of p = $ in one period of 18 years might become 
equal to anything from O 1 to j in another period of 18 years from 
fluctuations due to chance alone.

The difficulty in fixing the value of p lies in the fact that 
18 years is too short a period. In experiments such as coin- 
tossing we have a theoretical value for p, but in most meteoro­ 
logical work a theoretical value for /; cannot be obtained. All 
we can do is to use the observed value, and this only becomes 
reliable when the number of observations is very large.

Let p = $, q = § again, but let the period from which p is 
determined be 72 instead of 18 years (18 was selected in order 
to get a simple numerical value for a). The standard deviation 
for n = 72 would be 4. If other periods of 72 years were taken 
the range of the numbers of times the value would occur would 
be 4 x 72 + 3 x 4, 

i.e., 24 ± 12, 
i.e., 12 to 36.

Thus p would vary from ^ to \ for other periods of 72 years. 
Increasing the number of years from 18 to 72 has decreased the 
probable range for p from 0 to f

to | to |.
It will be seen, therefore, that a table such as Table I., even 

if based on as long a period as 72 years would by chance fluctua­ 
tions be liable to alteration for another period of 72 years.

In the general case where p is the chance of a success in n 
events, and q the chance of a failure, p + q = 1, the frequencies 
of 0', 1, 2,    , n successes in N trials each consisting of n events 
are given by the successive terms of the binomial expansion 
N (q + p)n Thus when p is known not only can we find the mean 

/in, and the standard deviation <J pgn, but we can give a 
theoretical expression for the frequency distribution of the chance 

fluctuations.
The binomial expansion N(<? + p)n gives n + 1 ordinates 

corresponding to 0, 1, 2,    , n successes in the n events. If 

\ve join the tops of these ordinales we get a frequency polygon 
en- frequency distribution. Now for all values of p and q 
smooth continuous curves can be fitted to these frequency dis­ 

tributions. Such curves are called frequency curves.

In the symmetrical case7 for which p = q = \ the frequency 

curve is llic very important curve, known as the normal curve 

of errors, or la\v of errors.

' Sec Yule. Thfnvv of Stat'stics, p. HOI "
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Up to the present we have dealt entirely with cases of simple 
two-fold classification, In Meteorology, however, the various 
elements are more frequently given according to a numerical 
scale. When this is the case we can calculate the arithmetic 
mean of the element for the period of time to which the observa­ 
tions refer. We can then calculate the standard deviation as 
the root-mean-square deviation instead of from the formula 
v/ pqn. We cannot obtain directly a theoretical frequency 
distribution corresponding to the binomial expansion N(g+p)«, 
but we can group the observations and form the actual freqiiency 
distribution. To this frequency distribution we can fit a curve. 
When the variations in the observations oi the element are due 
to causes similar to those which produce chance fluctuations, 
this frequency curve will take the form of the normal curve of 
errors. M. Angot,8 in his " Etudes sur le climat de France," 
has shown that variations in mean temperature follow the 
normal law. W G. Eeed, 9 in a paper entitled " Frost in the 
United States," has shown that variations in the dates of last 
killing frosts in spring and first killing frosts in autumn follow, 
the normal law. Xo doubt variations of other meteorological 
elements follow' the same law We are, therefore, justified in 
adopting the normal curve of errors as a basis for the classifica­ 
tion of observations expressed on a numerical scale.

In a normal distribution, if m be the mean and tr the standard 
deviation, 68 per cent, of the observations lie within the range 
TO + u. Outside the range m + 2a we have 4'6 per cent, of 
the observations, or 2'3 per cent., on each side. Outside the 
range m + 3<r we should have in all 0"3 per cent, of the observa­ 
tions, or more accurately '135 per cent, on each side. All this 
is expressed in the form of a diagram in Figure I., the curve 
being the normal curve of errors.

It appears from this that a most convenient classification of 
observations for general use would be to name those not unusual 
which lie within the range m ± a. Those lying outside this 
range could be named unusual. Observations outside the range 
TO ± 2 a may be termed very unusual, while those lying outside 
the range m ± ?>a may be termed exceptional. Accurate decimal 
fractions for this system of classification would be:  

Exceptionally deficient ... '0013") 1
Very unusually deficient ... '02140
Umisnlly deficient ... ... 13591
Xot unusual ... ... ... '68268
Unusually excessive ... ... 13591
Tory unusually excessive ... '02140
Kx-ceptionally excessive ... '00! : !o ]

These fiaures are only ^trictly true for a normal disiribulion, 
but fur other forms of distribution they would hold more often 
than not provided the number of observations were huge

" See M.O. 223, V., pn. 6-7. 
9 Pi'oc. Secon 1 Pan-Araer., Sci f! ,n<r. AVasV, l'.i]7.
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II. & III. To face page 57.

WOOLACOMBE.

SEASON

YEAR

YEAR

APRIL 
-SEPT.

OCT. 
-MAKCH

BAROMETER
21h

PREVIOUS 
TO B4IS- 
FALL. INS.

30-00
OR ABOVE

29-75 
29-99

BELOW
29-75

BELOW 
29 75

NUMBER 
OF 

OBSER­ 
VATIONS.

5G3

1 612

286

RAINFALL 24 HOURS 9h.— 9h. ACCORMNO TO HEIGHT OF BAROMETER AT 21 h. 
PREVIOUS KVENINO.

J1F.AN 
INS.

•04 

•10 

•15

IT
INS.

•11

•16 

•21

NORMAL HEAVY ^ Ŷ EXCJPTIOSALLY HEAVY

0 -|5\ -2^. '3^\

0 -26\ 4\ 58\

0 . 36 .57 -76 
INCHES

Figure II.

WOOLACOMBE.

WFNE

N.W. I* N.E.

s.vr. &S-E.

NUMBER 
OF 

OBSER­ 
VATIONS.

192

228

RAINFALL 24 HOURS 9h.-0h. GROUPED ACCORUINQ TO WIND DIRECTION BISHT 
EEEOKE 21h.-9h.

MEAN
IN 3.

•03 

•09

a
INS.

•08 

•11

o

0

HOhKAL HEAVY

•II *\ ' l9

VKRT EXCEVTIONALL? 
HKAVY HSAVY

. 1 ————————————

•20 -31 '42 

INCHES

Figure III.

Wyraan * Sone, Ltd., M.O. Plea, London, B.W. 7. Ps. 4110. 40869. S.O.P. G21. 600 4/i:i
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As chance figures we should have on the average for this 
method of classification—

UNUSUALLY DEFICIENT

1 in 6
NOT UNUSUAL

2 in 3
UNUSUALLY EXCESSIVE

1 in 6

VERY UNUSUALLY 
DEFICIENT

1 in 44

EXCEPTIONALLY 
DEFICIENT

1 in 741

VERY UNUSUALLY 
EXCESSIVE

1 in 44

EXCEPTIONALLY 
EXCESSIVE

1 in 741

Our suggestion is that where numerical values of the element 
are given the mean and standard 'deviation should be calculated, 
and the classification determined by m + <r, in ± 2a, 'm r± 3<r. 
When numerical values of the element are not given, or when 
it is not desired to work from them, the suggested classification 
ran be got sufficiently accurately from Table II.

TABLE II.

T-V • i- AJ- i' Observation occurs on Descriptive Adjectives. ; the average.

Exceptionally deficient ... 1 out 
Very unusually deficient ... 1 
Unusually deficient ... ... 1 
Not unusual ... ... ... '2 
Unusually excessive ... ... j 1 
Very unusually excessive ... 1 
Exceptionally excessive ... : 1

of 750 tine 
50 

6 
3 
6 

50 
750

es.

It may be pointed out that if Table II. were in use exceptional 
values would not occur for many meteorological elements such 
as mean monthly temperatures for a particular calendar month, 
since observations are not available for 750 years. When the 
arithmetic mean and standard deviation (root-mean-square devia­ 
tion) are known, however, exceptional values are possible even 
it' the number of observations is small. Take, for example, 
September rainfall for London 10 for the 25 years 1888-1912. The 
mean is 1'fiS ins., the standard deviation 1'04 ins. An excep­ 
tionally heavy rainfall would be one greater than

1'68 + 3 x 1-04 ins.,
i.e., greater than 4'80 ins. Such a value occurred in 1896, the 
tSeptember rainfall for that year being 5'43 ins. It will be seen 
from this example that there is an advantage in working from 
the numerical values of the element rather than from a table 
like Table II.

We shall now see what results can be obtained by applying the 
classification in ± <r, m ± ~V, m ± 3<r to a few selected 
examples.

" M.O. 223V., p. 2(1.
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As a first example we can refer to a previous paper 11 by the 
present writer in which the rainfall at Woolacombe, North 
Devon, was under consideration. The observations for four years 
were divided into two groups (i) summer months April to 
September, (ii) winter months October to March. The rainfall 
considered was the amount for the 24 hours 9 h. to 9 h. The two 
seasonal groups were subdivided into three groups according 
to the height of the barometer at 21 h. the night preceding the 
24 hours' rainfall. The sub-groups in which mean and standard 
deviation are approximately equal are combined, amd the ranges 
of rainfall calculated from the values m + <r, m + 2a, m + 3fl­ 
are shown in Figure II. It is to be noted that in this and the 
next figure the standard deviation in every case was greater than 
the mean so that no rainfall was not unusual.

The observations for Woolacombe for the two years 1904—5 
wen' also grouped according to wind direction during the 12 
hours 21h. to 9h. previous to the 24 hours 9h. to 9h. for which 
the rainfall was given. From the means and standard deviations 
the observations resolved themselves into two wind groups 
(i) S.W. and S.E., (ii) N.W. and N.E. The classification of 
the rainfall is given in Figure III.

As a second example consider the monthly totals of rainfall 
at Kew and Valencia, means and standard deviations for which 
have been calculated by the present writer 12 from data for the 
47 years 1869-1915. The classification based on in ±a, m + 2 a, 
m ± 3<r is given in Figure IV for Kew, and Figure V. for 
Valencia. The complete difference in type between the monthly 
rainfall totals at Kew and Valencia is well shown by these two 
diagrams. There are many striking features about Figures IV. 
and V., but most of them are well known to meteorologists. Some 
of the irregularities in the diagrams are no doubt due to the 
unequal lengths of the calendar months. It is not proposed to 
discuss here the detail* of these diagrams. The suggestion may 
be made that rainfall maps showing for each month exceptionally 
heavy values of rainfall for the British Isles would be interesting 
and instructive. Such maps would help in the study of rainfall.

For the sake of comparison the monthly rainfall totals for the 
year 1916 are indicated on the diagrams of Figures IV and V.

There is one extremely valuable use to which the standard 
deviation a can be put when the distribution is normal. Suppose 
that we have a particular deviation x from the mean. Then from
the value of ' we can find the probability that a deviation fj
as large as, or larger than, ,r should occur. Such probability 
values can be obtained from the tables1 -1 of the probability 
integral F = }2-(l + a).

A most interesting use of such probability values is to be found 
in the paper by AV. (i. IJeed already mentioned 9 In this paper 
the author gives the mean and standard deviation of the date

11 Barometric Changes and Rainfall. Journal Boy. Met. Soo., October 1915.
12 Atmospheric Pressure and Rainfall. Journal Roy. Met. Soc., October, 11)16.
13 Tables for Statisticians and Biometricians, Camb. Uuiv. Press, p. xvii and

p. 2.
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KEW MONTHLY RAINFALL. INCHES.

VERY EXCEPTIONALLY
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VALENCIA MONTHLY RAINFALL. INCHES.
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of (i; the last killing frost in spring1, and (ii) the earliest killing 
frost in autumn for 569 stations in the United States. The 
author assumes a normal distribution for dates of killing frosts.

On this assumption he tabulates certain particular values of -
<r

and the corresponding probability values. For example, if A, 
is the average date of the last killing frost in spring, and <rs the 
standard deviation of that date, the chances are 1 in 15 against 
a killing frost occurring after the date A s + l'5a.

The author gives the actual dates of the last killing frost in 
spring, and the earliest killing frost in autumn for 40 years for 
a station called Bismarck (Burleigh County, N. Dakota). Mean 
dates and standard deviations are given. Applying the classi­ 
fication m + a; m + 2a, m + 3 <r, suggested in the present paper 
to these- data for Bismarck we get the following resxilts: —

LAST KILLING FROST IN SPRING.

Occurred „ 
in 40 years

Exceptionally 
early

0

Very 
early

3
Early

31

Not 
unusual

4

Late

2

Very 
late

0

Exceptionally 
late

.10 11...20 21......1 2......21 22......1 2......10 11.
April. May. June.

FIRST KILLING FEOST IN AUTUMN.

Occurred ,, 1in 40 years i

Exceptionally 
early

Very 
early

2

Early

39

Not 
unusual

y 
O

Late

2

Very 
late

0

Exceptionally 
late

i
............16 17...27 28......S 9......30 1......11 12.. 22 23...............

August. September. October.

It would be interesting to see similar results obtained from the 
pheno'iogical reports of the Royal Meteorological Society.

The classification suggested in this paper depends on the 
arithmetic mean m, and the standard deviation a. The usual 
formula for the probable error of the arithmetic mean is

——'-^- where n is the number of observations. It is assumed
Vn,

in this formula that the n observations are uncorrelated amongst 
themselves. For a normal distribution the probable error of the

standard deviation <r is —7= • For other distributions the
v ^n

probable error of a takes a more complicated form. For a 
normal distribution we can write the probable error of m and a

•6745 , , '6745 
respectively / t<T and fo where/, = —=• ana /2 — --_,
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The calculation of these probable errors is facilitated by the use 
of Table V., pp. 12-18 of Tables for Statisticians and Biometri- 
cians. In this table the values of fl and /a are given from n = 1 
to n = 1000.

In the system of classification determined by m ± a, m ± 2 a, 
m ± 3<r it is easy to see that a fluctuation in the arithmetic 
mean m, from one set of observations to another, would move 
the whole scale of classification, numerically speaking1, to the 
right or left by an amount equal to the fluctuation. A fluctua­ 
tion in the standard deviation & would alter the separate parts 
of the classification scale. The not unusual part would be 
altered by the fluctuation of a by an, amount twice as large as 
the amount any other portion of the scale would be altered. 
Fluctuations in the values of m and ff^from one set of observe*- 
tions to another cannot be avoided. The only thing that can be 
done to minimise them is to make the number of observations as 
large as possible.


