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1. INTRODUCTION

Technical Note No 1861 described a representation of turbulence based
on a 1‘/2—order closure of the hierarchy of equations for turbulent
correlations. The scheme was dry in that it took no account of water
vapour/liquid water changes of state. A more accurate description of the
scheme would be "moist" since the effect of water vapour on buoyancy was
represented through the use of virtual potential temperature. This note
describes the modifications necessary to make the scheme "wet", i.e. to
take account of vapour/liquid state changes on both the resolved and

turbulent eddy scales.

The effects of these changes of state on turbulent transport are most
easily represented by using thermodynamic and water content variables
conserved during the phase changes. (The term "conservative" will be used
in this note to mean "conserved during vapour/liquid phase changes). These
new variables are introduced in §~2. The usual, but non-conservative
variables, potential temperature (8),,specific humidity (%) and specific
liquid water content (ZL ) are still required to calculate buoyancy forces
(through the virtual potential temperature Gv=‘€5( lﬁ-0~6C>gZ - 7L> ¥,

5 radiative effects (dependent on T =mw O ) and precipitation physics
(dependent on 2‘ and 3.). C% Z and ZL have to be diagnosed from the

» conservative variablesusing cloud ensemble relations which are discussed in

§ 3.

2. THE USE OF CONSERVATIVE VARIABLES

2.1 The conservative variables

The use of variables conserved during phase changes eliminates the need
to consider source/sink terms due to the changes in prognostic equations.
Such terms can be dealt with satisfactorally in the equations for the mean

variables by well established grid-scale parametrizations (Machin (1983)).

. 1 hereafter referred to as (I)




3 ;‘>fromithg definition it follows that

However, it is not so simple to treat the fluctuations in the phase changes
due to turbulence. Working with conservative variables in the equations

for turbulent correlations simplifies the analysis.
The conservative water variable ié the specific total water content

defined as the sum of the specific humidity and the specific liquid water

content:
= g+ (2.%.13

Z& satisfies the equation

])(; — g ol
3%;— ~“3'; 3~z<f er) 2 . (2.1.2)

in the absence of precipitation and cloud water settling. The conserved

thermodynamic variable to be used is the liquid water potential temperature 6%

From this definition it can be deduced that
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upon making the assumption that LZ" /c(,T cari be neglected relative to
unity. In (2.1.2) and (2.1.6) F‘.Z* and FBL represent horizontal diffusion
terms and R is the radiative flux divergence. The forms of equations
(2.1.2) and (2.1.6) are identical to those of the equations they replace
i.e. I(2.1.3) and I(2.1.2) respectively.

The turbulence parametrization problem is now shifted to finding

representations of the vertical fluxes w'v, y W G," and W'Ze' in terms

of the mean variables y , O, and 9 and the t.k.e. E .

)

2.2 The modified equations for tur‘bulent' correlations

The equations for the second order turbulent correlations are the same
as 1(2.3.1)-(2.3.12) except that in I(2.3.2)-(2.3.8) O is replaced by O
and cl by Zt so that:

w'B/

i

5 _Gﬁ%—% + (i) g, 00 (2.2.1)

W 1‘:’ = T~ F %z;— -+ (l-q,) %( ev’it' (2.2.2)

Va O =T | Wy Q_Q‘. +(l—a1)w'8,_' oV,

i Sz , 53 (Zi2:3)




The virtual potential temperature in the presence of liquid water becomes

e\,:e("“’gi"’ZL) ' . (2.2.8)

where & ='/g e | and €= 0-622 , ‘S: O-60% . In place of I(2.3.13)

we therefore have

-g'é— Gv = PT e(,l - Pw i(:l -+ Fu. ZLI (2.2.9)

where the buoyancy parameters are:

- - _qo 24
{37—% ;{iw-——%———~—— ’pLz"L;"PT".Eﬂ (2:2:10)
(1+ SZ - Z") : cpr 7
= l-g€=20:37%. .
Unlike the dry or moist case we no longer have a closed set of

equations for the turbulent correlations since (2.2.9) and (2.2.10) involve 7
and i" in addition to the conserved variables. Relationships between Z(,

and i“, and the conserved quantities have to be found by considering cloud

ensembles and their temperature 2nd humidity statistics. Some precise
forms of these relationships will be derived in the next section; here we

will write the general forms:

- - =
ZL = Z" (P ’9“ Z"’ eL ’e°2* , 9¢ ,possibly higher order correlations) (2.2.11)

o G(P’ L’Ze 9"9”2“7* e 0 - > ) (2.2.12)




for the mean variables and:

%v 8¢ = fi, (F'Q)ih—oﬂ»--—)W"“ FW(F, 8,9, T‘)ﬁ (2.2.15)

for second order correlations involving Gv' and any other conservative
variable ¢ . In the absence of any cloud (2.2.11) - (2.2.15) must

become
7_(,:0
13 2:2!:

6y, = 0 (H— 32)
%v Gv' ¢' = {31' e'q)’ . {3N Z'CP' | (ef. equation I(2.3.13))

Comparison of (2.2.15) with I(2.3.13) shows that the formalism in (I) goes
through unchanged provided & — O, , g7 9e , fr — FT

and F’W o F‘" . Thus we have
WD = -k 928 (2.2.16)
¢ h D%
3
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with Kh) e givén by 1(2.11;;6)::-_ ‘a;éd‘:‘Ir('2.li>..7.f)- and N" sivenby




i/ :
for third order turbulent correlations involving ©, and any conservative
variables (/‘ and \t;' the formalism in 132.8 for third order
correlations remains the same but again with e —> 0., 7 —37(}.) PT:«7 ﬁ1

and pw ~— ﬁ.w ! Thus :

WE =-Ke 2B — K qa ~ Ko q.
o ‘2 2 ‘\-533 (2.2.21)
Pp— .

By, = e Ea <V/'G(,'> il o (N’;‘,

) " 5% [P o2 Ld (2.2.22)

e X 57" S b s .
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) AP w2t By 27 (2,2.23)
s 9% [ o1 o

with Kg |<, and Ky given by 1(2.8.9) - (2.8.11) and N* by (2.2.19).

2.3 Surface layer stability and fluxes in terms of conservative variables

The existing parametrization of surface turbulence fluxes in based on

the following similarity laws which are valid in the absence of changes of

state:
S e |
= SR f')m Y «eDa
OF ko2 L (2.3.1)
QQ ~Be <2/3
a'% h"?‘ qh L~ (2.3.2)
3 - o n
5 e A el
9?{ oz (f) L (2.3.3)
where
LL = 7 ! ‘Il
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and the Monin-Obukov length | = bez/h B* o
with :

L 3 &) & g
—g: PriOx + Pu g, r,f.-sj ’P“""Eﬁ-s{.i

From these similar'ity laws and the assumption that the fluxes are
approximately constant in the surface layer it is deduced that the surface

fluxes are given by:

‘ (WD oy = =& (R, Loy 25, ) v v, (2.3.4)

(ﬁ)wf = ~Cy (Ris, L:ra 2'/20)1\./.\ (9‘“95wf.) (2.3.5)

(Q'Zl—')wf = =i 1R, Log 2'/20)\‘1'\“(1.-@ Tsu.Q) (2.3.6)

where ol = l/(H—CH s ), ¥, is the surface resistance to evaporation,

7

R /s;qf

3 . N:wf = |57 (___e' _zes“““j\ 4 ﬁw oL (Zn Z“L(Ts‘ﬂ)) (2.3.7)
St = 22 (2.3.8)

The total, ie. sensible + latent, heat flux into the atmospher'e is required 5




By the same reasoning which lead to the modifications to the

turbulence scheme above the surface layer, the "wet" surface layer scheme
is obtained by making the substitutions O -2 6, ,Y-~9»ZL,{M-—% ﬁr,[K,J—;>f€w.

Thus the similarity laws valid with changes of state can be written in

terms of conservative variables as:

.é_u_ — u K "y ( - >

;/\ OL . C—)H\ 2 * >

= Ou oo (2 2.3.11
o2 b2 ; ( L S

It

:’?)C i -
T_7/1.‘:,. 5 (‘{; X S())\ < _li__) ( 23 3 12 )

(\/ = h p

where the scaling parameters are defined by

Uy = l <WV*>$ ‘”1

9(4. = ("W)stui— /l»u‘

o=~ (V5 oy [

The Monin-Obukov length is still given by L_:=kLgl/kL(3¥ but the

scaling parameter for buoyancy is now given by

*

8* g ETI et* £ ﬁwu Z(

The surface fluxes are:

(@7)5‘”_& Sadisun (Qt;,) Log 2'/20\\\-’—" Vi (2.3.13)

(WIQL' )'SW} Tt (Q‘-L ) logz/'lc) 1\1|\ (eu'~ BSH‘Q (2.3.14)




(T g = = CaRiy, Loy o Yol (=gt ) 2319

with the surface bulk Richardson number R, calculated with

Ni“’S 2 [n (_‘l%l) b P (_ZEL_’Z;E(_T:VJ?) (2.3.16)

|

Equation (2.3.9) can be rewritten as
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retaining the form of (2.3.9a). It is not permissible to identify the two
terms in (2.3.17) as the sensible and latent heat components as in the moist

case unless

— — L ey e
(W 7} )5:(»-} K <WZ )Cua‘j 0"‘\‘1— CPr":uj (W i‘— >xw«f XL (W 6 )Su
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3. CLOUD ENSEMBLE RELATIONS

3.1 The determination of ensemble mean cloud fraction, liquid water

content and buoyancy parameters

In reality a given fluid element in the atmosphere at a given time is
in a state of saturation or not. However, due to turbulent flqu%ions in
temperature and humidity, this state is liable to change. After an
ensemble average is taken a partial cloudiness may result. In accordance
with the assumption of (.) that ensemble means are identified with
horizontal means over a grid-box, the ensemble mean cloud fraction is taken
to represent the fractional cloud cover. The aim of this section is to
derive expressions for the mean cloud fraction and other quantities
dependent on the ensemble statistics. The approach to be used is that
developed by Sommeria and Deardorff (1977) and Mellor (1977).



In order to find the liquid water content of a fluid element with

given GL and ?_e an expression i(,. (9‘,, 2,”?) is required for the
saturation specific humidity. From the definitions of 9:, and Ze :

«’is (GL,ZL-, F) = s (TL + %‘j(ze-'i:), F)

where T =1 O, and 95 (T,P) is the saturation specific humidity curve.
An approximation based on the assumption that LZL/C‘,TL | (see (2.1.5))

is

e B 99 L .

Zs (GL, i&) P> e ZS(TL’ F)“‘" ‘D'Z_FT-;T ’ '(':—P (Zl.—" Zs(Q.,ie,P))
which can be rewritten as

<|+\6’LZL—)Z:L

is (ez.,ze, [’) s

(I+KLZSL) (3:7.1)
where sl Gx (T ) =& Cgr i B ¢ )
Poo=qlT,p) = 222, p=l-e, e mesa (T

(F ~'"lesc)

Womkr Ll e 25 = ELZ‘L- P
e E%:Tvn RT™ - (p-me)

The last relation follows 't‘rc;m the Clausius-Clapeyron equation

..‘2‘-’5‘. - ele
3B Ra ™ » |
‘ Néw'_.’ii’v T i’, (GL'.i‘;’F) then 'z;;o:,‘ 9= z,, i and. B= B¢
o SR BRI CER T  e
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Now introducing the ensemble mean of a quantity (denoted by an >

overbar) and a turbulent fluctuation from the mean (denoted by a prime) we

write
Ge= e +‘ie’ and 5 =0 + 0
Then
?_S“z-SLﬁ"JLe(, where z::t,:z:(;ﬁ,)ﬁ), E(_:TT;ZL ,§L=a‘7;£
oT =%
So
v Gt =Fu-l B _ - -
i t(lf? 5“) ‘ a.t_(zpzu) +s' (3:1.3)
when ‘ "
A q—c(i& ""Zsa) 5
and 1(" = 0 when S' £ —a, (21 0 iu)
.where o= I/(H—ii i’;b) and s'= & (Zt' - EL BL'> (3.1.4) .
It is convenient to normalise S' and a, (7,”-—?5(_) with the standard
deviation ‘
— "1 "4 — NGRS s o ¢ ol fe?
- (S 2) T (iél_zl’l Zel ke o l’lz et: ‘ 43.1.5)

and write




In order to determine ensemble means of ron-conservative quantities a
probability distribution function (p.d.f.) G(t) has to be introduced. From
the definition of a p.d.f. G must satisfy

Hdb =
_OOG“ | (3.1.7)
Now ?:&L(ig’—-(}?}:o. and so s
S te(t)dt = O (3.1.8) }
~o0
Also we know Swtl G(b)abt . :’_ = | (3.1.9)
o5 o

The ensem b-(e mean cloud fraction C is defined as the proportion of

ensemble members having a liquid water content greater than zero:

C=1| Mk

-Q,

(3.1.10)

The ensemble mean specific liquid water content ?i,, is given by

- [Se} o
-Z_‘— =j (Q+B)G(EYdE =Cqa + | EGl)dE  (3.1.11)
% ~Q, ~Q

It should be noted that the mean value of ZL in cloud is i:/(‘, in the

sense that

:: |—-C @] C*’.
i ( )* + _%_

-~ In the same sense




When calculating precipitation and radiative fluxes in cloud it is the
in-cloud mean values which should be used. The grid-box mean precipitation
and radiative fluxes are then C times the values calculated. Unless the
processes are linear this will not be the same as the result from

calculations using Z’ Z‘ and O .

The deviation from ensemble mean liquid water content, Z“I ,is given by:

g _ (it =gfe E>y— @ -
o’ - -
"Z(,/o‘s b = &, (3.9.12)
S, ~ 0O
from which it is easily verified that CL'", — S CLI'(HGCt)oLt = & ;
~o0

It is stated as a hypothesis by Bougeault (1982) that

T = 55 (5 o) = ARGF -LFT) G

where R = (5’21’ /o‘:—l) for any conservative quantity ¢ , whatever the
form of G(t). Mellor (1977) proves that this is true for a normal

distribution. However, for this special case it can be shown that R=C. So

¢,cl" =C(¢’s) = &‘C(fjﬁ;' il (]‘;Téj) '(3.1.13a)

may be an alternative generalisation to (3.1.13). The quantity R can be

evaluated as an integral involving G:

. ) () - 00 0
R= S t ‘lﬁ-}t— Gltydk: = '= %‘— j £ Gk +‘\A t(Q,+t) G()dk
5 -0 ‘Q‘

. S Qt(Q.JrL—\ G ()t (3.1.14)

From (3.1.8) and (3.1.9) it can be seen that R—>1 as C— | . Equations
(2.2.9) and (3.1.13) give

%VW = pféﬁ_¢>’+pwcle’¢'+ﬁy/¢>'
(PT—ELERPL)W +(ﬁw+al‘2(31.)2b'——a'

i
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The buoyancy parameters ﬁr and I]W introduced in (2.2.15) are thus

seen to be

I S A
{ [ (1 ‘ (3.1.15)

FJN = Pw s ‘ic p\ FL

The assumption expressed in (2.2.20) is equivalent to the hypothesis

PV = (FY )T o) = AR V- LIYE) 1)

For diagnostic purposes it may be useful to have formulae for the
vertical turbulent fluxes of (3,7 and 7( , these are not required in the

scheme to calculate anything. In terms of the parameter R the formulae are

— i Iy e
w'O —_— —— C () v G A+ ‘L:'" a )\ w'g,/

<‘ - . >»\ B - o i f 7 (3.1.17)
wy' = (1-a R & bR WS, (3.1.18)
7 - R (- )

The liquid water variance is

If (3.1.13a) is used in preference to (3.1.13) then R should also be
replaced by C in (3.1.15) - (3.1.19). However, the factor R in (3.1.20)
does not depend on hypotl:zsis (3.1.13) and so it should be retained even if

(3.1.13a) is used. The dependence of 5/{1, 3+ and F"” op> <Ok Gc‘it'

and igz is seen to be through the variance o *

15




The following relations, derived from (3.1.10), (3.1.11) and (3.1.14)
will be useful in th next section where expressions for C | i; and R are

derived from specific p.d.f's:

2C -
— = C) ("' CQ\)
2Q, £3.1.21)
O(gule) _ ¢
o Q, B {3.1.22)
“N p =
N 9. 0
o {: = G (3.1.23)

These follow from the rule for differentiating an integral with variable

limits:
- OO

TR T T oF _ centdal 26 i
y) [-(‘,.3,&/3.(,».,L).fu thn 5 ¢ ,L)+j‘ DE Lt

¢
% o

3.2 Some simple p.d.f's and associated formulae for C, ¢ and R

Sommeria and Deardorff (1977) and Mellor (1977) considered a Gaussian

form for the p.d.f.

| ~f2.
Gll= — ¢
V2
This has the properties: *

o0 Tan °°,_~ o oo_z VR - w—zT._OL A ;
j_wc,-a.m il Lwto(()u O L»( Gleykk = |, J:wt G(E)dt = O

The last result states that the skewness is zero. This form for G is
analytically integrable to obtain formulae for C.)il and R in terms of

exponential and error functions:

Q ~orh

=L : —_— .—L_:—_" _—'-——« o
C 1_‘*‘”’@(&) : Z» o s P b
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These forms are expensive to compute and so alternative p.d.f's have been by
sought which give simpler functions for a3, i’c and R in terms of Q,
and o5 .

A very simple "top hat" p.d.f. is:

O E¢—a
GEY= { 'ha ~al b la
(3.2.1) .
o .. gt ,
This satisfies ("¢ =1, ("te¢ =0 and ["v6 =| $f w=J3zEFTIRN. L8
- -0 -

The distribution has zero skewness like the Gaussian. The corresponding

formulae for C’i‘ and R can be shown to be

O Q| \<_\’\'§
- Q —§5 < a4
L B Aﬁ) i (3.2.2)
| B < q
O ) Q, ¢-83
Jom g Bt < Q<83 (3.2.3)
C's Ql \Yg $ Q|
w
o i Q, $~\Y§ '
R=¢ C(2-aN3)  -Bicq<«@ S vy

These functions are shown in figure 1. Unlike the Gaussian this p.d.f does
not give R=C but the difference between the two curves is small. The . 7 ‘,
gradient QC/aQ. is discontinuous at Q‘ = i\r since G is discontinuous

at (= 3773 (see relation 3.1.21), and BC/GQ, 7 g 0-28%7 at Q‘=O
és‘compared with 1[{3 = ©0-3989 for the Gaussian p.d.f.

A better simple approximation to the;- Gaussian 1s the piecewise lmeam
- v'triangular'.,p.d f., ¥ ‘




Swtig =| = a=Jb =2 44,9 and again the distribution has zero
-
skewness. This p.d.f gives:

i Q\ é"\n;
¢ = L0+ afg) “JEa 4B
‘_%<|_Q./{§)l 0 £ Q4G (3.2.6)
[ {6 £ @
%
; e ] Q, &-J6
3 i(, = S:%(‘+Q‘/r€) -¥6 < Q, £0 (3.2.7)
o5 Qu+ I (i- Qy\m)a 0< @, «%% SoZef
Oy Q| \S'E—é Q.
o Ql $"3-C
Q= L O %Y (1 Q) - -84 Q€0 (3.2.8)
Ci(eey (e Ggm) O A
| \Y€$ Q,

Figure 2 illustrates these functions. The difference between R and C is
very small: this indicates that this p.d.f. is a good approximation to the
Gaussian. Also oC[JQ,= /W, = 0.4082 at Q, ¥ O as compared to the value
0.3989 for the Gaussian. The gralient 2C[2Q, is continuous for_' this
p.d.f.

ALthough the triangular p.d.f represents the Gaussian better than the
top-~hat p.d.f. it is more oomplicated (there are four regions on the Q;

axis to consider and higher order polynomials in Q‘ to evaluata).f;_f
from the limited number of tests done S0 far are n@t\f- ’
;p.d f. chosen. The simpler top-hat P d,f.'

: ; _ mesoscale model .

e S

It has been pointed



= &2 (30 -3 e 3T [ ) 38

and is in principle computable from the turbulence scheme. A positive
skewness will allow, for a given o. , initiation of condensation at a
lower mean relative humidity. Correct representation of scattered cumuli
or the undulating tops and bottoms of stratiform cloud may need therefore a
p.d.f with non-zero skewness. Further work is required to find a

computationally simple skew p.d.f.

4, COMPUTATIONAL DETAILS

4.1 The calculation of the static stability parameter N* presents a
problem since it is not explicitly defined by (2.2.19). The buoyancy
parameters ﬁr and ﬁw depend on the quantities é:l, é?};f and ?@”
(and possibly higher order quantities); these in turn, through the quantity tg}<h
depend on N* Obtaining an explicit formula for N* out of this complex

chain of nonlinear dependencies would be very difficult and the result

would not be suitable for computational purposes.

In a simple one-dimensional model, where storage space for variables
is not a constraint, the obvious solution to the problem is to carry over a
suitable quantity or quantities from the previous time level. Since it is
iL and R (or C if (3.1.13a) is used) which are required in the calculation
of the buoyancy parameters, carrying over these two quantities minimises

computation. For a p.d.f. with zero skewness dnly one quantity, os,

need strictly be carried over since CT,ZL and R can then be derived.

However, for a skew p.d.f. the skewness, A, is also required. Since C and i}
are the more physically meaningful quantities and are used directly in
calculations, they are stored from one time level to the next in the 1-d

model .

In the full 3-d mesoscale model E‘,i and @ are already available
from previous time levels. However, the only available variable
characterising the turbulence is the t.k.e. The quantity L‘N1 is estimated

by a reverse application of the diagnostic t.k.e. equation. This gives:

19




ot = (Pt = FoB )+ (B — R BV P E(E=Ere)
oL 2.Fy

Since the t.k.e. will have been calculated from its prognostic equation
involving turbulent transports this value of [ZNL will not be precise.
It is only used in the calculation of the buoyancy parameters fiivd after

which a truer value can be calculated from (2.2.19) and subsequently used.

4,2 A similar type of pﬁoblem exists in calculating the surface static
stability NE.,S_

calculated. Equation (2.3.16) involves the surface moisture availability

from (2.3.16), even after the buoyancy parameters have been

parameter d::\/(l«-cu\er}). Unless ¢ = (O this depends on (,; which
is in turn a function of stability. Again an explicit formula is difficult
to find and would be useless for practical purposes. In the 1-d model «
is carried over from the previous time level. It is proposed that in the
mesoscale model C,; is replaced by its neutral value of k‘/(u7}2120)1 in
the calculation of <« for use in (2.3.16). This then allows a full

stability dependent C,; to be found for calculating fluxes.

4,3 As with the moist scheme described in (I) there is the possibility of

the effective diffusion coefficients for the thermodynamic and moisture
variables being negative. The same physically artificial and unjustifiable

=

but effective procedure as in (I) is used to limit the values of h&é and Ni

These quantities are given by:

NT~ = -r Qii ) kg = jiw gﬁ?
9% 07

in the wet scheme.

5. TESTS OF THE SCHEME IN A 1-D MODEL

5.1 Wangara day 33 with zero surface resistance to evaporation

The first test of the scheme was carried out with the data for Wangara
day 33 as used in tests of the moist scheme in (I). The 1-d model with
gridpoints at 10, 100, 300, 500, 700, 900, 1100, 1300, 1500, 1700 and 2000m

20




was used. The results were almost identical to those produced by the moist

scheme. This is as it should be since no clouds formed in reality or the
model. In order to artificially induce cloud the surface resistance to
evaporation was then set to zero rather than its realistic high value.

This has the effect of transforming the Wangara site from desert to swamp!

As expected this change greatly increased the latent heat and moisture
fluxes from the surface at the expense of sensible heat. After 0800 hours
local time fog (i.e. cloud at the bottom model 1evel) formed and by 1000
hours this lifted to layer cloud at 100m beneath the steadily eroding
nocturnal inversion. By 1200 hours the inversion had been completely
eroded allowing turbulent eddies to penetrate rapidly into the near neutral
layer left over from the previous day's (dry!) mixing. The cloud fraction
in this layer was < Y3 and can be interpreted as an indication of
scattered cumuli associated with the penetrating eddies. Evidence of this
can be seen by comparing the ¢ and O profiles at 1200n in figures 3
and 4. Between 300 and 700m the potential temperature is slightly greater
than the conserved liquid water potential temperature. This is due to the
latent heat released in the cloud. The liquid water content at 1200 hrs
can be seen in figure 5(b). Its magnitude is small since the cloud cover
is far from complete. The in-cloud liquid water content is about three

times as large.

This scattered cumuli stage is transitory. The turbulent flux of
moisture is sufficiently large to ensure the formation of a layer of
stratocumulus beneath the upper inversion. By 1500 hrs a layer with cloud
fraction of 0.8 has developed at 900 m. The layer beneath this level is
fairly well mixed as can be seen from the profiles of the conservative
variables €, (figure 3) and e (figure 5(a)) for this time. The latent
heating can again be seen by comparing the © and 8 profiles (figures 3

and Y4) and the liquid water content is clearly evident in figure 5(b).

The normalised t.k.e. profile is shown in figure 6(a). The convective
SR 3
velocity W, = [%L(“/GVihq-g] is not so appropriate for normalising the
t.k.e. when there are sources other than buoyancy generated at the surface.

In reality radiative cooling from the top of cloud layers is a significant
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source of buoyantly generated t.k.e. The model used in this test does not
have any representation of radiation except at the surface so the
reservations about using w, are not so great. There is, however, a source
of t.k.e. at cloud top evident in this simulation which is due to the
"cloud top entrainment instability" (Deardorff (1980) and Randall (1980)).
Figure 6(a) shows a level of turbulence at the top of the mixed layer
exceeding that of simulations of cloud-free layers. This is a result of
the positive buoyancy flux at this level (figure 6(b)). The generation of
positive buoyancy by the entrainment at the top of cloudy mixed layers is
in sharp contrast to the behaviour of cloud free layers. Although the air
entrained from the free atmosphere is potentially warmer it is also much
drier. A pocket of this entrained air therefore cools because liquid water
in the cloud evaporates into it. The criterion for this process to be a

source of t.k.e. is given by Randall (1980) to be

(s [\e(‘, < G)AZL_

where A represents the jump in a variable across the inversion layer and P
is a slowly varying function of temperature of magnitude = 2 . The
relatively high level of t.k.e. at the inversion leads to entrainment

fluxes larger than those of cloud-free layers. The fluxes of 6, and zb
are shown in figures 6(b) and 7 for 1500 hrs. Owing to the entrainment the
mixed layer grows and by 1800 hrs has reached 1100m in height with a solid

deck of stratocumulus at the top.

These results, although artificial and obtained from a model without
radiative or precipitation physics, show realistic behaviour. In
particular, the maintenance of t.k.e. in cloudy layers and enhanced

entrainment at cloud top are well simulated.

5.2 Marine stratocumulus simulation

As a further test the 1-d model with the same resolution was used to
simulate the development of a layer of stratocumulus over sea. The sea
surface temperature was held constant at 18°C. The initial potential
temperature profile was set to (18 + ¥. 2 )“C up to 1500m with . =0'3 °K kw;x
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with a stable layer above. The initial specific humidity was constant up

to 1500m with a value of 6 g kg—'. This gives a relative humidity of Jjust
100% at 1500m. The initial G profile (which is the same as the initial .
profile since there is no l;quid water) is shown in figure 8 and figure 12
shows the initial relative humidity profile. These initial conditions
represent a well mixed cloud-free boundary layer 1.5 km deep on the point

of becoming cloudy.

The model was run for 144 hours, i.e. 6 days. Throughout the
simulation there is very little turbulent flux of G, as the boundary layer s
is in thermal equilibrium with the sea surface. The flux of moisture from
the sea steadily increases the humidity of the mixing layer (figures 10(a)
and 12). Figure 10(b) shows the development of a stratocumulus layer. For
the first four days the layer deepens by a steady lowering of the cloud
base to a little above 700 m., During this period the turbulence in the

boundary layer is leading to entrainment at cloud top. The effect of the

1700m (see figures 8 and 10(a); t.k.e. profiles are shown in figure 11).
During the remaining two days of the simulation the inversion is further
“eroded and the cloud top rises to 1700m. During this process the cloud
base is prevented from becoming lower as the water substance is required to

form the cloud in the layer 1500-1700m.

entrainment can be seen from the reduction in ©. and increase in 7¢e at
The latent heat released during cloud formation shows in the wet |
adiabatic lapse rate for 8 in the cloud layer in figure 9. The stability, |

in this wet scheme, depends on the gradients of the conservative variables e,
turbulence as it would in a dry scheme.

An interesting feature of the profiles for T+5 and T+6 days is that
the cloud and sub-cloud layer seem to have become dete-hed. This is
clearly evident in the t.k.e. profiles; at T+6 days the t.k.e. falls to its
minimum value at 500m. The reason appears to be that the rapid entrainment
due to the cloud top entrainment instability mixes warmer air (in the sense
of greater G, ) into the boundary layer. This is mixed right down to the
sub-cloud layer which therefore becomes slightly stable. The T+6 days E%
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and 7t and so the positive gradient in © in the cloud does not inhibit




profile (figure 8) shows this effect. Figure 10(a) shows the development
of a distinct hydrolapse below cloud base in association with this

separation of layers.

The liquid water content of the upper parts of the cloud would in
reality be prevented from becoming so large by the formation and
preciiitation of}rain drops. A parametrization of this process is not yet
in the 1-d model but testsiof the wet turbulence scheme in the 3-d
mesoscale model will provid; an opportunity to see how the precipitation
physics and the turbulence interact. The development of the stratocumulus
would be faster if a parametrization of the longwave cloud top cooling was
included. With these extra processes included in the model a realistic of

simulation of the break-up of a stratocumulus layer may be possible.
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