MET O 11 TECHNICAL NOTE NO 93

Some experimental evidence on principal components

R DIXON

1e Introduction

Six years ago when the present operational analysis system based on
orthogonal polynomials was being developed the idea was entertained that
it might be possible to construct a set of eigenpolys which would be
sufficiently similar to a set of principal components to share their
renowned efficiency in the matter of extracting variance from a set of
data. The intention was to use eigenpolys in place of standard orthegonal
polynomials to speed up the analysis. Some experiments were carried out
to establish just how much more efficient principal components are as a

. data fitting tool than orthogonal polynomials.

The experimental results were discouraging and the idea was
v abandoned. However the results are interesting and valuable in their
own right and should be available to anyone having an interest in the
use of principal components. The results raise a number of obvious
theoretical questions and some of these questions I hope to deal with in
a later note.

- N.B. This paper has not been published. Permission to quote from it
must be obtesined from the Assistant Director of the above Meteorological
Office Branch.
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2e The experimental results

From daily values of 500 mb heights during 1965 to 1967 for the 130 points
shown in Figure 1, 1320 eigenvectors were computed. This data set will be referred
to as the dependent data set. The eigenvectors were then ordered according to
the amount of variance they each extracted from this dependent data set. The
first 40 ordered eigenvectors were then taken, the rest were discarded and played
no further part. :

In carrying out this experiment we had in mind the well-known mathematical
statistical theorem which states that such a set of ordered eigenvectors will
be more efficient at extracting variance from the data set than any other set of
linear functions of the data. This is certainly true, in a particular sense, of
the dependent data set. What interested us was the extent to which this was
likely to be true if the eigenvectors were used to extract variance from a similar
but independent data set. We were especially interested in the case of single
independent data vectors.

The single independent data vectors used were the 500 mb heights for 00Z
on 1st January 1970, 2nd July 1970, and 29th July 1970. Bivariate orthogonal
polynomials of the 1lth power (120 terms) were fitted to each data vector and
in each case the LO most efficient terms with respect to variance extraction
were selected. Then the three independent cases were fitted using the optimal
ordered set of eigenvectors extracted from the dependent data set.

Figures 2, 3, and 4 show the cumulative % second-moment-about-zero accounted
for by the eigenvectors (crosses) and the orthogonal polynomials (dots) in each
case. The diagrams show that although the eigenvectors establish an early lead,
this lead is lost by the time 10 terms have been used, although in the 2nd July
case the eigenvectors regain the lead later. Of course it can be said that this
comparison is unfair to the eigenvectors since the orthogonal polynomials have
been variance-ordered with respect to each independent data vector. True, but
the main point here is to test whether the theorem quoted above is likely to be
true with respect to independent data. Is it to be expected that a set of
eigenvectors will do better than any other set of linear functions on an
independent set of data? There is no theoretical reason why they should as far
as I know. The ordered sets of orthogonal polynomial terms can be regarded
simply as other sets of linear functions. It is thus clearly unsafe to rely
on the theorem holding for independent data. The most that can be said is that
the first few eigenvectors will probably do better than some other functional
terms but that as more terms are admitted the outcome is uncertain.

Another way of presenting evidence on this point is to number the optimal

eigenvectors of the dependent data set from 1 to 40 and then list the corresponding

variance ordering for the same eipgenvectors used on the independent data vectors.

In T=ble 1 below the top line numbers the optimal set and the second line shows

the order in which they extracted variance from the independent data cases.
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It will be noticed that the dependent data set optimal ordering is not
preserved on these independent cases. Indeed the departures from the original
order are quite striking. /As a rough guide to the correspondence between the
original ordering and the order in which they extract variance from the
independent data cases I have calculated the correlation coefficients. They
are: 1st Jan 1970 r = .35, 2nd July 1970 r = .19, 29th July 1970 r = .48. The
r = .19 for the 2nd July 1570 csse is not -even significant at the p = .05 level.
I think this simply confirms what is apparent to the eye from Table 1.

It is also instructive to plot the cumulative percentages accounted for
by the principal components when taken in their order of efficiency for each
individual independent data vector, i.e. the order given by the second rows
of Table 1. The results are shown in Figures 5, 6 and 7. It is seen that
although in one case, 2nd July 1970 figure 6, the principal components now stay
ahead of the orthogonal polynomials all the way, in the other two cases the
orthogonal polynomials still catch up with and overtake the principal components.
Thus in these two cases if a detailed representation of the data is required it
might still be better to use specially ordered orthogonal polynomials than
specially ordered principal components.

Finally some evidence supplied by M Colgate. On a grid of 106 points a set of
surface préssures taken every ten days through the period 1949-1964 was used as a
dependent data set. The eigenvectors were computed and ranked according to their
extraction of variance efficiency with respect to this dependent data set. As an
independent data set surface pressures every ten days from the period 1965 to 1971
were taken. The eigenvectors from the dependent set were used to extract variance
from each of the data vectors making up the independent set. A freguency table
was then compiled showing, for each eigenvector, how often it was the most efficient
extractor of variance, how often it was the second most efficient, etc, etc.

This table is shown as Figure 8, for the first 20 eigenvectors. To make the
interpretation of this table quite clear, row one shows that eigenvector No.1. was
the most efficient extractor of variance in 114 cases, it was the second most

4




efficient extractor in 36 cases, the third most efficient extractdr in

12 cases and so on; row 9 shows that eigenvector No.9 was the most efficient
extractor of variance in 3 cases, the second most efficient in 9 cases, the
third most efficient in 13 cases and so on. The table speaks for itself.

Se A few closing comments

Principal components are an appealing tool, but anyone intending to use
them needs to consider this evidence. Such hard evidence is quite difficult
to come by in the voluminous literature of the subject. It is not suggested
that workers in this field are unaware that eigenvectors which are dominant
with respect to the dependent data set may not be dominant with respect to
any independent data, but they have not published much evidence showing just
how badly this may be the case. Also it is not suggested that they are
unaware that the optimality of the principal components applies only onraverage
over the dependent data set and that eigenvectors which are dominant with respect
to the dependent data set as a whole may not be dominant with respect to any
individual data vector taken from that set, but again hard evidence on this point
is very scarce. The point is briefly acknowledged on p.588 of W D Seller's paper
in Vol.96, No.9, MWR Sept.1968, but it is a pity that he did not display the
evidence.

There seems to be two further experiments which cry out to be done. First,
a frequency table corresponding to Figure 8 should be compiled for the dependent dats
set. This would show to what extent one can rely upon the eigenvectors which are
dominant for the dependent set as a whole being dominant for individual data,
vectors drawn from that set. Second, a set of orthogonal polynomial terms optimal
with respect to the dependent data set as a whole should be constructed and
frequency tables corresponding to Figure 8 for the dependent and independent
data sets compiled. We should then investigate on what percentage of occasions
does the optimal orthogonal polynomial set do better than the optimal principal
components when used on individual data vectors drawn from both the dependent
set and the independent set. Finally, we can pose the question as to whether it
is possible to construct a set of orthogonal polynomisls which will do better on
the dependent data set as a whole than the optimsl set of principal components?
Now this last question has a strong whiff of heresy about it, because it
challenges the validity of the main theorem, and this theorem undoubtedly has
a firm place in mathematical statistics. But all the evidence presented in this
note eand the further work suggested really bears on the problem of determining
the practical validity and scope of this theorem, so we may as well ask the
ultimate awful question. To paraphrase the opening sentence of Craddock's main
Note on the topic, this theorem is one which is better known in the quoting than
in the proving.

None of all this should be interpreted as meaning that I am against

principal components. They appeal to ¥ too.
ﬂ%w\

R DIXON
Met O 11

August 1977
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