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Abstract

FAMOUS is an unfluxadjusted coupled atmosphere-ocean general circulation model (AOGCM)
based on the Met Office Hadley Centre AOGCM HadCM3. Its parametrisations of physical and
dynamical processes are almost identical to those of HadCM3, but by virtue of reduced horizon-
tal and vertical resolution and increased timestep it runs about 10 times faster. The speed of
FAMOUS means that parameter sensitivities can be investigated more thoroughly than in slower
higher–resolution models, with the result that it can be tuned closer to its target climatology. We
demonstrate a simple method for systematic tuning of parameters, resulting in a configuration of
FAMOUS whose climatology is significantly more realistic than would be expected for a model of
its resolution and speed. FAMOUS has been tuned to reproduce the behaviour of HadCM3 as
nearly as possible, in order that experiments with each model are of maximum relevance to the
physical interpretation of the other. Analysis of the control climate and climate change simulation
of FAMOUS show it to have sufficient skill for its intended purposes in Earth system science as a
tool for long-timescale integrations and for large ensembles of integrations, when HadCM3 cannot
be afforded. Thus it can help to bridge the gap between models of intermediate complexity and
the higher-resolution AOGCMs used for policy-relevant climate prediction.

1 Introduction

State–of–the–art coupled atmosphere ocean general circulation models (AOGCMs), such as HadCM3
(Gordon et al (2000)), are the best tool for making predictions of future climate change over the coming
century because of the detail with which they are able to represent the processes involved. However,
they are very computationally expensive to run. Earth System Models of Intermediate Complexity
(EMICs, e.g. CLIMBER, Petoukhov et al (2000)) are a faster type of model which have been used very
successfully for such simulations as studying the stability of the THC in glacial and interglacial periods
(Ganopolski and Rahmstorf (2001)), or the impact of interactive vegetation in simulations of past
climates (Kubatzki et al (2000)). Such models are fast because of low spatial resolution (CLIMBER,
Petoukhov et al (2000)), reduced dimensionality (Stocker et al (1992); Marchal et al (1998)) or very
simplified representation of some aspects of physics (Weaver et al (2001)). Their speed makes them
practical for purposes for which state–of–the–art AOGCMs are not, but the necessary simplifications
may lead them to exclude processes which could be important to aspects of climate change. For
example they may not represent gyre circulations in the ocean or 3-dimensional atmospheric dynamics,
which have been suggested to be important in determining THC stability (Schiller et al (1997); Vellinga
et al (2002); Thorpe et al (2001)).
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To fill the gap between these two classes of models, what is needed is a model based on a state–of–
the–art AOGCM, but significantly faster. FAMOUS (FAst Met Office / UK Universities Simulator)
is such a model: it is a new, fast version of the HadCM3 AOGCM (Gordon et al (2000); Pope et al
(2000)), developed at the Met Office in collaboration with NERC–funded scientists at the universities
of Reading and Bristol. It represents the same physical and dynamical processes as HadCM3 but with
reduced horizontal and vertical resolution and increased timestep. As a result it runs about 10 times
quicker than HadCM3.
The use of FAMOUS in conjunction with HadCM3 will allow more areas of climate and Earth

System science to be explored. Basing FAMOUS on HadCM3 means its results are directly traceable
to the state–of–the–art model used for policy–relevant climate projections. Likewise, processes of
interest in HadCM3 and uncertainty in its projections due to uncertainty in its parameter settings can
be studied further in long simulations or parameter ensembles carried out with FAMOUS. For example,
Thorpe et al (in prep.) use FAMOUS to investigate the multi–century response of the climate and
ocean circulation to a reversal of the direction of Earth’s spin - an experiment not presently feasible
with HadCM3 using the currently available computing power.
FAMOUS is of similar spatial resolution to various other coupled GCMs successfully used in recent

climate studies, such as the Goddard Institute for Space Studies GCM (Russell et al (1995); Russell et
al (2000)) or the Geophysical Fluid Dynamics Laboratory (GFDL) R15 version of their climate model
(Dixon and Lanzante (1999); Dixon et al (2003)). Similarly, the National Center for Atmospheric
Research Community Climate System Model (CCSM, Blackmon et al (2001)) has a low resolution
“Paleo-CCSM” version which has been used successfully to simulate past climates such as the Last
Glacial Maximum (Shin et al (2003); Liu et al (2002)).
The speed of FAMOUS makes it possible to use a systematic tuning procedure to optimise its

climate simulation and we will demonstrate that the resulting configuration is suitably skillful to be
used for scientific studies for which higher resolution GCMs such as HadCM3 would be too compu-
tationally expensive. An overview of the configuration of the FAMOUS GCM is given in section 2,
and the advantages of an optimal tuning algorithm are discussed in section 3 along with an outline of
the one developed here. The results of applying it are described in section 4 and an assessment of the
resulting climate of FAMOUS is given in section 5. A discussion of the climate sensitivity is given in
section 6, followed by conclusions in section 7.
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2 FAMOUS formulation

FAMOUS is a GCM. It is a version of HadCM3 (Gordon et al (2000); Pope et al (2000)) which
has been widely used to simulate present day and future climate. The atmospheric component is
a hydrostatic, primitive–equation, grid point model with a hybrid vertical coordinate system. It
uses an Eulerian advection scheme and parametrisations of key physical processes such as clouds,
precipitation, convection, radiation (for a fuller description see Stratton (1999) and Pope et al (2000)).
The ocean component is a 20 level version of the Cox (1984) model with parametrised horizontal eddy
mixing of tracers and near surface vertical mixing. Sea–ice is represented by a simple thermodynamic
scheme which contains parametrisations of ice–drift and leads (Cattle and Crossley (1995)) and sea–ice
dynamics (Bryan (1969)).
The ocean GCM component of FAMOUS is based on the ocean component of HadCM3 (HadOM3,

described in more detail in Gordon et al (2000)), but with the horizontal resolution reduced from
1.25◦x 1.25◦to 2.5◦x 3.75◦(the same resolution as HadCM3L, Cox et al (2001) and HadCM2, Johns
et al (1997)). The 20 levels in the vertical are unchanged. The use of a “distorted physics” scheme
(Bryan and Lewis (1979); Bryan (1984)) allows a 12 hour timestep to be used without degrading the
simulation (Jones (2003)). Other differences between the FAMOUS ocean and HadOM3 are listed in
the Appendix; the development and testing of the ocean component is described in detail in Jones
(2003).
The FAMOUS atmosphere component is based on the atmosphere component of HadCM3 (HadAM3,

Pope et al (2000)). Although GCMs are physically based, many processes at unresolved spatial scales
are represented by schemes whose parameters are only loosely constrained by observations. There
are no changes to any of the physical parametrisation schemes, other than the tuning of some of the
parameters as described by this paper. The horizontal atmospheric resolution of FAMOUS is 5◦x 7.5◦,
half that of 2.5◦x 3.75◦used in HadAM3. The vertical resolution is reduced to 11 levels from the 19 of
HadAM3. A timestep of 1 hour is used compared with 30 minutes in HadAM3. A detailed description
of the differences between FAMOUS and HadCM3 atmospheric components is given in the Appendix
along with some details of the coupling between the atmospheric and oceanic components.
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3 Systematic tuning

Many parameters within the schemes used to represent procsesses at unresolved spatial scales are only
loosely constrained by observations. The process of deriving the values of parameters within those
constraints in order to maximise the model’s skill is known as “tuning”. The high computational
resources required to run a GCM can mean that many GCMs are not optimally tuned because not
enough parameter sensitivity tests can be run. However, the speed of FAMOUS makes it suited to
the application of an optimal tuning method.
It was decided to tune FAMOUS towards its parent model, HadCM3, rather than towards observed

climatologies, in order to maximise “traceability” of FAMOUS to HadCM3. By “traceability” here
we mean that the models simulate the same behaviour by the same physical mechanisms, although
differences in resolution and parameter settings will mean they are not quantitatively identical. The
aim is for FAMOUS to emulate HadCM3 sufficiently accurately that inferences can be made about
HadCM3 based on simulations with FAMOUS and vice–versa.
Conventionally, tuning a model as complex as a GCM has involved a large amount of subjectivity

owing to a lack of information about the effects of possible parameter perturbations. Often several
parameters contribute to a given error, and a single parameter is implicated in many errors. An
objective method of tuning measures the performance of the model in terms of all errors relative to
climatologies and systematically tunes all the parameters to obtain the optimal model configuration.
Because such a system clearly relies on hundreds or even thousands of model years to be simulated it
has hitherto only been attempted for simpler climate models than AOGCMs (Annan et al (submitted);
Price et al (submitted))

3.1 Skill score

The tuning method relies on being able to quantify the skill of a particular model configuration with
a single number. The choice of which diagnostics to consider and how to assess the skill of the model
with respect to each of them will have an impact on the final “optimal” parameter values determined
by the tuning algorithm. These subjective decisions will depend on the intended use of the model.
The measure of skill chosen here is the “Arcsin Mielke” (Watterson (1996)) score which takes into

account several aspects of the fields to be compared and is calculated as follows. For a latitude–
longitude field of observations, x, and a model field of the same variable, y, the area weighted mean,
x, and spatial standard deviation, sx, are given by:

x =
mean(wx)

mean(w)
(1)

sx =

√

(

wx′x′

w

)

(2)

and similarly for y and sy, where w is a field of weights given by the relative area of each model
gridbox, and w is the average of w. Bias, b, is defined as the area average difference between the fields
divided by the geometric mean of their spatial standard deviations:

b =
x− y
√
sxsy

(3)

The pattern correlation coefficient between the given and modelled fields, ρ, is given by:

ρ =
x′y′
√
sxsy

(4)

where the overline denotes an area weighted mean and x′ = x− x, and y′ = y − y.
Finally, the “Arcsin Mielke” skill score is given by:

Arcsin Mielke score =
2

π
arcsin

(

2 ρ

σ + 1/σ + b2

)

(5)
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where σ is the ratio of the spatial standard deviations. Its possible values lie between +1 for complete
agreement (b = 0, σ = 1, ρ = 1) and -1 for complete anticorrelation (b = 0, σ = 1, ρ = −1). It penalises
lack of resemblance between the fields (|ρ| < 1). Fields with no corresponding features will have ρ = 0
and a score of zero. Hence a uniform field would score zero, even though its RMS error (a possible
alternative measure of skill) would be smaller than one with pronounced but incorrect geographical
variation. Since large b leads to small absolute score, it also penalises overall bias, which would not
affect ρ. Finally, it penalises differences between the magnitude of spatial variation in the field; either
σ or 1/σ will be large, giving small absolute score. This degrades the score for a field which has the
right pattern (large ρ) but the wrong variance.
Subjective tuning of a GCM carries the risk of improving one area of the model at the expense

of another. A multivariate assessment of the skill of the model reduces the chances of this. Thus, to
determine an overall score for FAMOUS, eight model diagnostics were chosen as important variables
whose skill the model should maximise. They are:

- Surface air temperature, at 1.5m height above the ground

- precipitation rate (rainfall plus snowfall)

- outgoing shortwave radiative flux at the top of the atmosphere

- outgoing longwave radiative flux at the top of the atmosphere

- soil moisture content

- sea-ice concentration (i.e. the fraction of each model gridbox area occupied by sea-ice)

- NPP: net primary productivity of the terrestrial biosphere (i.e. the net uptake of atmospheric
carbon by the vegetation)

- Atmospheric stream-function (at 500 mbar), from which the horizontal velocity field at that level
can be calculated.

The Arcsin Mielke skill score for multi-annual means of each of these quantities from FAMOUS was
calculated against corresponding means from HadCM3. The total score is simply the sum of the
scores from the separate diagnostics, giving them all equal weight. The sensitivity of the results to
the choice of these diagnostics, and the decision to tune the model to match HadCM3 rather than
observed climatologies, will be discussed later.

3.2 The tuning parameters

Given limited computing resources, a choice must be made of a small subset of model parameters
to tune. The project on Quantifying Uncertainty in Model Predictions (QUMP) at the Met Office
has done much work to identify the role of many parameters in determining HadCM3’s performance
(Murphy et al (2004)). Based on that work a subset of parameters was chosen as being those which
have most impact on the model’s skill and which therefore should deliver the greatest benefit when
optimally tuned. They are:

- RHcrit: the threshold of relative humidity for cloud formation (in model level 3 and above)(Smith
(1990)).

- V f1: precipitating ice fall–out speed in the Heymsfield formula (Heymsfield (1977)).

- Ct: the conversion rate of cloud liquid water droplets to precipitation (Smith (1990)).

- Cw: the threshold values of cloud liquid water for formation of precipitation (this parameter takes
different values over land and sea which are varied together by the same fractional amounts)
(Smith (1990)).
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- Z0(SEA): the convective roughness length over the sea.

- Gravity wave and trapped lee wave constants within the model’s parametrisation of gravity wave
drag (Milton and Wilson (1996); Gregory et al (1998)). These two constants are varied together
by the same fractional amounts.

Standard values of these parameters (i.e. the values used in HadCM3) are listed in table 1 along
with the “high” and “low” limits of uncertainty chosen by experts for the QUMP project, based on
current knowledge of what the “real” parameter value should be.
All these parameters are in the atmospheric component of FAMOUS. RHcrit, V f1, Ct and Cw

affect clouds which are among the greatest sources of systematic uncertainty in modelling of climate
change (Cubasch et al (2001)). Ocean model parameters were not tuned because longer integrations, of
centuries rather than decades, might be required to achieve a steady state for a new parameter value.
However, ocean tuning could also be influential on model performance and should be considered when
computing resources allow.

3.3 Estimating optimal parameter values

The tuning method developed here assesses the impact of varying model parameters on the perfor-
mance of the model and iteratively moves towards the model configuration which maximises the skill
score with respect to the target climatology. For a given initial configuration of the model, a control
run is performed along with a series of runs in which one parameter at a time is perturbed from its
control value, within preset bounds. By calculating how the skill of the model varies as a function of
each parameter, a value of each parameter can be estimated which optimises the model’s skill given
the values of the other parameters. These can be combined to produce a new control state which
should have improved skill.
This approach firstly assumes that the skill of the model for some untried parameter value can

be estimated from the skill at other, nearby, parameter values. It secondly assumes that changes
in skill due to single parameter changes can be added linearly when changing several parameters at
once. Neither assumption will hold exactly (e.g. Stainforth et al (submitted)) and so an iterative
procedure is required: perturbation runs are performed about the new control state to determine
further improvements.
Thirdly, it assumes that the skill in parameter space varies smoothly enough that the maximum

can be found. There is a risk that the method may become “stuck” at a local maximum, when the
optimal solution is far away in parameter space. This could be investigated by repeating the tuning
from several different initial model configurations. The results should all converge on the same optimal
solution. The tuning algorithm we have used is a rather simple one, which we adopted in order to test
the concept of systematic tuning of an AOGCM. In future work it would be worthwhile investigating
the use of more powerful algorithms such as the ensemble Kalman filter of Annan et al (submitted)
and the genetic algorithm of Price et al (submitted).
At each stage of the tuning we perform two experiments for each parameter with its value perturbed

by ± 10% of its expert–estimated range from its control value. We then interpolate model skill
quadratically within the range of the perturbation to determine the optimal parameter value for
the next phase. Although this algorithm requires two runs for each parameter, making it twice as
computationally expensive as a linear descent algorithm, we favour it for two reasons. Firstly, this
method tells us not only the direction of the optimal perturbation but also its magnitude - a linear
descent algorithm requires a size of step in parameter space chosen somehow a priori. Secondly, the
range over which the quadratic (2nd order) interpolation of skill holds will probably be greater than
the range over which a linear (1st order) interpolation would hold.
Assume that model skill, S, is locally a quadratic function of the parameter perturbation:

S = a+ b∆P + c∆P 2 (6)
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where ∆P is the fractional change of the parameter within its allowed range. The optimal perturbation
(assuming we are near a maximum rather than a minimum in skill) is therefore the one which solves
dS/d∆P = 0:

∆P opt =
−b
2c

(7)

For a control run (∆P 0 = 0) and runs perturbed by ∆P 1 and ∆P 2, the skill is denoted by S0, S1 and
S2 respectively. Hence:

a = S0 (8)

a + b∆P 1 + c∆P 2
1 = S1 (9)

a + b∆P 2 + c∆P 2
2 = S2 (10)

whose solution leads to:

∆P opt =
1

2

S2∆P
2
1 − S1∆P

2
2 − S0(∆P

2
1 −∆P 2

2)

S2∆P 1 − S1∆P 2 − S0(∆P 1 −∆P 2)
(11)

We adopt perturbations of ±10%, so ∆P 1 = −0.1 and ∆P 2 = 0.1 and:

∆P opt =
1

20

S2 − S1

2S0 − S1 − S2

(12)
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4 Results of the optimal tuning of FAMOUS

Each phase of the optimisation comprised a 100yr control run and 12 perturbed parameter runs (2 for
each tuning parameter), each also for 100yr. Five iterations of the tuning algorithm were performed.
The skill measure of each configuration is the sum of the Arcsin Mielke skill score for the 8 diagnostics
meaned over the final 50yr, compared against a long–term mean from the existing control run of
HadCM3. Note we use the score of multi–annual mean fields rather than averaging the score of
individual years because of interannual variability within the run. A perfect match of FAMOUS to
HadCM3 would score 8.0 since each diagnostic can score up to a maximum of 1.0, although this is
not attainable in practice with runs of finite length because of interannual variability. Comparison of
5 periods of 50 years from the control run of HadCM3 gives a score of 7.77 ± 0.04.
Phase 1 of the tuning process started from a control run of FAMOUS using the same parameter

settings as HadCM3, except that the RHcrit values were reduced to take account of the fact that
reduced vertical resolution led to increased thickness of model levels 1 and 2. For model levels 3 and
above, RHcrit was one of the parameters tuned subsequently. The parameter settings used are listed
in table 1. Each parameter was perturbed by ± 10% of its allowed range from its control state except
for the Gravity Wave parameters which were already at the maximum value. These were perturbed
by -10% and -20%.
Although the methodology used here has been presented as objective, a degree of subjectivity

was occasionally required in practice when processing the results. If the results lead to a diagnosed
skill maximum outside of the parameter range tested (i.e. an extrapolation rather than interpolation)
then the parameter perturbation was capped at the limit of the range tested rather than extending
beyond this range to the diagnosed maximum. Occasionally the results were not sufficient to pro-
duce a clear quadratic interpolation to a skill-maximum. In these cases a subjective decision was
taken as to which parameter choice had performed the better. This only occurred once in the first two
phases of the tuning, but became more common in phases 3 and 4 as the skill maximum is approached.

The skill scores of 50 year running mean periods from each run are shown in fig 1. The control
runs (black lines) and perturbed runs (coloured lines) can be seen to improve steadily in skill from
phase 1 to 4 (although occasional configurations exhibit relatively low skill). The final 50-year score
for each phase is also listed in table 1 along with the parameter values for each control run.

RHcrit V f1 Ct Cw (land, sea) Gravity wave constants Z0(sea) score

“High” 0.9 2.0 4.0e-4 2.0e-3, 5.0e-4 2.0e4, 3.0e5 5.0e-3
HadCM3 0.7 1.0 1.0e-4 2.0e-4, 5.0e-5 2.0e4, 3.0e5 1.3e-3
“Low” 0.6 0.5 0.5e-4 1.0e-4, 2.0e-5 0, 0 2.0e-4

phase 1 0.7 1.0 1.0e-4 2.0e-4, 5.0e-5 2.0e4, 3.0e5 1.3e-3 5.493
phase 2 0.692 1.2 0.951e-4 1.97e-4, 4.9e-5 2.0e4, 3.0e5 1.3e-3 5.562
phase 3 0.693 1.347 0.951-4 1.808e-4, 4.424e-5 2.0e4, 3.0e5 1.111e-3 5.565
phase 4 0.714 1.547 0.9844e-4 1.808e-4, 4.424e-5 2.0e4, 3.0e5 1.111e-3 5.589
phase 5 0.687 1.747 0.9414e-4 1.608e-4, 3.824e-5 2.0e4, 3.0e5 1.111e-3 5.567

Table 1: Values of FAMOUS parameters at each phase of tuning. Final column shows Arcsin Mielke skill score.

The phase 5 control run however appears to have slightly lower skill than phase 4. Hence it was
decided to stop the tuning at this point. Thus, the phase 4 control configuration may be taken as our
optimally tuned version of FAMOUS in terms of fitting this particular set of diagnostics to HadCM3.
There is no guarantee however that this configuration is the optimal one by other measures (see, for
example, the discussion of climate sensitivity in section 6). Phase 4 does not attain the highest score
for each diagnostics individually (see table 2). For example, phases 2 and 3 have the best score for
temperature and phase 5 has the best score for NPP and 500mbar streamfunction. The quantities
which show the greatest improvement during the tuning are the TOA radiative fluxes and NPP.
This comes at the cost of degrading the simulation of precipitation and sea ice fraction. Evidently a
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different choice or relative weighting of quantities would lead to a different tuned configuration. This
is analogous to the subjective choice of metric used to assess model performance by Murphy et al

(2004).
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HadCM3 phase 1 phase 2 phase 3 phase 4 phase 5

Temperature (K)

mean 286.7 288.8 287.7 287.5 288.0 287.2
b 0.136 0.071 0.058 0.087 0.039
σ 1.07 1.08 1.08 1.07 1.07
ρ 0.987 0.986 0.985 0.986 0.983
Arcsin Mielke 0.859 0.874 0.874 0.871 0.872

Precip (mm day−1)

mean 2.91 2.97 2.94 2.93 2.97 2.92
b 0.031 0.017 0.015 0.030 0.009
σ 0.847 0.824 0.822 0.841 0.820
ρ 0.836 0.839 0.831 0.832 0.819
Arcsin Mielke 0.616 0.616 0.607 0.611 0.594

NPP (gCm−2day−1)

mean 0.94 0.52 0.57 0.58 0.56 0.60
b -0.26 -0.20 -0.18 -0.21 -0.16
σ 0.73 0.76 0.77 0.75 0.79
ρ 0.79 0.82 0.82 0.81 0.82
Arcsin Mielke 0.517 0.568 0.569 0.554 0.582

SW TOA (Wm−2)

mean 101.1 108.9 109.2 108.8 107.4 108.5
b 0.463 0.478 0.457 0.372 0.441
σ 0.908 0.901 0.899 0.912 0.898
ρ 0.667 0.693 0.699 0.692 0.704
Arcsin Mielke 0.410 0.424 0.433 0.446 0.440

LW TOA (Wm−2)

mean 240.5 232.2 232.5 232.8 233.9 233.2
b -0.24 -0.23 -0.22 -0.19 -0.21
σ 1.11 1.09 1.09 1.10 1.08
ρ 0.947 0.958 0.959 0.959 0.960
Arcsin Mielke 0.737 0.758 0.763 0.774 0.770

Soil Moisture (mm)

mean 106.0 123.3 120.9 121.2 121.4 120.7
b -0.0016 -0.0218 -0.0201 -0.0175 -0.0270
σ 0.961 0.943 0.947 0.949 0.941
ρ 0.906 0.906 0.901 0.903 0.899
Arcsin Mielke 0.720 0.720 0.712 0.715 0.708

Sea Ice fraction (%)

mean 4.07 5.46 5.86 5.84 5.57 5.75
b 0.081 0.102 0.101 0.087 0.096
σ 1.18 1.23 1.23 1.20 1.22
ρ 0.939 0.922 0.920 0.922 0.905
Arcsin Mielke 0.748 0.709 0.707 0.718 0.689

500mbar Streamfunction ([UNITS?])

mean -857 -763 -697 -671 -691 -623
b 2.7e-6 4.6e-6 5.4e-6 4.8e-6 6.9e-6
σ 1.16 1.15 1.13 1.13 1.10
ρ 0.9959 0.9957 0.9958 0.9958 0.9957
Arcsin Mielke 0.888 0.896 0.902 0.902 0.914

Table 2: Mean and standard deviation of error with respect to HadCM3 and Arcsin Mielke skill score compared
with HadCM3 for each individual diagnostic for each control run.
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5 Assessment of FAMOUS

5.1 FAMOUS control climate

This section presents a comparison of the FAMOUS control climate (from phase 4) compared against
HadCM3. The phase 4 control run was extended up to 770 years. Timeseries of global mean surface
air temperature, top of the atmosphere radiative budget and the strength of the ocean’s thermohaline
circulation (THC: the maximum of the north Atlantic meridional overturning circulation) show that
there is very little long term drift of the control climate state of FAMOUS (figure 2). The THC is
not a target in the tuning, so it is encouraging that its strength is very similar to that in HadCM3.
Thorpe et al. (in preparation) investigated the response of both the HadCM3 and FAMOUS THC to
fresh water forcing in the North Atlantic and found very similar behaviour in both models.
Figures 3 to 6 show simulated annual mean fields from FAMOUS and HadCM3 compared with

each other and with observed climatologies. It should be remembered that FAMOUS has been tuned
towards HadCM3, so although it is instructive to compare with the climatologies, it is the performance
of FAMOUS relative to HadCM3 which is of primary concern here.
Figure 3 shows annual mean surface air temperature (at 1.5m) compared with the Legates and Will-

mott climatology (Legates and Willmott (1990)). A warm bias of FAMOUS in the tropics (especially
over land) and a cold bias in the northern latitudes are apparent compared with both observations and
HadCM3. In particular there are large cold errors in the north Atlantic and north Pacific which are
associated with the presence of too much sea-ice. However, some of the warm bias over high ground is
an artefact of FAMOUS’s representation of orography. The coarse horizontal resolution of FAMOUS
necessitated some smoothing of the orography to ensure dynamical stability. Thus the orographic
maxima in FAMOUS are lowered slightly introducing a warm bias in surface temperature relative to
HadCM3, particularly noticeable in the Himalayas, Andes and African highlands. Figure 3(f) shows
improved agreement when this is taken into account.
Figure 4 shows annual mean precipitation compared with CMAP climatology (Xie and Arkin

(1997)). Although there are sizable differences between FAMOUS and HadCM3, especially over the
ocean, it is not possible to say that one is “better” or “worse” than the other compared with the
climatology. The main systematic errors appear common to both models: namely the dry biases over
north-eastern Amazonia and northern India, the wet biases over tropical Africa and China, and the
pattern of differences over the oceans.
Figure 5 shows annual mean zonal mean shortwave and longwave radiation at the top of the

atmosphere compared with the ERBE climatology (Harrison et al (1990)). Both GCMs capture the
main zonal mean features of the climatology. FAMOUS is closer to the SW climatology north of 70◦N
and south of 60◦S. HadCM3 is closer in the mid– and tropical–latitudes and better captures the small
peak just north of the equator. In the global mean, FAMOUS simulates too high a value (107.4 Wm−2)
compared with an observed value of 101.9 Wm−2. HadCM3 is closer, at 101.1 Wm−2. For longwave
radiation, FAMOUS is closer in the global mean (233.9 Wm−2) compared with an observed value of
235.2 Wm−2 than is HadCM3 (240.5 Wm−2). Here the opposite pattern from the shortwave results
is true: FAMOUS is closer to the climatology in the tropics, with HadCM3 being better in the high
latitudes, especially in the north. The greater equator-pole contrast in outgoing longwave radiation
in FAMOUS is related to the greater temperature contrast and reduced meridional heat transport.
Sea ice fraction (not shown) is generally a little greater in FAMOUS than HadCM3 in the northern

hemisphere. FAMOUS and HadCM3 have broadly the same annual mean ice amounts around Antarc-
tica. Soil moisture and NPP (not shown) exhibit similar patterns of differences between HadCM3 and
FAMOUS. This is not surprising - it would be expected that where one model had greater (lesser)
moisture available for the vegetation it would simulate greater (lesser) vegetation productivity, al-
though temperature differences are clearly important too. Throughout Eurasia FAMOUS tends to
simulate too much soil moisture and too great NPP. In Southern Africa, South America and eastern
North America FAMOUS simulates too dry soil conditions and too little NPP. In general, the simula-
tion of NPP by FAMOUS is in good agreement with HadCM3 except that it underpredicts the high
level of productivity in the tropics by about 25%. Globally it underpredicts NPP by 12%.
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Figure 6 shows annual mean zonal mean temperature compared with data from the ECMWF
reanalyses (Gibson et al (1997); Kallberg (1997)). From the surface up to about 300 hPa FAMOUS
has a pattern of differences from the reanalysis data similar to HadCM3, but with generally larger
magnitude. As in the surface air temperature, FAMOUS is too warm in the tropics and too cold at
high latitudes. This error is present throughout the depth of the troposphere up to about 300 hPa.
Above this level, FAMOUS is significantly different from both HadCM3 and the reanalysis data. At
these heights it is much too cold. It is likely that this poor simulation of the upper atmosphere is due
to the lower vertical resolution of FAMOUS (11 levels compared with 19 in HadCM3).

5.2 Assessing FAMOUS against other models

The aim of the project was to create a GCM faster than HdCM3 without loss of too much skill. In
order to determine what constitutes “loss of too much skill” it is useful to consider the skill of several
models over a range of speeds. This section discusses how the skill of FAMOUS and its speed compare
with other Hadley Centre GCMs (table 3).
HadCM3L is a version of HadCM3, with the same horizontal resolution in the ocean component

as in FAMOUS. It is the climate model used for the coupled climate–carbon cycle experiments (Cox
et al (2000); Cox et al (2001)). HadCM2 (Johns et al (1997)) has the same resolution and timestep
as HadCM3L, but many of its physics schemes are older. HadCM3L and HadCM2 have been run
both with and without flux adjustments: both are considered here. FAMOUS and HadCM3 are run
only without. We also consider a combination of the FAMOUS ocean component coupled to HadAM3
(Jones (2003)), to which we refer here as “HadFAM”.

atmosphere component ocean component
model levels horizontal ◦ timestep levels horizontal ◦ timestep

HadCM3 19 2.5x3.75 1/2hr 20 1.25x1.25 1hr
HadCM3L 19 2.5x3.75 1/2hr 20 2.5x3.75 1hr
HadCM2 19 2.5x3.75 1/2hr 20 2.5x3.75 1hr
HadFAM 19 2.5x3.75 1/2hr 20 2.5x3.75 24hr
FAMOUS 11 5x7.5 1hr 20 2.5x3.75 12hr

Table 3: Resolution and timestep values of various Hadley Centre GCMs.

Figure 7 shows the skill of each of the models as a function of model speed. The skill has been
computed against observed climatologies rather than against HadCM3 (unlike in the tuning), but uses
some of the same diagnostics used to tune FAMOUS (annual mean 1.5m temperature, precipitation,
top of the atmosphere shortwave and longwave, and sea ice concentration). It might be expected a

priori that there would be a steady increase in skill as a GCM increases in either sophistication or
resolution (and hence becomes slower). Considering the existing unfluxadjusted models, it can be seen
that there is a linear trend for increased skill as the model becomes more costly - a line of best fit is
shown on the figure. FAMOUS sits well above this line for the composite of 5 diagnostics, and for
each of the individual diagnostics too, indicating that it is much more skillful than its speed alone
would imply.
Overall, with respect to these particular diagnostics, it can be said that although FAMOUS is not

as good as HadCM3, it is better than HadCM2 without flux adjustments, and of comparable quality
to HadCM3L without flux adjustments. It is also much faster than these other models.
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6 Climate sensitivity

For each control configuration of FAMOUS from the phases of the tuning, a “4xCO2 ” experiment was
performed in which the atmospheric CO2 concentration is instantaneously changed to 1160ppm (four
times the control’s pre-industrial value of 290ppm) and the model is run for a further 50 years. 4xCO2

is chosen rather than the more conventional 2xCO2 because it gives a bigger signal and so a more
precise estimate of climate sensitivity. The climate sensitivity and patterns of climate change response
of the different configurations of FAMOUS are compared with HadCM3. GFDL’s R15 model, with
an ocean resolution slightly coarser than FAMOUS (4.5◦by 3.75◦and 12 vertical levels) has been used
to study climate change (Dixon and Lanzante (1999)) and has been shown to have a similar transient
behaviour to the R30 version (Dixon et al (2003)). So we wanted to assess whether an improved fit
of the control climate to HadCM3 necessarily led to an improved agreement in the climate change
response.
The equilibrium climate sensitivity of a model (defined as the global mean change in surface

temperature due to a doubling of atmospheric CO2 ) can be estimated from its transient response to
an instantaneous change to CO2 without having to be run to equilibrium (Gregory et al (2004)). At
any given point in the experiment, the net downward radiative flux at the top of the atmosphere, N ,
is related to the forcing due to the radiative forcing, Q, the climate response parameter, α, and the
global mean temperature change, ∆T , by:

N = Q− α∆T (13)

Plotting N against ∆T allows us to estimate α and hence the equilibrium ∆T for any given initial
forcing. Figure 8 shows such a “Gregory plot” for HadCM3 and the 5 configurations of FAMOUS.
Values of α for each phase are listed in table 4 along with the resulting estimate of ∆T2x = Q2x/α
assuming a double-CO2 forcing of Q2x = 3.74Wm−2 as is standard for HadCM3.

model correlation Q/Wm−2 α/Wm−2K−1 ∆T2x/K

HadCM3 0.925 8.0±0.3 1.32±0.08 2.83±0.17
Phase 1 0.703 6.2±0.3 0.32±0.05 11.7±1.9
Phase 2 0.797 6.5±0.3 0.56±0.06 6.7±0.7
Phase 3 0.848 6.7±0.3 0.65±0.06 5.7±0.5
Phase 4 0.831 6.7±0.3 0.64±0.06 5.9±0.6
Phase 5 0.874 7.4±0.4 0.89±0.07 4.2±0.3

Table 4: Estimated equilibrium temperature change for double CO2 for HadCM3 and the 5 FAMOUS tuning
phases, as estimated from the “Gregory plot” in figure 8.

It can be seen that the early configurations of FAMOUS had much higher climate sensitivities than
HadCM3. Although remaining above HadCM3, the climate sensitivity of FAMOUS reduced during
the tuning, i.e. the process of the tuning makes FAMOUS more similar to HadCM3 in this respect.
Despite FAMOUS phase 4 being “better” than FAMOUS phase 5 in terms of its control state, the
phase 5 configuration more closely matched the climate sensitivity of HadCM3.
The climate response of FAMOUS to 4xCO2 was compared quantitatively against HadCM3 by

calculating the Arcsin Mielke skill score for the pattern of temperature change from years 30–50 of
the experiment. The scores for each of the configurations of FAMOUS are shown in table 5. In each
case the pattern correlation is high (close to 0.8) but the skill score increases steadily from 0.29 to
0.53 as a result of the tuning. The increase in skill therefore is due largely to the reduction in climate
sensitivity making the response generally smaller and hence closer to HadCM3.
Figure 9 shows the pattern of average surface air temperature warming and precipitation changes

in HadCM3 and FAMOUS phase 5 from years 30–50 of the 4xCO2 experiment. The extension of
strong warming to lower latitudes in FAMOUS is associated with the greater sea-ice extent of the
control simulation (Gregory and Mitchell (1997)). The precipitation change is also similar and shows
many common features such as the Amazon drying. Although this shows that FAMOUS has a similar
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phase bias σ ρ skill

Phase 1 1.217 1.548 0.818 0.294
Phase 2 0.718 1.394 0.808 0.422
Phase 3 0.571 1.403 0.803 0.457
Phase 4 0.593 1.379 0.795 0.448
Phase 5 0.402 1.275 0.824 0.533

Table 5: Arcsin Mielke skill score, and its components, for the 5 configurations of FAMOUS compared with
HadCM3 for average patterns of warming from years 30–50 of the 4xCO2 experiment.

pattern of climate change to HadCM3, it is likely that the fit could be made even better if the climate
change pattern of HadCM3 were to be used as one of the specific targets of the tuning process. This
is an example of how different tuning targets might be used for different intended uses of FAMOUS.
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7 Conclusions

A fast AOGCM has been developed. FAMOUS is a version of HadCM3 with lowered spatial resolution
and increased timestep and runs about 10 times faster than HadCM3. FAMOUS is intended for
investigations requiring long integrations or large ensembles, for which HadCM3 is too computationally
expensive, but which require the detailed simulation of physical processes permitted by a GCM. It
is desirable that FAMOUS should emulate HadCM3, simulating the same behaviour by the same
physical mechanisms.
An “optimal tuning algorithm” has been developed which allows certain parameter values of a

GCM to be tuned to maximise the model’s fit to a target climatology. In this case, the FAMOUS
GCM has been tuned to fit its parent model, HadCM3. The skill of FAMOUS, measured by the
Arcsin Mielke objective skill score, was improved as a result of this method. The parameter values
required for this optimal fit are not very far removed from the values used in HadCM3. As the skill
score improved, the climate sensitivity of FAMOUS to CO2 forcing became more similar to that of
HadCM3, despite not being a target for training.
Although this method could be used to optimise any GCM, it is computationally intensive. 65

model experiments of 100 model years each were performed here. Hence the method is best suited to
“fast” GCMs such as FAMOUS. As a result, FAMOUS has a level of skill much higher than would be
expected from its resolution and speed of running. It is more skillful than the older HadCM2 model,
and very similar to HadCM3L which is significantly slower.
Analysis of the climate simulation of FAMOUS shows it to have a good level of skill relative to

HadCM3. Surface air temperature shows a warm tropical bias and a cold northern bias possibly
related to insufficient atmospheric heat transport due to the reduced horizontal resolution (Lander
and Hoskins (1997)). Despite its relatively low resolution and without the use of flux adjustments
FAMOUS has a stable long term global mean temperature and meridional overturning circulation in
the ocean. The main weakness of FAMOUS lies in its much reduced ability to simulate the upper
atmosphere, due to the reduction in vertical resolution.
The optimal tuning approach has proved successful in steadily increasing the skill of FAMOUS. It

can, however, only correct model errors which are sensitive to values of the parameters being considered
- it cannot correct errors due to other processes or mechanisms. There are FAMOUS errors remaining
which are not directly related to the parameters considered here, and so have not been solved by this
tuning method. Reasons for, and solutions to, remaining biases are currently still being sought. Such
errors are related to the formulation of the parametrisations and the limitation on degrees of freedom
from the low resolution. Systematic error arising from these structural considerations is probably
an important cause of the differences in climate simulation by different AOGCMs (cf. Murphy et al
(2004)).
The whole tuning process could be repeated starting from different initial parameter values. If the

state derived above is indeed the optimal one, then other tuning experiments from different starting
points would give the same result. It would also be interesting to investigate the impact on the final
parameters of using a different measure of model skill. Introducing other diagnostics or treating them
differently (e.g. by looking at seasonal cycles or interannual variability) or by choosing to give some
diagnostics more weight in the final score than others would affect the final parameter settings given
by the optimisation process. These issues have not yet been addressed for FAMOUS, but may form
the basis for future work.
Several subjective decisions were made during the process of this optimisation of FAMOUS, and

it would be possible in principle to keep the method more objective. Hence this raises the possibility
of a “self-tuning” GCM, which could automatically and objectively optimise itself before running a
particular experiment. This would be analogous in some ways to the 2–stage process of numerical
weather prediction where a data assimilation is first performed to achieve initial conditions from which
the model forecast itself follows. Depending on the intended use of the model, the use of different
diagnostics and different model parameters to perturb, or the choice of tuning to match another
model or an observed climatology, may lead to different configurations of the same model optimised
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differently for different uses.
It is hoped that FAMOUS will make a valuable contribution to Earth System science research

by bridging the gap between higher resolution GCMs and EMICs. Its speed has allowed it to be
optimally tuned and its subsequent skill will allow it to explore many areas of the Earth System
previously unaccessible to a GCM.
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9 Appendix

This section lists in detail the differences between FAMOUS and HadCM3. The main change is to
the resolution and timestep, but associated with this are some changes to parameter values which
are resolution and/or timestep dependent. The only other differences between the models are those
changes to parameters which form part of the tuning process itself as described in the main text.
Table 6 summarises differences in the resolution and timestep of the atmosphere component of the

two models. Tables 7 and 8 list the level-by-level settings for HadCM3 and FAMOUS respectively.

HadCM3 FAMOUS

horizontal resolution 2.5◦x 3.75◦ 5.0◦x 7.5◦

vertical levels 19 11
cloudy levels 18 10
boundary layer levels 5 3
purely sigma half-levels 5 4
pure pressure from half-level 17 11
timestep 1/2 hour 1 hour

Table 6: Configuration of HadCM3 and FAMOUS atmosphere components.

HadCM3
level ETA K(u,v,T) N(u,v,T) K(Q) N(Q) RH crit
(half-level for ETA)

1 1.000 5.47e8 3 5.47e8 3 0.95
2 0.994 5.47e8 3 5.47e8 3 0.90
3 0.956 5.47e8 3 5.47e8 3 0.85
4 0.905 5.47e8 3 5.47e8 3 0.70
5 0.835 5.47e8 3 5.47e8 3 0.70
6 0.750 5.47e8 3 5.47e8 3 0.70
7 0.650 5.47e8 3 5.47e8 3 0.70
8 0.550 5.47e8 3 5.47e8 3 0.70
9 0.460 5.47e8 3 5.47e8 3 0.70
10 0.385 5.47e8 3 5.47e8 3 0.70
11 0.325 5.47e8 3 5.47e8 3 0.70
12 0.275 5.47e8 3 5.47e8 3 0.70
13 0.225 5.47e8 3 5.47e8 3 0.70
14 0.175 5.47e8 3 1.50e8 2 0.70
15 0.125 5.47e8 3 1.50e8 2 0.70
16 0.075 5.47e8 3 1.50e8 2 0.70
17 0.040 5.47e8 3 1.50e8 2 0.70
18 0.020 5.47e8 3 1.50e8 2 0.70
19 0.010 4.00e6 1 4.00e6 1 0.70
20 0.005

Table 7: Level-by-level settings in HadCM3: ETA values by half-level; diffusion coefficients for u, v, T and Q,
and critical RH values on full model levels.

The reduced atmospheric vertical resolution of FAMOUS necessitates a change in the treatment of
ozone. In HadCM3, monthly climatological values are prescribed (Pope et al (2000)), but in FAMOUS
a simple interactive ozone scheme is implemented, with ozone concentrations being allowed to take
one of 3 values representing “troposphere”, “tropopause region” and “stratosphere”, depending upon
the diagnosed position of the tropopause. This is done to prevent the development of an inconsistency
between the physical and chemical tropopauses, which might otherwise result from the lower vertical
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FAMOUS
ETA K(u,v,T) N(u,v,T) K(Q) N(Q) RHcrit

(half-level for ETA)

1 1.000 4.19e9 4 2.40e8 2 0.910
2 0.975 4.19e9 4 2.40e8 2 0.850
3 0.900 4.19e9 4 2.40e8 2 tuned

4 0.790 4.19e9 4 2.40e8 2 tuned

5 0.650 4.19e9 4 2.40e8 2 tuned

6 0.510 4.19e9 4 2.40e8 2 tuned

7 0.370 4.19e9 4 2.40e8 2 tuned

8 0.270 4.19e9 4 2.40e8 2 tuned

9 0.195 4.19e9 4 2.40e8 2 tuned

10 0.125 4.19e9 4 2.40e8 2 tuned

11 0.060 4.19e9 4 2.40e8 2 tuned

12 0.005

Table 8: Level-by-level settings in FAMOUS: ETA values by half-level; diffusion coefficients for u, v, T and Q,
and critical RH values on full model levels. Note - RHcrit values for levels 3–11 form part of the tuning process
and differ for each phase.

resolution in FAMOUS.
For the ocean component, the lower resolution means that the Visbeck scheme which calculates

geographically varying horizontal tracer diffusion coefficients is not required. The lower resolution also
requires changes to certain model parameters and a change to the model topography. For example,
Iceland is not resolved at the FAMOUS ocean resolution (see Jones (2003) for more details). Table
9 lists the resolution, timestep and parameter differences of the ocean components of HadCM3 and
FAMOUS.
The final difference between the models is in the coupling between atmosphere and ocean com-

ponents. The non-coincident coastline in FAMOUS means that the “coastal tiling” and generalised
coupling scheme developed for use in HadCEM (an AOGCM with 1/3◦resolution ocean, Roberts et
al (2004)) and HadGEM1 (the next generation Hadley Centre coupled model) are used. This scheme
adjusts the fluxes passed between the models depending on what fraction of each gridpoint in the
atmospheric component is occupied by land, ocean or sea–ice in the ocean component.

22



HadCM3 FAMOUS

horizontal resolution 1.25◦x 1.25◦ 2.5◦x 3.75◦

vertical levels 20 20
timestep 1 hour 12 hours

Islands:
num of islands 6 4
max island segments 4 4
total island segments 11 9
max num vorticity indices 16 7

Fourier Filtering:
max num indices 14 6
first tracer row to be filtered 10 6
tracer row to define zonal dim’n 13 7
last southern tracer row 13 7
first northern tracer row 133 67
velocity row to define zonal dim’n 13 7
last southern velocity row 13 7
first northern velocity row 132 66

horiz momentum diffusion 3.0e3 m2 s−1 1.5e5 m2 s−1

thickness diffusion coeffs:
surface calculated 1000 m2 s−1

deep ocean by 1000 m2 s−1

scale depth Visbeck scheme 500 m

barotropic solver:
num iterations 500 100
criterion of convergence 4.0e-5 1.0e-4
coeff. of over relaxation 1.775 1.6

diff. coeff. for sea ice dynamics 670 m2 s−1 2000 m2 s−1

Roussenov convective adjustment:
first column 251 84
last column 290 98
first row 119 60
last row 128 64

Table 9: Configuration of HadCM3 and FAMOUS ocean components.
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Figure 1: 50 year running mean Arcsin Mielke skill score for the control and
perturbed runs over the five phases.
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Figure 2: 770 year timeseries of decadal–mean global–mean (a) surface air temper-
ature (K), (b) Net downward top of the atmosphere (TOA) radiative flux (Wm−2)
and (c) THC strength (Sv) of the extended phase 4 control run of FAMOUS.
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Figure 3: Maps of annual mean 1.5m surface air temperature compared with the
Legates and Willmott climatology (1990). (a) HadCM3, (b) FAMOUS, (c) HadCM3
- LW, (d) FAMOUS - LW, (e) FAMOUS - HadCM3, (f) FAMOUS - HadCM3 but
with an adjustment for the different representations of orgraphy in the two models,
assuming an atmospheric lapse rate of -6 K km−1.
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Figure 4: Maps of annual mean precipitation compared with the CMAP climatology
(Xie and Arkin, 1997). (a) FAMOUS, (b) FAMOUS - HadCM3, (c) HadCM3 - CMAP,
(d) FAMOUS - CMAP.
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Figure 5: Annual mean zonal mean radiative fluxes (Wm−2) at the top of the
atmosphere compared with the ERBE climatology (Harrison et al., 1990). (a) Net
downward shortwave and (b) outgoing longwave. FAMOUS in dashed lines, HadCM3
in dotted, ERBE climatology in solid lines.
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Figure 6: Annual mean zonal mean temperature compared with ECMWF reanalysis
data (Gibson et al., 1997; Kallberg, 1997). (a) FAMOUS, (b) FAMOUS - HadCM3,
(c) HadCM3 - ERA, (d) FAMOUS - ERA.
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Figure 7: Arcsin Mielke skill score for a range of Hadley Centre GCMs assessed
against observed climatologies and plotted against the time taken for each model to
simulate 1 year on the Met Office’s T3E supercomputer. (a) mean of the 5 diagnostics
shown in panels (b)–(e), (b) surface air temperature compared with Legates and
Willmott climatology (Legates and Willmott (1990)), (c) precipitation compared with
CMAP climatology (Xie and Arkin (1997)), (d) short–wave radiation at the top of
the atmosphere compared with the ERBE climatology (Harrison et al (1990)), (e)
long–wave radiation at the top of the atmosphere also compared with the ERBE
climatology, (f) sea–ice fraction compared with HadISST (Rayner et al (2003)). The
dotted line is the best fit through H3, unfluxadjusted H3L, unfluxadjusted H2 and
HF, except in panel (d) where it excludes H2. Red points denote GCMs which utilised
flux adjustments.
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Figure 8: “Gregory plot” showing the global mean surface air temperature response
as a function of TOA radiative forcing for HadCM3 (black line) and the 5 phases of
the FAMOUS tuning (coloured lines).

31



Figure 9: Climate change pattern from the “4xCO2 ” experiments with HadCM3
(LHS) and FAMOUS (RHS). Surface air temperature (top row) and precipitation
(bottom row).
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