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Abstract 

 

Probabilistic predictions that account for uncertainty in model physics are sensitive to how 

the experimental design samples parameter space. Here, two experimental designs are pro-

posed that aim to reduce this sensitivity. The first method is based on a metric which quanti-

fies how realistically a climate model simulates present-day mean climate; this method can 

easily be modified to provide a strategy for tuning models to particular climates. The second 

method uses experimental design theory to generate a means of sampling parameter space as 

efficiently as possible given a limited number of model runs. 

Despite these efforts to reduce the effect of sampling of parameter space on probability 

predictions, this effect cannot be removed completely just by designing the experiment in a 

suitable way. A method is developed for removing the dependency on the sampling strategy, 

although this is done at the expense of making an assumption on how the climate system re-

sponds to a combination of parameter changes. 
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1. Introduction 

To reliably assess the risks associated with future climate change, it is essential that pol-

icy-makers and climate impact scientists have a comprehensive assessment of the uncertain-

ties involved in model predictions of climate change. These uncertainties arise from three 

sources: uncertainties in projections of the emissions of greenhouse gases and chemicals that 

produce aerosols, natural climate variability, and the way the climate model represents the 

climate system. The uncertainty inherent in the climate model arises partly because we do not 

fully understand climate processes, and partly because the parameters in the climate model, 

which control the key physical and dynamical processes, are not precisely known or are not 

measurable in the real world. Modelling uncertainties can arise from atmospheric, oceanic or 

cryospheric physics or from chemical or ecosystem processes. Climate model experiments 

have been used to assess the first two uncertainties whereby members of an ensemble differ 

from each other either in their initial conditions or the emissions scenario (Johns et al. 1997). 

However, due to limited computer resources, the study of uncertainties in the climate model 

itself has only recently begun. For instance, the atmospheric component of this uncertainty 

has only recently started to be systematically explored by the Hadley Centre’s Quantifying 

Uncertainty in Model Predictions (QUMP) project and climateprediction.net (Allen 1999; 

Stainforth et al. 2002). Prior to these two studies, climate projections from several climate 

models were pooled to produce a so-called ‘ensemble of opportunity’, which was used to 

provide an estimate of the uncertainty of future climate change due to modelling errors 

(Cubasch et al. 2001). However, these ensembles are difficult to interpret, as all models are 

treated equally and their relative ability to model the climate system is not taken into account.  

The long-term aim of QUMP is to provide probabilistic predictions for the 21st century ac-

counting for all these uncertainties. Initially, the QUMP project is focusing on the effect of 

uncertainties in atmospheric physics on the equilibrium response to doubled CO2. This is 

done by running an ensemble of ‘slab’ models (atmosphere GCM coupled to a 50m ocean 

mixed-layer) for 1x and 2x pre-industrial CO2 levels. At present, each ensemble member dif-

fers from the Hadley Centre’s current standard slab model, HadSM3, by perturbing one of 29 

individual parameters to an extreme of their plausible range as specified by experts. The ul-

timate goal is to run several transient experiments that correspond to a selection of the slab 

model integrations and use this extra information to provide probabilistic predictions for any 

time in the 21st century. 



 6 

Having completed a so-called physics ensemble it is straightforward to produce a fre-

quency distribution of the response of global mean temperature to a doubling of CO2 levels, 

otherwise known as climate sensitivity. Recognising the problems associated with ‘ensembles 

of opportunity’ described above, we have defined a Climate Prediction Index (CPI) which 

quantifies the reliability of climate change predictions according to how well each integration 

reproduces several aspects of the recent observed mean climate. The CPI can be used to 

weight the relative contribution of each ensemble member to the frequency distributions. 

During the analysis of this first QUMP ensemble it has become apparent that further ex-

periments are needed. For instance, some parameter perturbations do not significantly alter 

climate sensitivity and so the corresponding ensemble members simply resample the uncer-

tainty of HadSM3, which arises from natural climate variability; this implies that our prelimi-

nary frequency distributions are biased towards the standard model. Consequently, the main 

requirement for the next ensemble of slab models is that it spans parameter space more effec-

tively. To do this, we need to increase the QUMP ensemble to include runs where several pa-

rameters are changed simultaneously. The purpose of this technical note is to describe two 

experimental designs that address this requirement. 

In section 2, we review the climate prediction index and outline the deficiencies associated 

with the frequency distribution of climate sensitivity estimated from the first QUMP ensem-

ble. Section 3 describes another particular advantage of the CPI in that it is possible to relia-

bly predict the CPI for untried combinations of parameters. In section 4 we outline the two 

strategies for selecting combinations of parameter perturbations, both of which will be run in 

the near future. One strategy is based on selecting combinations of parameter values that are 

likely to produce reliable simulations of the present day climate and consequently is of use 

for those readers who are interested in tuning climate models. In section 5, we present a 

method for making unbiased estimates from the first QUMP ensemble of the probability dis-

tribution of climate change due to doubling CO2 levels, and discuss how the experimental 

designs described in section 4 may improve our estimates. In section 6, we conclude by dis-

cussing the various advantages of the two new experimental designs for the problem of prob-

abilistic prediction. 

2. Climate Prediction Index (CPI) and estimating frequency distributions 

The CPI used in this study measures how well a climate model reproduces various aspects 

of the climate system such as atmospheric radiation and clouds, atmospheric dynamics, the 
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hydrological cycle and surface fluxes (see Table 1 for a list of the climate variables used). For 

March-May, June-August, September-November and December-February twenty-year mod-

elled seasonal means, each variable is compared against an appropriate observational or re-

analysis data set  over a region where the data is considered to be reliable. A normalised ver-

sion of an area-weighted root mean square error (RMSE) (see Eqn. 1)is used because it penal-

ises bias, differences in the spatial variances of the observed and modelled means, and poor 

pattern correlations. The components of the CPI for each season (j=1,…4) and kth climate 

variable are defined as 

MSECPI
ANN

jk 2

1

σ
−= , where �

=
−=

n

i
iii omw

n
MSE

1

2)(
1

,    Eqn. 1 

where mi and oi are the modelled and observed data, n is the number of grid points or latitude 

bands, 2
ANNσ  is the spatial average of the modelled interannual variance used to normalise 

each component of the CPI; ideally we would also like to include observational estimates of 

interannual variance but it is not possible for most variables in the CPI as the data sets are not 

long enough or annual data is not available. The normalisation of MSE not only prohibits 

climate variables with large variance dominating the index but also allows us to include dif-

ferent types of components in future versions. Table 1 also describes which regions of the 

globe are used for each variable and whether the data is at grid-point, for zonal-means or for 

latitude-height zonal-mean cross-sections; iw is the area-weight for latitude-longitude grid-

point and zonal-mean data and the area- and mass-weight for zonal-mean and height data. 

The overall CPI is a weighted average of the jkCPI , where the weights for the various com-

ponents are shown in Table 1. Currently the ISCCP cloud diagnostics are weighted by 1/3 to 

reflect the interdependence of the high, medium, and low cloud amounts for each optical 

thickness. The other components are all given equal weighting of 1, since we currently have 

no basis for assigning unequal weights for any variables other than the cloud diagnostics. 

Based on the CPI, the standard HadSM3 run lies 22nd out of the 53 ensemble members, al-

though only three parameter perturbations show improvements more than 5%. This is very 

good considering the atmospheric physics in HadSM3 was tuned so that the coupled model 

could be run without flux corrections as well as on the quality of the simulation of the mean 

climate. The integration where the fallout speed of ice particles has been halved is the top 

ranking experiment mainly due to improvements in cloud amounts and the LW radiation 

budget (see Fig. 1). A few variables dominate the errors e.g. high-top, optically thin cloud 
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Table 1. Details of components of climate prediction index. 

Climate variable Source Region used Type of data used Weight 
1.5m temperature (oC) CRU1  Land only Grid-point 1 
MSLP (hPA) ERA2 Globe Grid-point 1 
Precipitation (mm/day) Xie-Arkin 3 Ocean between 30oS and 

30oN and all land 
Grid-point 1 

Westerly wind (ms-1) ERA Globe Lat-height zonal-mean 1 
Temperature (oC) ERA Globe Lat-height zonal-mean 1 
Relative humidity (%) ERA Globe Lat-height zonal-mean 1 
Outgoing LW radiation at TOA (Wm-2) ERBE4 Between 60oS and 60oN Zonal mean 1 
Outgoing SW ratiation at TOA (Wm-2) ERBE Between 60oS and 60oN Zonal mean 1 
SW cloud forcing (Wm-2) ERBE Between 60oS and 60oN Zonal mean 1 
LW cloud forcing (Wm-2) ERBE Between 60oS and 60oN Zonal mean 1 
High-top optically thick cloud (%) ISCCP5 Ocean between 50oS and 

50oN and all land 
Grid-point 1/3 

High-top medium optical thickness cloud 
(%) 

ISCCP Ocean between 50oS and 
50oN and all land 

Grid-point 1/3 

High-top optically thin cloud (%) ISCCP Ocean between 50oS and 
50oN and all land 

Grid-point 1/3 

Medium-top optically thick cloud (%) ISCCP Ocean between 50oS and 
50oN and all land 

Grid-point 1/3 

Medium-top medium optical thickness 
cloud (%) 

ISCCP Ocean between 50oS and 
50oN and all land 

Grid-point 1/3 

Medium-top optically thin cloud (%) ISCCP Ocean between 50oS and 
50oN and all land 

Grid-point 1/3 

Low-top optically thick cloud (%) ISCCP Ocean between 50oS and 
50oN and all land 

Grid-point 1/3 

Low-top medium optical thickness cloud 
(%) 

ISCCP Ocean between 50oS and 
50oN and all land 

Grid-point 1/3 

Low-top optically thin cloud (%) ISCCP Ocean above 40oS Grid-point 1/3 
Net downward SW flux at surface (Wm-2) SOC6 Ocean above 40oS  Zonal mean 1 
Net downward LW flux at surface (Wm-2) SOC Ocean above 40oS Zonal mean 1 
Sensible heat flux (Wm-2) SOC Ocean above 40oS Zonal mean 1 
Latent heat flux (Wm-2) SOC Ocean above 40oS Zonal mean 1 
Diurnal temperature range (oC) CRU  Globe Grid-point 1 
250hPa velocity potential ERA Globe Grid-point 1 
500hPa streamfunction ERA Globe Grid-point 1 
Meridional streamfunction ERA Globe Lat-height zonal-mean 1 
500hPa transient eddy kinetic energy ERA Globe Grid-point 1 
Total runoff efficiency rate (%) GRDC7/CRU Land points Grid-point 1 
Sea-ice extent HadISST18 NOAA sea-ice regions  Grid-point 1 
Specific humidity ERA Globe Lat-height zonal-mean 1 

amounts. This may indeed be due to large model biases. However, it may also be that the 

normalisation factor 
2

1

ANNσ
is too large, as the model significantly underestimates the ob-

served variance. 

                                                
1 (New et al. 1999) 
2 (Gibson et al. 1997) 
3 (Xie and Arkin 1998) 
4 (Harrison et al. 1990) 
5 (Rossow and Schiffer 1991; Doutriaux-Boucher and Seze 1998) 
6 (Josey et al. 1996) 
7 (Fekete et al. 2002) 
8 (Rayner et al. 2003) 



 9 

Several improvements could be made to the CPI in its current state. First, the normalisa-

tion factor needs more investigation. A further point is that the present index does not account 

for interdependence within or between the various components. It is also possible to define 

other diagnostics to evaluate climate processes which might be seen as being more relevant to 

future climate change than the mean climate of the model. For instance, we would like to 

check that the climate model is producing a realistic mean climate because it includes the cor-

rect climate processes. One way to do this is to evaluate the local relationship between two or 

more climate variables independently of geographical position e.g. cloud amounts with local 

SST and vertical velocity (Williams et al. 2003). We should also evaluate the climate model’s 

variability when the observational data is of sufficient quality and the record is long enough. 

So the CPI presented here is clearly a first stage in a long development process. 

DJF mean 

                                  
−15

−10

−5

0

1.
5m

 T
 (D

eg
 C

)
M

SL
P 

(m
b)

Pr
ec

ip
ita

tio
n 

(m
m

/d
ay

)

w
es

te
rly

 w
in

d 
(m

s−
1)

Te
m

pe
ra

tu
re

 (D
eg

 C
)

R
el

at
iv

e 
hu

m
id

ity
 (%

)

O
ut

go
in

g 
LW

 ra
di

at
io

n 
at

 T
O

A 
(W

m
−2

)

O
ut

go
in

g 
SW

 ra
di

at
io

n 
at

 T
O

A 
(W

m
−2

)

SW
 c

lo
ud

 fo
rc

in
g 

(W
m

−2
)

LW
 c

lo
ud

 fo
rc

in
g 

(W
m

−2
)

Lo
w

−t
op

 T
hi

n 
(%

)

Lo
w

−t
op

 M
ed

iu
m

 (%
)

Lo
w

−t
op

 T
hi

ck
 (%

)

M
id

−t
op

 T
hi

n 
(%

)

M
id

−t
op

 M
ed

iu
m

 (%
)

M
id

−t
op

 T
hi

ck
 (%

)

H
ig

h−
to

p 
Th

in
 (%

)

H
ig

h−
to

p 
M

ed
iu

m
 (%

)

H
ig

h−
to

p 
Th

ic
k 

(%
)

ne
t d

ow
n 

su
rfa

ce
 S

W
 (W

m
−2

)

ne
t d

ow
n 

su
rfa

ce
 L

W
 (W

m
−2

)

Se
ns

ib
le

 h
ea

t f
lu

x 
(W

m
−2

)

La
te

nt
 h

ea
t f

lu
x 

(W
m

−2
)

di
ur

na
l t

em
pe

ra
tu

re
 ra

ng
e 

(D
eg

 C
)

25
0m

b 
ve

lo
ci

ty
 p

ot
en

tia
l

50
0m

b 
st

re
am

fu
nc

tio
n

25
0m

b 
st

re
am

fu
nc

tio
n

50
0m

b 
Tr

an
si

en
t e

dd
y 

ki
ne

tic
 e

ne
rg

y

m
er

id
io

na
l s

tre
am

fu
nc

tio
n

To
ta

l r
un

of
f e

ffi
ci

en
cy

Se
a−

ic
e 

ex
te

nt

Sp
ec

ifi
c 

hu
m

id
ity

 

Figure 1. Components of CPI for the most skilful perturbation run (red) and the standard 

HadSM3 integration (blue) for December-February. Labels on the x-axis indicate the climate 

variables used in the CPI. Blue columns which are shorter (longer) than the adjacent red 

columns indicate where the parameter perturbation is better (worse) than HadSM3. 

However, we feel that due to the extensive number of climate variables in the present CPI, 

that this provides a robust measure of the model’s ability to simulate present-day climate. 

Tests using other validation statistics like Arcsin Mielke (Watterson 1996) and a version of 
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the RMSE that allows for the interdependence of data within a particular component show 

that the conclusions based on this more simple RMSE are robust. Overall, an adequate 

evaluation of the mean climate provides a useful constraint for climate predictions, though as 

mentioned above, we believe that this is only a necessary but not sufficient condition. 

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0
Unweighted
Weighted

 

Figure 2. The unweighted (blue) and weighted (red) frequency distributions of climate sensi-

tivity estimated from the ensemble members. A Gaussian kernel has been used to smooth the 

distributions. 

One use of the CPI is to weight the frequency distribution towards the more reliable cli-

mate model versions. We use )exp( 2CPI−  to estimate the weighting for each ensemble 

member for the estimation of the PDF of climate sensitivity. This weighting is effectively the 

likelihood that the observed and modelled data come from the same probability distribution, 

averaged over all components of the CPI and over all grid-box values. Therefore, although 

other forms of weighting function may be possible, )exp( 2CPI−  seems a natural choice 

when estimating probability distributions. The effect of the weighting is to heavily weight 

down the outlier with high climate sensitivity and increase the probability of climate sensi-

tivities in the range 2.5oC to 3oC and around 3.5oC (see Fig. 2). 
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However, this histogram is biased by the experimental design of the first ensemble in that 

it places too much emphasis on the standard model version, HadSM3. This happens for two 

reasons. Firstly, there should a priori be no preferred standard model version in the physics 

ensemble. This implies that the histogram is under-dispersive because a different choice of 

standard model might alter the position and shape of the distribution. Secondly, there is a nar-

row peak centred on HadSM3. This narrowing of the central peak about the HadSM3 climate 

sensitivity may be misleading, and does not necessarily mean that we have constrained cli-

mate sensitivity as accurately as is implied by the distribution. This is because the physics 

ensemble might include several parameters that do not affect climate sensitivity (they may 

still be important for regional changes of some climate variables), whatever the choice of 

standard model. Such parameters should not affect the final shape of the distribution but they 

affect the estimate here because of the sampling strategy in the first ensemble. That is, runs in 

which these parameters are perturbed will effectively resample the standard model version 

again and again. Consequently, this could produce a pronounced peak about the standard 

model version which gives a false impression of how well we have constrained climate sensi-

tivity. 

Therefore, there is a clear requirement to re-assess how the ensemble should sample pa-

rameter space. The key aims for designing this experiment are to run another ensemble of in-

tegrations that a) span parameter space as much as possible and b) are likely to be ‘good’ 

simulators of the present-day climate so that no money is wasted on running poor climate 

models that will be heavily weighted down in the estimation of the PDF. The first aim im-

plies that we need to perturb several parameters in each ensemble member. The second aim 

requires the CPI of the current ensemble to predict a CPI for untried combinations of parame-

ter changes, which is the subject of the next section.  

3. Prediction of Climate Prediction Index 

The CPI in its current form has one major advantage over many other skill scores. That is, 

we can reliably predict the CPI for an untried combination of parameter values by making a 

simple assumption that the response to several parameter changes is a linear combination of 

the responses to the individual parameter changes. Later sections use this result extensively to 

design the next ensemble of QUMP model integrations (see section 4a) and estimate a prob-

ability density function (PDF) rather than a frequency distribution (see section 5). In the next 



 12 

subsection we outline the theory behind this claim (this can be skipped by the reader if they 

so wish). In section 3b, we test the predictions to show that they are indeed reliable.  

a. Linear prediction of CPI 

The prediction of CPI is based on the experimental design of the first QUMP ensemble 

where we make perturbations to single parameters from a control experiment e.g. HadSM3. 

First, we consider one component of the CPI. For the climate variable which corresponds to 

this component of the index, we let 0
sigS be the population mean of the control experiment and 

i
sigS be the population mean of ith member of the physics ensemble. We run model versions 

for each parameter perturbation in the ensemble to estimate the climate variable, iS , so that 

= +i i i
sigS S N           Eqn. 2 

where iN  is the noise component which would tend to zero as the length of the ensemble 

members tended towards infinity. Let  

= −i i 0X S S           Eqn. 3 

represent the change in the climate variable due to the single parameter perturbation made in 

the ith ensemble member. 

The goal here is to predict the CPI component for an untried combination of the parameter 

changes based on what we know from the single parameter perturbation ensemble. We as-

sume that the population climate mean for an untried combination of parameter values, sigP , 

can be written as the linear combination of the the signals from the individual parameter 

changes 

ii
α= +�0 i

sig sig sigP S X ,         Eqn. 4 

where iα  are coefficients which can be between 0 and 1 inclusive and = −i i 0
sig sig sigX S S . For 

example, we may want to estimate the CPI component for a physics parameter value of 1 

when the value in the control run is zero and we have run a perturbation experiment for a 

value of 2; in this case, the coefficient 1α  would be 0.5.  

If we actually ran a model with this combination of parameter values, we would estimate 

its climate mean for the climate variable of interest to be 

ii
α= + = + +�p 0 i p

sig sig sigP P N S X N        Eqn. 5 
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The component of the CPI is the root mean square error of the modelled mean for a par-

ticular variable compared against a corresponding observational mean, O . We denote a spa-

tial average of a field by an overbar and from now on assume that the noise variance is inde-

pendent of the parameter perturbations so that = = =
2 2 2 20 i pN N N N . 

If we denote the model bias of S  and P  as = −0e S O  and = −Pe P O  respectively then 

the mean square error of P is then 

2

2

2

2

22

( )

( )

2 . ( ) 2 .

2 2 ( ) 2 .

2 . 2 .

i
i

i i
i i

i i
i i

i i j i
i i j i

α

α α

α α

α α α α

= −

= − + + −

= + + − + +

= + − + +

= + + +

�

� �

� �

� �� �

2 2

2 2

2
p

i p 0
sig

2 p 0 0 i i
s s sig s sig

2 0 i i
s sig s sig

2 i i j i
s sig sig sig s sig

e P O

S O X N N

e N N e N X e X

e N N X e X

e X X X e X

.   Eqn. 6 

Eqn.6 needs to be expressed in terms of iX ’s and jX ’s, as i
sigX and j

sigX  are not measured 

directly. Combining Eqns. 2 and 3 gives 

= + −i i i 0
sigX X N N ,         Eqn. 7 

so that 

2

( ).( )

.       when i j

    when i = j

= + − + −

� + ≠�= �
� + +�

2

2 2

i j i i 0 j j 0
sig sig

i j 0
sig sig

i 0 i
sig

X X X N N X N N

X X N

X N N

.      Eqn. 8 

When i j= , 
2

0>i
sigX  must hold. Therefore, if 2<i j 2X X N when i j=  then we set 

2
2=i 2X N .          Eqn. 9 

 

Using Eqns. 8 and 9, Eqn. 7 can be rewritten as 

22( 2 ) 2 ( . ) 2 ( . )i i j i
i i j i

α α α α= + − + − + +� �� �2 2 i 2 i j 2 i 2
p s se e X N X X N e X N

, Eqn. 10 
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to give the final form for our prediction of CPI. To predict the full CPI, each component 

needs to be predicted, normalised as with the actual CPI and then summed with the relevant 

weights for each component. 

b. Tests of prediction of CPI 

To test the prediction of the CPI, we have run several test cases which were originally de-

signed to try out various hypotheses about the effects of perturbing several parameters at once 

and were not designed to be cases where the prediction of the CPI worked well. The first two 

runs combine parameter changes that have already been tried individually in the first ensem-

ble. The third run was designed to produce a model with low climate sensivity. The fourth 

run was predicted to produce a better present-day climate than HadSM3, as measured by an 

earlier version of the CPI (essentially no components based on ISCCP). The fifth run was an 

attempt to sample the interior of parameter space, changing parameters to halfway between 

the values used in the ensemble of single parameter perturbations. The sixth was a run pre-

dicted to produce a reasonably good climate.  

 

Table 2. Comparison of predicted and actual CPI for test runs with several parameter 

changes from HadSM3. 

Parameter perturbations Actual CPI Predicted CPI 

vf1=2, ct=0.0004, rhcrit=0.9, cwland=0.002, 
cwsea=0.0005 

-4.436 -4.544 

vf1=0.5, rhcrit=0.6, cwland=0.0001, cwsea=2e-5, 
minsia=0.65, ice_tr=2, cape=2 

-3.614 -3.705 

ct=5e-5, cwland=0.002, cwsea=0.0005, ent=9, cape=1, 
eacfbl=0.7, eacftrp=0.6 

-6.918 -6.330 

vf1=0.52, ct=0.000176, rhcrit=0.62, cwland=0.000171, 
cwsea=4.13e-5, minsia=0.636, ice_tr=2.525, ent=2.381, 
icesize=29.9 

-3.451 -3.331 

vf1=1.5, ct=7.5e-5, rhcrit=0.8, cwland=0.001, 
cwsea=0.00025, minsia=0.54, ice_tr=7.143, ent=1.8, 
icesize=33, cape=1.5 

-4.776 -4.762 

vf1=0.58239, ct=0.000276, rhcrit=0.80735, 
cwland=0.00108, cwsea=0.00027, minsia=0.54613, 
ice_tr=6.705, ent=2.38935, icesize=33.316, cape=1.95, 
g0=8.6302, charnock=0.0127, 
asymptotic_length_scale=0.18377, 
conv_rough_length=0.00324, dyndiff=6.539, 
eacfbl=0.51486, eacftrp=0.50743, k_gwd=14400, 
k_lee=216000 

-3.783 -3.777 
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Table 2 shows that the prediction of CPI works very well and only the third example is 

moderately different; however, the predicted CPI for this third example certainly picks out 

that this run is not expected to produce a very good simulation of present-day climate as 

measured by the CPI. Encouraged by these results we use Eqn. 10 extensively in the design 

of the runs where several parameter values are changed at once (see section 4a) and in the 

unbiased estimation of the PDF of climate sensitivity (see section 5). 

4. Design of multiple parameter perturbation runs 

a. QUMP parameters 

Before discussing the design of the multiple parameter perturbation runs, it is necessary to 

describe the nature of the physics parameters in QUMP as these affect the statistical tech-

niques we can use for predicting the response of the model at untried combinations of pa-

rameters. There are three kinds of parameters in QUMP. The first kind are parameters that 

take values in a continuous range e.g. the fallout speed of ice particles, VF1, can take any 

value between 0.5ms-1 and 2ms-1, as specified by an expert in the model’s large-scale cloud 

scheme. The second kind are parameters that take a finite number of values such as on/off 

switches which take values of 0 or 1. Each unique value of a factor is called a level. Forest 

roughness length, which is implemented by prescribing one of four vegetation ancillary files, 

is treated as a four-level parameter. We shall distinguish between these first two types of pa-

rameters by referring to the latter as factors. To complicate the issue especially from the point 

of view of having to design an efficient experiment, there is a third type of parameter in the 

QUMP experiment which we will call a hybrid parameter. These hybrid parameters e.g. 

CAPE closure time scale are like on/off factors but become continuous when they are on. 

There are three more hybrid parameters in QUMP. The anvil factor and convective updraught 

factor are only used when the convective anvil cloud scheme is switched on. Rhcrit must also 

be regarded as parameter, because it becomes redundant when the Rhcrit parameterisation 

scheme is switched on. 

b. The ensemble of ‘tuned’ model versions 

In section 2, we noted that the estimated frequency distribution was biased by the experi-

mental design of the first QUMP ensemble. For instance, if a single parameter perturbation 

had no significant effect on the climate variable of interest then we would effectively be sam-
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pling the response of HadSM3 again. Therefore, in the first QUMP ensemble the frequency 

distribution may be biased towards the response of the standard run. Even if an ensemble of 

this size was designed to be unbiased, it probably does not sample the parameter space of the 

climate model well and the frequency distribution might be considered unrepresentative. 

Therefore, there is a need to sample the parameter space more thoroughly. However, as we 

weight the contribution of the ensemble members to the frequency distribution, we want to 

avoid sampling areas of parameter space which provide relatively poor simulations of the 

present day climate. Here we describe an experimental design for an ensemble of runs where 

several parameters are perturbed simultaneously that samples parameter space as efficiently 

as possible given a finite number of runs that are all likely to provide good simulations of the 

present day climate. This design increases the chances that all ensemble members will con-

tribute significantly to the frequency distribution. 

For the second QUMP ensemble, the computer resources available to us are going to re-

strict the size of the ensemble to 100-150 members, some of which will be used to test the 

experimental design in section 4b. To illustrate the method, we will pick 50 combinations of 

parameter values but the procedure allows this to be easily extended. The procedure we use is 

a three-step process: 

1. We use a Monte Carlo algorithm to sample parameter space. We assume a priori that 

the parameters are independent and each have a uniform probability distribution, so that it is 

equally likely to select any combination of these parameter values. For the first iteration, we 

use a uniform distribution to randomly select a value for each parameter within the range de-

fined by the first QUMP ensemble. For this set of parameter values we predict the CPI using 

Eqn 10. As the number of parameters increases, this method can become very inefficient at 

locating areas of parameter space that are predicted to simulate the present day climate as re-

alistically as the standard model. For 8 parameters, we found that 10% of randomly-generated 

runs were predicted to be better than HadSM3. For 20 parameters, only a few runs out of a 

million were predicted to be better than HadSM3. For the full 29 parameters, no randomly-

generated runs were predicted to be better than HadSM3 and the procedure had to be repeated 

3.6 million times to find several hundred runs that were predicted to be only slightly worse 

than HadSM3. 

2. One way to improve on this situation might be to increase the number of iterations in 

the procedure described above but again this is very inefficient. To make the experimental 

design algorithm more efficient we used the fact that the randomly-generated runs were un-
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unlikely to be locally optimal. Furthermore, it is very likely that there is a better model than 

the randomly-selected one in the small region of parameter space where the continuous pa-

rameters can change but the factors remain the same. In this second stage a “Downhill sim-

plex” method (Press et al. 1992) is used to find a locally better solution for each of the top 

500 combinations of parameter values. To restrict the optimal solution to a local region of 

parameter space, the downhill simplex algorithm searched the region of parameter space 

where the continuous parameters were allowed to change within 5% of the original parameter 

value but remain within the original parameter space of the first QUMP ensemble. As the al-

gorithm is only guaranteed to find a better rather than optimal solution, we ran four iterations 

where the start-point of each iteration was the end-point of the previous iteration. After this 

second stage we have a set of 500 possible combinations of parameters that are likely to pro-

duce good simulations of present-day climate, if not better than HadSM3. 

3. In the final stage we aim to select a subset of the 500 possible combinations of parame-

ters, which we can afford to run on the computer. The main criterion for our algorithm to se-

lect this subset was that we spanned parameter space as efficiently as possible. We did this by 

first of all selecting the combination of parameters that was predicted to provide the best 

model. This combination of parameter values is the starting point for the set of models to run, 

ℜ. The set of runs we chose for the final design is called E. At this stage, E only contains the 

run in ℜ that is predicted to be have the best CPI score. Then, in normalised parameter space 

where the values range from 0 to 1, we calculated the distance, Dj,  between this first combi-

nation in ℜ and the other j=1,…499 combinations not in E using  

��
∈ ∈ −
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2
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αα

     for ℜ∉j ,      Eqn.  11 

where P is the set of parameters and the pth parameter value for the ith Monte Carlo run is 

ipα . The weighting factor is designed to counteract the fact that parameter values at the edges 

are more likely to be further away. This is particularly important for factors which take values 

0,1/2, and 1 because it avoids the experimental design being biased towards the 0 and 1 val-

ues. The next combination to be chosen to be included in ℜ, was that which was furthest 

apart from the first combination, that is with the largest Dj. This combination was then added 

to the set ℜ. Subsequent combinations were chosen to maximise the sum of the distance from 

the previous choices in set ℜ. The algorithm has the advantage that if we wish to increase the 
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size of our experiment from N1 to N2 members, we guarantee that the first N1 members of the 

second ensemble are the members of the first ensemble. 
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Figure 3. Distribution of values for each parameter in the 50-member experiment. Red 

dashes indicate values of parameters in the new design. The sulphur cycle will be included in 

all runs so S-CYCLE is set to 1 only. 

Fig. 3 shows how the values chosen for each parameter. The algorithm generally selects 

values which span the full range for each parameter. There are four exceptions to this. For 

entrainment rate (ENT) and ocean-ice diffusion, the algorithm has restricted the range of val-

ues to avoid producing runs that are likely to produce low CPI scores. For the number of for-

est soil levels, the algorithm has rejected any runs where there were 3 forest soil levels. Fig. 4 

shows that there were very few runs in the subset of 500 `good` runs that had the number of 

forest soil levels set to three. Finally, the vertical gradient cloud area scheme was not chosen 

for any members of this experimental design. Runs with HadAM3H, a closely-related varia-
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tion of HadAM3, indicate that this scheme can interact with other schemes to improve the 

climate simulation. This illustrates a potential problem with the prediction of the CPI and is 

presumably because the linear assumption behind the CPI prediction cannot account for such 

beneficial nonlinear interactions between schemes. 
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Figure 4. Plot of CPI against parameter values for each parameter from the 500 `good` runs 

(black diamonds). The 50 runs chosen  in the third part of the procedure are marked by red 

diamonds. 

Fig. 4 also shows that part three of the procedure did not select runs with necessarily the 

best predicted CPI scores. Indeed the run with the best predicted skill stands out from the 
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other selections. This may indicate that the better runs in the 500 `good` runs may have been 

relatively close together in parameter space and so were not selected. More of these runs 

would have been picked if the predicted CPI had been included in the cost function, Dj. How-

ever, this was not done, as the CPI prediction is not more accurate than the range of CPI 

scores covered by the top 500 runs; that is, the top 500 runs are all likely to be cost-effective. 

The experimental design is dependent on the formulation of the CPI. Therefore, it is com-

forting to see that the experimental design algorithm can still cover most of parameter space. 

On the other hand, this indicates that there are many small, disparate regions of parameter 

space that are likely to provide relatively good simulations of the present-day climate. 

Whether this is a consequence of the way CPI is predicted or is indeed a real property of the 

model over its parameter space, can only be tested by running the ensemble of multiple pa-

rameter perturbations. 

c. Alternative experimental design for the first stage 

The complexities of the algorithm described in section 4a are necessary to solve the prob-

lem of how to sample the parameter space as efficiently and as cost-effectively as possible 

when the number of runs allowed is of the same order as the number of parameters. That de-

sign is suitable for efficiently estimating frequency distributions. The method is equally vi-

able for larger ensembles but does rely on the availability of a single parameter perturbation 

ensemble as a first stage. However, as we increase the number of ensemble members that can 

be run, a number of alternative experimental designs become available to us. The experimen-

tal design outlined below would ideally be used when the size of the ensemble that we are 

allowed to run is about 10+ times the number of parameters. However, it can also be used 

when fewer ensemble members can be run. Then, this design provides an alternative to the 

single parameter perturbation ensemble as a first stage for the QUMP experiments but has 

two clear advantages. Firstly, the sampling yields an unbiased estimate of the frequency dis-

tribution. Secondly, it is possible to incorporate nonlinear interactions between parameters in 

the prediction of the response and CPI at untried combinations of parameter values. There-

fore, this design is more suitable than our current first QUMP ensemble as a basis for a tuning 

procedure and as a design used to estimate unbiased probability distributions of the response 

to doubling CO2 levels. The reasons for this last point are discussed below.  
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i. Estimation of response at untried parameter values 

The statistical principles behind the estimation of the response of any climate variable at 

untried combinations of parameter values depends on the nature of parameters themselves, 

whether they are factors or parameters or hybrid parameters. Below we show that any predic-

tion of the response at any combination of parameter and factor values has two components: 

the prediction based on the factor values plus a prediction interpolated from the error terms 

based on the parameters. First, we consider the prediction of the response due to changes in 

factor values. 

It is necessary to estimate the response of a climate variable for each different level of a 

factor. These responses, often called effects, are usually estimated using a regression equation 

like Eqn. 12 where y is an N-element vector of the response for a particular climate variable 

from each of the N members in the ensemble. The effects of the factors at each level (a total 

of p effects, say) are estimated by p regression coefficients stored in the p-element vector 
�

. 

For example, if there three 2-level factors and one 5-level factor, p would be 3x2+5=13. X (a 

standard notation for regression not to be confused with X in section 3) has an N-element 

column for each of the p regression coefficients. Each element of X, Xij, stores a 0 or 1 de-

pending on whether the corresponding level of factor to the ith regression parameter is in-

cluded in the jth ensemble member. 
�X

�
y +=           Eqn.  12 

It is also straightforward to consider additional effects by two or more factors interacting 

with each other. These additional effects are called interactions9. Each interaction can be in-

cluded in the estimation by adding another regression coefficient to 
�

and adding a corre-

sponding column to X. This extra column is calculated as the product of the columns in X of 

the main effects that contribute to the interaction. 

The effect of each level of each factor, �ˆ , is estimated by  

yXXX� TT 1)(ˆ −=          Eqn.  13 

and is only possible if XXT  is invertible. The standard error of each estimate is the measured 

by the square root of the diagonal elements of the matrix  

                                                
9 Interactions are named according to the number of factors involved so that they are called two-way interac-
tions, three-way interactions etc. 
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yXXX� TT 1)()ˆvar( −= .        Eqn.  14 

For estimation of the response of a climate variable to different values of a continuous pa-

rameter, traditional regression techniques can be used. However, this approach is relatively 

inflexible in the way it can deal with nonlinear interactions between two or more parameters. 

Sacks et al. (1989) have developed an interpolation technique (similar to a technique called 

kriging) for this purpose which can be used to estimate the response in the presence of pa-

rameters and factors. The statistical model is like Eqn. 12 but a smooth response surface is 

fitted to the error terms, �  at the same time the effects of the factors are estimated. The work 

behind this technique is a matter of statistically determining the smoothness of the response 

by fitting correlation functions for each continuous parameter. Sacks et al. (1989) discuss this 

is more detail. The technique is a type of interpolation because it guarantees that the predic-

tion at combinations of parameter and factor values for which a model has already been run, 

will be identical to the response from the model runs. The technique can be modified to in-

clude uncertainty due to natural variability in each model run (e.g. Craig et al. 2001). 

ii.  The Latin hypercube and D-optimal design 

An advantage of the Sacks et al. (1989) interpolation technique is that the response to 

changes in factors and in parameter values can be treated as independent. Consequently, the 

experimental design could be split into a design for the factors and a design for the continu-

ous parameters. However, the presence of hybrid parameters precludes this. Therefore, we 

first describe how to design a experiment with no hybrid parameters and then adapt the de-

sign to cope with their inclusion.  

One suitable technique for continuous parameters is the Latin hypercube, which has been 

often used in several scientific fields but only on a few occasions in climate studies (e.g. 

Bowman et al. 1993; Gough and Welch 1994). In a Latin hypercube experiment, we want to 

investigate P continuous parameters with a given number of model integrations, N where 

N>=P+1 to ensure that the estimate of the response to the different parameters can be 

uniquely determined. The number of model integrations determines how well each parameter 

is sampled because for each parameter, its range is split into N intervals which are typically 

evenly spaced10. The combinations of the N-member ensemble are then selected randomly. 

For the first member, one of the N intervals is randomly selected for each of the parameters 
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separately. For subsequent members and for each parameter, intervals are randomly selected 

from those which have not been used for that parameter in the previous ensemble members. 

In this way no single interval is selected more than once for each parameter and the ensemble 

is guaranteed to be sample every interval once for each parameter. Fig. 5 shows examples of 

good and bad Latin hypercube designs for two parameters using 10 ensemble members. 

However, it is possible to generate bad Latin hypercube experiments by chance. For in-

stance, the first ensemble member might sample the first bin of each parameter, the second 

member samples the second bin for each parameter and so on. From this Latin hypercube, it 

would be impossible to identify which parameter might be causing the different responses 

across the ensemble members as the values of each pair of parameters are perfectly correlated 

across the ensemble. This is an extreme and very unlikely example but it illustrates the point 

that to effectively identify which parameters are responsible for various aspects of the re-

sponse, we require the parameter values to be as uncorrelated with each other as possible. 

Iman and Conover (1982) provide an algorithm which can be used to design a Latin hyper-

cube experiment so that any desired level of correlation between the parameters is achieved. 
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Figure 5. Blue crosses indicate a Latin hypercube 10-member experiment for two parame-

ters, where the two parameters are uncorrelated across the ensemble. Green diamonds indi-

cate a perfectly correlated and not very good Latin hypercube. The red stars indicate where 

the two parameters have been sampled. 

                                                                                                                                                  
10 Sometimes the parameter values may be transformed e.g. logarithmically prior to the binning procedure. 
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The Latin hypercube is more efficient at spanning parameter space and very easy to de-

termine. It is also a more efficient design for estimating the response of the climate variable 

of interest to doubled CO2 levels at untried combinations of parameter values. This is be-

cause there is always a model run that samples any parameter in the interval(s) adjacent to the 

one of interest.  

For factors, as with the continuous parameters, we would ideally like our columns of X to 

be uncorrelated with each other. One solution is an experimental design where there is an en-

semble member for each combination of factors, the so-called full factorial design (e.g. 

Fisher 1935). This experimental design allows us to not only estimate the main effects of 

each factor but also all additional interactions between two or more factors. In practice, we 

are limited to run fewer ensemble members than possible combinations of the factors and so 

at best we require that there is the least amount of correlation between each column of X as 

possible. One possible solution is to restrict the problem to only estimating main effects 

and/or interactions between pairs of factors, only requiring N>=p.  

In some special cases there are several designs available such as fractionally factorial ex-

periments, Plackett-Burman designs and Box-Behnken experiments (NIST/SEMATECH e-

Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/index.htm, 

10/06/03). However, in the QUMP ensemble we have nine 2-level factors (the on/off 

switches), two 3-level factors (number of soil levels and the start level for gravity wave drag) 

and one 4-level factor (forest roughness length). The most flexible method for designing the 

experiment for factors is to use a method called D-optimality (e.g. Pukelsheim 1993). D-

optimality uses the principle that we chose X such that XXT has the maximum determinant 

D=det( XXT ) to minimise the overall precision with which we estimate the effects of the fac-

tors (see Eqn. 13). This works because the volume of the confidence ellipsoid around any es-

timate is inversely proportional to det( XXT ) and we require this volume to be as small as 

possible. 

As the factors and parameters are treated independently, an efficient design could be a 

combination of a Latin hypercube for the continuous parameters (using the Iman and Cono-

ver algorithm) and a D-optimal design for the factors (see Matlab routine in Appendix A) to 

do this. 
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iii.  Including hybrid parameters in the design 

The inclusion of hybrid parameters in the experiment complicates the design because the 

factors and parameters are no longer independent. Standard regression techniques can be used 

to analyse what are sometimes termed as incomplete treatment structures (e.g. Mead 1990). 

However, we are not aware of any adaptations to the techniques of Sacks et al. (1989) to cope 

with hybrid parameters. Here we propose to use a factor and a parameter for the cape closure 

time scale and RHcrit parameters, and one factor and two parameters for the convective up-

draught factor and anvil factors. That is, three factors and four parameters in all. Therefore, 

when we use the RHcrit parameterisation scheme, that factor is set to 1, and we have to set 

the rhcrit parameter to a default value. Therefore, the factor does not measure the effect of the 

parameterisation scheme; instead it quantifies the difference the scheme makes compared to 

the effect of having RHcrit=0.7.  

The experimental design depends on the available number of runs. There are 8 possible 

combinations of the three hybrid factors. If the number of runs available was greater than 10 

times the number of parameters for each permutation of hybrid factors, it would be feasible to 

design a joint D-optimal and Latin hypercube, as described in the previous subsection, for 

each permutation of hybrid factors and combine these. 

In QUMP we have already committed at least 50 runs to the ensemble of ‘tuned’ model 

versions. Therefore, we will run a small D-optimal and Latin hypercube experiment to test 

this design. This second ensemble will have 40 members. It has the advantage that it can be 

used to increase the size of the ensemble of ‘tuned’ model versions. 

The first stage is to design the D-optimal experiment. First, there is a column in X to 

measure the baseline effect which is combined effect when each factor is set at level 1. The 

effect at every level of each factor other than the first is measured relative to the baseline ef-

fect and there is a column in X for each of these. Finbally, there are additional columns for 

the three two-way interactions between the hybrid parameters. A MATLAB program (see 

Appendix) was used to design the following 40-member D-optimal experiment. 

The second stage is to use Iman and Conover’s algorithm to generate a Latin hypercube 

where pairs of parameters are as uncorrelated as possible. To determine the extent to which a 

Latin hypercube is uncorrelated, we calculate the determinant of its Spearman rank correla-

tion coefficient matrix. As this measure approaches 1, the parameters in the Latin hypercube 
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become more uncorrelated with each other. After several thousand iterations of Iman and 

Conover’s procedure, the highest determinant was ~0.84. 

The final stage is to merge the two designs together bearing in mind that when the three 

hybrid parameters are off i.e. 0 in the D-optimal design, the corresponding elements of the 

Latin hypercube should be set to some default number, which were chosen to be the median 

value of 0.5. The effect of the Latin hypercube is to make the parameters in the design more 

correlated and therefore lower the determinant of the rank correlation matrix. The main work 

of this first stage is to randomly combine the D-optimal and Latin hypercube designs and re-

iterate until a suitably large determinant is found. For the D-optimal design above we found 

the highest determinant was ~0.37, which reflects the inefficiency in the Latin hypercube due 

to the hybrid parameters. 

5. Estimating probability density functions (PDFs) 

The aims of the ensemble of ‘tuned’ model versions are to sample parameter space as effi-

ciently as possible given a limited number of model runs. Despite these efforts, our estimated 

frequency distributions may still be regarded as being susceptible to sampling error, mainly 

because parameter space is so huge. To overcome this problem, we assume that the response 

can be predicted reasonably well using linear theory. Therefore, we generate a PDF that is 

conditional on the underlying structure and physics of the model, and the formulation of the 

CPI. 

A PDF of climate sensitivity 2( )p T ×∆ O  constrained by some observational data O can be 

written as  

2 2( ) ( ). ( )p T p T p d
χ× ×∈

∆ = ∆�xO x x O x       Eqn.  15 

where χ is the parameter space, x is an element of parameter space. ( )p x O  can be viewed 

as the relative likelihood that x  is the set of parameter values that best model the observed 

present day climate O  assuming that all combinations of parameter values x  are a priori 

equally likely (Leroy 1998). ( )p x O  was set to 2exp( )CPI− . 2( )p T ×∆ x is the probability 

that the climate sensitivity will be 2T ×∆  given a set of parameter values, x , and is information 

that can be obtained from the model estimates of2T ×∆  and its uncertainty by running the 

model. Clearly, the values of 2( )p T ×∆ x and ( )p x O  are known for values of x  for which we 
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have run models. The key to estimating 2( )p T ×∆  in Eqn. 15 is that we can predict the CPI 

and the response and hence 2( )p T ×∆ x and ( )p x O  at untested values of x . From section 3a, 

we can already predict the CPI for untried combinations of parameter values. For 2( )p T ×∆ x , 

the experimental design of the first QUMP ensemble is not optimal for predicting 2T ×∆  for 

any x  11, but by making a linear assumption it is possible. 

Climate sensitivity, 2T ×∆ , is often written as  

2 2 /xT Q λ×∆ = .         Eqn. 16 

where 2Q × is the radiative forcing due to doubling CO2 concentrations and λ is a feedback 

parameter. 

For the ith ensemble member we estimate iλ∆ , the change in feedback parameter relative 

to λ  for the standard model version. iλ∆  is then set to zero if the climate sensitivity of the ith 

ensemble member is not significantly different at the 5% level to the control climate sensitiv-

ity estimated from the long 600-year HadSM3 run. This prevents the situation where there a 

large number of parameters which have small non-significant effects but these can combine 

linearly to produce a large erroneous predicted response. 

For a given x , we determine the iα ’s as in section 3a, and estimate 

2
2

x

ii i

Q
T

α λ×∆ =
�

.         Eqn.  17 

Using the runs in Table 2, we find our predictions have an error with a standard deviation 

of about 0.4. A straightforward way to estimate the PDF would then be to run a Monte Carlo 

experiment to randomly sample the parameter spaceχ  assuming each parameter was inde-

pendent on the others. However, the method is very sensitive to the control 2T ×∆  which has a 

mean of 3.46oC with a standard deviation of 0.07oC, as estimated from a 600-year HadSM3 

run. Therefore the method has been adapted in the following way to allow for this sensitivity 

to the control 2T ×∆ . 

                                                
11 A Latin hypercube would provide predictions with the least uncertainty because it samples parameter space 
more efficiently for predictions at untried parameter combinations, and allows for nonlinear interactions be-
tween two or more parameters. 
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1. Run a Monte Carlo simulation to generate N combinations of parameter values and use 

Eqn. 10 to predict the CPI and 2( ) exp( )p CPI= −x O . 

2. Use the 600-year long HadSM3 to estimate the climate sensitivity of the standard 

run, 3SMT∆  and the standard deviation of natural variability, 3SMσ . Divide the standard climate 

sensitivity range 3 32SM SMT σ∆ −  to 3 32SM SMT σ∆ +  into M equally spaced intervals. 
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Figure 6. a-e) Weighted (red) and unweighted histograms for 5 of the M intervals in the con-

trol 2T ×∆  range, each centred on the climate sensitivity in the plot title. Contribution is the 

probability of each interval; f) PDF which does not allow for additional uncertainty due to 

natural variability and the linear prediction methodology. 
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3. Loop through each of M intervals in the control 2T ×∆  range and determine the probability 

pi of the standard climate sensitivity actually coming from the ith interval. For each interval, 

predict 2T ×∆  for each Monte Carlo run using the centre of the interval as the standard value of 

climate sensitivity. Figs. 5a-e show how sensitive the histogram of 2T ×∆  is to the value of 

2T ×∆  from the standard model. When the control 2T ×∆  is low (see Fig. 6a), the majority of 

ensemble members are effectively positive changes in feedback compared to the standard 

model, and so the resulting histogram has very large values for 2T ×∆ . The opposite happens 

for high values of standard 2T ×∆  (see Fig. 6e). Using the CPI, estimate the weighted histo-

gram of climate sensitivity (red curves in Figs. 6a-e) for this interval in the climate sensitivity 

range. Fig. 6f shows the effect of summing up the histograms across the M intervals in the 

control 2T ×∆  range, weighting by the probability pi. This estimate does not account for natu-

ral variability or uncertainty in the linear prediction of 2T ×∆  at untried parameter combina-

tions. Step 4 allows for these additional uncertainties. 

  

Figure 7. Comparison of unweighted (blue), weighted (blue) and observationally-constrained 

(black) PDFs of climate sensitivity. 40% of the observational PDF lies to the right of 10oC. 

4. Predict 2T ×∆  for the test ensemble of multiple parameter perturbations using the value 

of standard model climate sensitivity in step 3. Calculate the standard error of the prediction, 

which is a measure of the suitability of our linear assumption but also encompasses natural 
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climate variability. For each point of the PDF, using the standard error of the prediction, es-

timate the total probability of the point occurring in the histogram. 

5. Multiply the PDF from step 4 by the probability pi from step 3 and add to the final PDF 

(see red curve in Fig. 7). This PDF is not biased by sampling but its validity depends on the 

success of the linear assumption in predicting 2T ×∆  at untried parameter combinations. The 

final PDF takes into account natural variability, and our ability to predict the response at un-

tried combinations of parameters, allowing for the uncertainty to climate sensitivity of the 

control member. The use of the CPI can be omitted to produce an unweighted PDF (see blue 

curve in Fig. 7) using 

2 2( ) ( )p T p T d
χ× ×∈

∆ ∝ ∆�x x x .        Eqn.  18 

The weighted and unweighted PDFs in Fig. 7 are similar in shape but the effect of the 

weighting is to shift the mode by 0.6oC and to change the 95% confidence interval from 1.3-

8.6oC to 1.8-8.3oC. The two model PDFs are also compared with one produced by Gregory et 

al. (2002), which uses a simple physical constraint based on the relationship between climate 

sensitivity and observational estimates of radiative forcing and ocean heat uptake. The 

model-dependent PDFs are confined to a much smaller range than the model-independent 

PDF (black curve), which gives a 40% chance of having climate sensitivities greater than 

10oC.  

6. Conclusions 

Ensemble climate prediction in the QUMP project is a two-stage process. The first stage 

involves running an ensemble designed to explore the sensitivity of the equilibrium response 

to doubled CO2 concentrations to various parameter perturbations from a standard slab 

model, HadSM3. Section 3 shows such an ensemble provides a good basis for determining 

other models within parameter space that would simulate the observed present day climate 

well. However, the sampling strategy places too much emphasis on the standard model. Only 

by making the assumption of linearity were we able to remove the influence of the standard 

model to provide an unbiased estimate of the probability distribution function (PDF) of cli-

mate sensitivity. Therefore, the PDF produced in section 5, is not only conditional on the ob-

servations used in the metric of climate model performance, called the Climate Prediction 

Index (CPI), the underlying structure of the climate model, and the choice of parameter 

space, but also on this restrictive assumption of linearity.  
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For the second stage, a second ensemble is generated so that parameter space is sampled 

as efficiently as possible in a way that is not biased to any particular combination of parame-

ters. The first stage is used to infer this second ensemble where each member has changes to 

several parameters from those values used in HadSM3. The algorithm described in section 4b 

also uses information from the first ensemble to select combinations of parameter values that 

are likely to simulate the present day climate as well if not better than HadSM3. This makes 

the second ensemble very cost-effective in terms of the computer resources needed to com-

plete it.  

Both the design of the second ensemble and the unbiased estimate of the PDF of climate 

sensitivity rely on our ability to predict the CPI and the equilibrium response to doubled CO2 

levels at untried combinations of parameter values. So far this has required the assumption of 

linearity. Although tests in section 3 imply this might be a reasonable assumption for obtain-

ing good predictions of the CPI, it is unlikely to work for the response of climate variables at 

sub-global or sub-hemispheric spatial scales. The reason we had to assume linearity was be-

cause of the sampling in the first ensemble. Ensembles where several parameters are per-

turbed simultaneously have greater potential for being able to predict responses on regional 

scales. There are two reasons for this. First, perturbing several parameters simultaneously en-

ables the statistical methodology to incorporate nonlinear interactions between two or more 

parameters into the prediction. Second, the ensemble itself can be used to test the procedure 

by trying to predict the response from one member based on the response from the other 

members. This cross-validation technique can be then used for each member in turn to calcu-

late an overall prediction error, which can be included in the final PDF. The usefulness of this 

PDF then depends on how large the prediction error is and this will vary with region and cli-

mate variable. It is not possible to cross-validate in this way with a single parameter perturba-

tion ensemble. 

The second ensemble where several parameters at perturbed at once from HadSM3 in any 

particular run, does provide the scope to explore nonlinear interactions between two or more 

parameters with more sophisticated statistical techniques. However, the design of the second 

stage requires a first stage. In section 4c, a combination of a D-optimal and latin hypercube 

design (with some modification to cope with a few awkward parameters) was used to provide 

an ensemble design which sampled the whole parameter space efficiently and in a way that 

was not biased towards any particular model. This ensemble will be started after the comple-

tion of the second ensemble described above. We will test the benefits of including nonlinear 
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interactions between parameters in the design of a new second-stage ensemble based on this 

new first-stage design. Any benefits will not only be good for ensemble climate prediction 

but also will improve the prospects for objectively tuning a climate model to the present day 

climate. Another advantage of having an unbiased first-stage design is that it can be used to 

augment the second ensemble used for the prediction of the PDF of the equilibrium response 

to doubled CO2 levels. There will be an element of luck in how useful this will be because it 

depends on the proportion of members in the first-stage ensemble with relatively good skill at 

simulating the present-day mean climate. 

In section 4c, standard techniques from experimental design theory were applied to design 

this new first-stage ensemble. In doing this, it became very apparent that a large amount of 

work was needed to incorporate hybrid parameters (parameters that became continuous only 

when a switch has been set). Therefore, we recommend that for future projects, these hybrid 

parameters are simply treated as on and therefore become relatively straightforward to deal 

with. 

Another result from section 4c is that it is harder to efficiently sample parameters that take 

a set of discrete values (factors) rather than those which are continuous. This has conse-

quences for future work where we explore the uncertainty of climate change predictions due 

to the underlying structural assumptions made in the climate model. Structural changes in 

climate models are often a matter of switching one scheme off and replacing it with another, 

which makes their treatment very similar to that used for factors. Therefore, large ensembles 

will be required to explore structural uncertainty. 

Overall, we expect the ensemble of multiple parameter perturbations to greatly improve 

the estimation of the PDF. However, the acid test is actually running these two ensembles and 

checking that they deliver the expected results. Whilst they are running, other important areas 

of work are to implement the interpolation procedure of Sacks et al. (1989) used to predict 

the response at untried parameter values and to develop a method for predicting the CPI from 

runs where several parameters have been perturbed at once.  
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Appendix 

MATLAB  program to determine D-optimal design. 

 

function status=qump_expt_design() 
 
%QUMP experiment has seven 2-level factors, three o f which are 
%hybrid factors, 
%two 3-level factors and one 4-level factor. 
 
%Design the full factorial for these 
f=fullfact([2,2,2,2,2,2,2,3,3,4]); 
 
%Calculate the design matrix and remove the degnera te columns. 
c=dummyvar(f); 
c(:,[3,5,7,9,11,13,15,18,21])=[]; 
 
%set the first column to be the mean 
c(:,1)=1; 
 
%set the last three columns to be the interactions between the 
%three hybrids. 
c(:,16)=c(:,2).*c(:,3); 
c(:,17)=c(:,2).*c(:,4); 
c(:,18)=c(:,3).*c(:,4); 
 
 
%After some testing it seems that the candexch func tion is not 
%guaranteed to produce the D-optimal design. Theref ore we do 
%100 iterations and use the best D-optimal design 
  
max_det=0.0; 
min_tr=1.0e+30; 
n=32; 
max_det_rows=1:n; 
min_tr_rows=1:n; 
 
iter=100; 
dets=1:iter; 
trs=1:iter; 
 
for i=1:iter 
  i   
%candexch is the MatLab procedure that does all the  hard work. 
  rows=candexch(c,n,'display','off'); 
  e=c(rows,:); 
  trs(i)=sum(diag(inv(e'*e))); 
%  diag(e'*e) 
  dets(i)=det(e'*e); 
   
  if dets(i) > max_det 
    max_det=dets(i); 
    max_det_rows=rows; 
  end   
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end   
 
 
dets 
trs 
max_det 
 
%set e to be the optimal design 
e=c(max_det_rows,:) 
det(e'*e) 
 
e'*e 
 
diag(inv(e'*e)) 
 
 
%save variable e  
%save C:\mydata.txt e -ASCII 
dlmwrite('C:\mydata.txt',e,' ')  
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The design produced is 

A B C D E F G H  I  J K L M N O P Q R S T 

 [1,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,1,1,1,1] 
 [1,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0] 
 [1,1,1,0,1,0,1,1,0,0,1,0,0,0,0,1,0,1,0,0] 
 [1,1,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1] 
 [1,1,1,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,0] 
 [1,1,0,1,1,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0] 
 [1,1,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0] 
 [1,1,1,0,1,1,1,0,0,0,1,0,1,0,0,0,1,1,0,0] 
 [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1] 
 [1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0] 
 [1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0] 
 [1,1,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0,1,1,1] 
 [1,0,1,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0] 
 [1,1,0,0,0,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0] 
 [1,0,0,0,1,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0] 
 [1,0,1,1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0,1] 
 [1,0,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0,0,0,0] 
 [1,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,1,0,0] 
 [1,1,0,1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,1,0] 
 [1,0,1,0,0,0,1,1,0,1,1,0,1,1,0,0,0,0,0,0] 
 [1,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,0] 
 [1,0,0,1,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0] 
 [1,0,0,1,1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0] 
 [1,0,0,0,0,0,1,1,1,0,1,0,1,0,0,0,1,0,0,0] 
 [1,0,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0] 
 [1,1,1,1,0,1,0,0,1,1,1,0,0,0,0,1,0,1,1,1] 
 [1,0,0,1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0,0] 
 [1,0,1,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0] 
 [1,0,0,1,0,0,0,1,1,1,0,1,1,0,0,1,0,0,0,0] 
 [1,0,0,0,0,1,0,1,0,0,0,1,1,0,1,0,0,0,0,0] 
 [1,0,1,1,0,0,1,0,0,0,1,0,1,0,1,0,0,0,0,1] 
 [1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0] 
 [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0,1,0,1,0] 
 [1,0,0,0,1,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0] 
 [1,1,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0] 
 [1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0] 
 [1,0,1,1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0,1] 
 [1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,1,1] 
 [1,1,0,1,1,0,0,1,1,0,0,0,1,0,0,1,0,0,1,0] 
 [1,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0]] 
 
The columns are labelled as follows: 
A: Mean  
B: Cape closure time scale 
C: Rhcrit parameterisation scheme 
D: Convective anvil scheme 
E: Order of dynamic diffusion  
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F: Non-spherical cloud ice particles 
G: Cloud area scheme 
H: Canopy decoupling scheme 
I: Stomatal conductance response to CO2 off 
J: SW water vapour continuum absorption 
K: Number of accessible forest levels =2 
L: Number of accessible forest levels =3 
M: Gravity Wave Drag start level=4 
N: Gravity Wave Drag start level=5 
O: Forest roughness length type II 
P: Forest roughness length type III 
Q: Forest roughness length type IV 
R: Interaction between B and C 
S: Interaction between B and D 
T: Interaction between C and D 
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