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Abstract

Probabilistic predictions that account for uncertainty in model pbysie sensitive to how
the experimental design samples parameter space. Herexpeomental designs are pro-
posed that aim to reduce this sensitivity. The firsthoeétis based on a metric which quanti-
fies how realistically a climate model simulates preskayt mean climate; this method can
easily be modified to provide a strategy for tuning modefmtticular climates. The second
method uses experimental design theory to generate a mesamaming parameter space as

efficiently as possible given a limited number of model runs.

Despite these efforts to reduce the effect of samplingrahpeter space on probability
predictions, this effect cannot be removed completely just bgrdeg the experiment in a
suitable way. A method is developed for removing the dependenttye sampling strategy,
although this is done at the expense of making an assumption on hdintite system re-

sponds to a combination of parameter changes.



1. Introduction

To reliably assess the risks associated with future @dirclzange, it is essential that pol-
icy-makers and climate impact scientists have a compreleeassessment of the uncertain-
ties involved in model predictions of climate change. These tamnctes arise from three
sources: uncertainties in projections of the emissions of greemgagses and chemicals that
produce aerosols, natural climate variability, and the wagliimate model represents the
climate system. The uncertainty inherent in the climate hartses partly because we do not
fully understand climate processes, and partly because thmgi@rs in the climate model,
which control the key physical and dynamical processes, areaws$gly known or are not
measurable in the real world. Modelling uncertainties cese ffom atmospheric, oceanic or
cryospheric physics or from chemical or ecosystem proceSkemte model experiments
have been used to assess the first two uncertaintieglyherembers of an ensemble differ
from each other either in their initial conditions or the emissscenario (Johns et al. 1997).
However, due to limited computer resources, the study of @nties in the climate model
itself has only recently begun. For instance, the atmosplr@ripanent of this uncertainty
has only recently started to be systematically exploretidyiadley Centre’s Quantifying
Uncertainty in Model Predictions (QUMP) project and clirpagelictionnet (Allen 1999;
Stainforth et al. 2002). Prior to these two studies, climpedgections from several climate
models were pooled to produce a so-called ‘ensemble of opporturtiigh was used to
provide an estimate of the uncertainty of future climate chdngdo modelling errors
(Cubasch et al. 2001). However, these ensembles are diftignterpret, as all models are

treated equally and their relative ability to model thmate system is not taken into account.

The long-term aim of QUMP is to provide probabilistic prediasi for the 2% century ac-
counting for all these uncertainties. Initially, the QUMBj@ct is focusing on the effect of
uncertainties in atmospheric physics on the equilibrium resporgsaubled CQ@ This is
done by running an ensemble of ‘slab’ models (atmosphere GCM coupléiDin ocean
mixed-layer) for 1x and 2x pre-industrial @@vels. At present, each ensemble member dif-
fers from the Hadley Centre’s current standard slab mbdelSM3, by perturbing one of 29
individual parameters to an extreme of their plausible rasgpecified by experts. The ul-
timate goal is to run several transient experiments that pomdgo a selection of the slab
model integrations and use this extra information to provide probabgredictions for any

time in the 21 century.



Having completed a so-callgdhysics ensembileis straightforward to produce a fre-
guency distribution of the response of global mean temperaturdoiabding of CQ levels,
otherwise known aslimate sensitivityRecognising the problems associated with ‘ensembles
of opportunity’ described above, we have defined a Climate Rimdiadex (CPI) which
guantifies the reliability of climate change predictions acogrdd how well each integration
reproduces several aspects of the recent observed meatecliima CPI can be used to

weight the relative contribution of each ensemble membiretérequency distributions.

During the analysis of this first QUMP ensemble it haobexapparent that further ex-
periments are needed. For instance, some parameter pgonslz not significantly alter
climate sensitivity and so the corresponding ensemble memimgaly sesample the uncer-
tainty of HadSM3, which arises from natural climate Jaihiy; this implies that our prelimi-
nary frequency distributions are biased towards the standard rGasslequently, the main
requirement for the next ensemble of slab models is tbpaitis parameter space more effec-
tively. To do this, we need to increase the QUMP ensetobielude runs where several pa-
rameters are changed simultaneously. The purpose of this tamotie is to describe two

experimental designs that address this requirement.

In section 2, we review the climate prediction index andmaitlhe deficiencies associated
with the frequency distribution of climate sensitivity ssited from the first QUMP ensem-
ble. Section 3 describes another particular advantage of tha @&t it is possible to relia-
bly predict the CPI for untried combinations of parameterseéation 4 we outline the two
strategies for selecting combinations of parameter pertansatboth of which will be run in
the near future. One strategy is based on selecting combmaf parameter values that are
likely to produce reliable simulations of the present dayatinand consequently is of use
for those readers who are interested in tuning climate modedsction 5, we present a
method for making unbiased estimates from the first QUMPrelniseof the probability dis-
tribution of climate change due to doubling CO2 levels, andigsshow the experimental
designs described in section 4 may improve our estimatssction 6, we conclude by dis-
cussing the various advantages of the two new experindegans for the problem of prob-

abilistic prediction.

2. Climate Prediction Index (CPI) and estimating frequency distributions

The CPI used in this study measures how well a climate mepielduces various aspects

of the climate system such as atmospheric radiation and ¢lmasspheric dynamics, the



hydrological cycle and surface fluxes (see Table 1 for aflithe climate variables used). For
March-May, June-August, September-November and Decembeudfgliwenty-year mod-
elled seasonal means, each variable is compared agamygprpriate observational or re-
analysis data set over a region where the data is considdvedeliable. A normalised ver-
sion of an area-weighted root mean square error (RMSE[E(g®el)is used because it penal-
ises bias, differences in the spatial variances of therebd and modelled means, and poor
pattern correlations. The components of the CPI for each sga%pn.4) and kth climate

variable are defined as

1 AN
CPI, =~ |[——MSE, whereMSE= =Y w (m -0,)?, Eqn. 1
T AN N

wherem ando; are the modelled and observed date, the number of grid points or latitude

bands,o?,, is the spatial average of theodelledinterannual variance used to normalise

each component of the CPI; ideally we would alke to include observational estimates of
interannual variance but it is not possible for tvasiables in the CPI as the data sets are not
long enough or annual data is not available. Thenabisation ofMSEnot only prohibits

climate variables with large variance dominating itdex but also allows us to include dif-
ferent types of components in future versions. &dbalso describes which regions of the
globe are used for each variable and whether tteeislat grid-point, for zonal-means or for

latitude-height zonal-mean cross-sectiongs the area-weight for latitude-longitude grid-

point and zonal-mean data and the area- and magbktfer zonal-mean and height data.

The overall CPI is a weighted average of @l , where the weights for the various com-

ponents are shown in Table 1. Currently the ISCIGRdcdiagnostics are weighted by 1/3 to
reflect the interdependence of the high, mediurd,law cloud amounts for each optical
thickness. The other components are all given egagghting of 1, since we currently have

no basis for assigning unequal weights for anyaideis other than the cloud diagnostics.

Based on the CPI, the standard HadSM3 run li8@2 of the 53 ensemble members, al-
though only three parameter perturbations showorgments more than 5%. This is very
good considering the atmospheric physics in Had8M S tuned so that the coupled model
could be run without flux corrections as well astiba quality of the simulation of the mean
climate. The integration where the fallout speettefparticles has been halved is the top
ranking experiment mainly due to improvements oudlamounts and the LW radiation
budget (see Fig. 1). A few variables dominate tinere e.g. high-top, optically thin cloud



Table 1. Details of components of climate prediction index.

Climate variable Source Region used Type of data used Weight
1.5m temperaturéC) CRU Land only Grid-point 1
MSLP (hPA) ERA Globe Grid-point 1
Precipitation (mm/day) Xie-ArkiA Ocean between 38 and  Grid-point 1
3(°N and all land
Westerly wind (m?3) ERA Globe Lat-height zonal-mean 1
Temperature®C) ERA Globe Lat-height zonal-mean 1
Relative humidity (%) ERA Globe Lat-height zonalane 1
Outgoing LW radiation at TOA (W) ERBE' Between 686 and 66N Zonal mean 1
Outgoing SW ratiation at TOA (WR) ERBE Between 6% and 66N Zonal mean 1
SW cloud forcing (Wrif) ERBE Between 6 and 66N Zonal mean 1
LW cloud forcing (Wn¥) ERBE Between 6 and 66N Zonal mean 1
High-top optically thick cloud (%) ISCCP Ocean between 88 and  Grid-point 1/3
5C°N and all land
High-top medium optical thickness cloud ISCCP Ocean between®®and Grid-point 1/3
(%) 5°N and all land
High-top optically thin cloud (%) ISCCP Ocean betnwe&@S and  Grid-point 1/3
5°N and all land
Medium-top optically thick cloud (%) ISCCP Oceartvioeen 50S and  Grid-point 1/3
5(°N and all land
Medium-top medium optical thickness  ISCCP Ocean between®®and  Grid-point 1/3
cloud (%) 5°N and all land
Medium-top optically thin cloud (%) ISCCP Oceanvieeen 50S and  Grid-point 1/3
5°N and all land
Low-top optically thick cloud (%) ISCCP Ocean betnesdS and  Grid-point 1/3
5C°N and all land
Low-top medium optical thickness cloud ISCCP Ocean between®and Grid-point 1/3
(%) 5C°N and all land
Low-top optically thin cloud (%) ISCCP Ocean aba8s Grid-point 1/3
Net downward SW flux at surface (Win  SOC Ocean above 48 Zonal mean 1
Net downward LW flux at surface (Wi  SOC Ocean above %8 Zonal mean 1
Sensible heat flux (Wi SOC Ocean above 78 Zonal mean 1
Latent heat flux (Wrf) SOC Ocean above 78 Zonal mean 1
Diurnal temperature rang&Q) CRU Globe Grid-point 1
250hPa velocity potential ERA Globe Grid-point 1
500hPa streamfunction ERA Globe Grid-point 1
Meridional streamfunction ERA Globe Lat-height zbmean 1
500hPa transient eddy kinetic energy ERA Globe ‘Paiht 1
Total runoff efficiency rate (%) GRDECRU  Land points Grid-point 1
Sea-ice extent HadISST1  NOAA sea-ice regions Grid-point 1
Specific humidity ERA Globe Lat-height zonal-mean 1

amounts. This may indeed be due to large modegbidsowever, it may also be that the

normalisation facto% is too large, as the model significantly undereatas the ob-

JANN

served variance.

! (New et al. 1999)

% (Gibson et al. 1997)
% (Xie and Arkin 1998)
4 (Harrison et al. 1990)

® (Rossow and Schiffer 1991; Doutriaux-Boucher aareS1998)

% (Josey et al. 1996)
7 (Fekete et al. 2002)
8 (Rayner et al. 2003)



Several improvements could be made to the CPs$ioutrent state. First, the normalisa-
tion factor needs more investigation. A furthempas that the present index does not account
for interdependence within or between the varicmmonents. It is also possible to define
other diagnostics to evaluate climate processeshwhight be seen as being more relevant to
future climate change than the mean climate ohtbdel. For instance, we would like to
check that the climate model is producing a raalisiean climate because it includes the cor-
rect climate processes. One way to do this is &uete the local relationship between two or
more climate variables independently of geograplpoaition e.g. cloud amounts with local
SST and vertical velocity (Williams et al. 2003)eWhould also evaluate the climate model’s
variability when the observational data is of stéfnt quality and the record is long enough.

So the CPI presented here is clearly a first stagdong development process.

DJF mean

Figure 1. Components of CPI for the most skilful perturbation (red) and the standard
HadSM3 integration (blue) for December-Februarybels on the x-axis indicate the climate
variables used in the CPI. Blue columns which &erter (longer) than the adjacent red

columns indicate where the parameter perturbat®hetter (worse) than HadSM3.

However, we feel that due to the extensive numbelimate variables in the present CPI,
that this provides a robust measure of the moddlikty to simulate present-day climate.

Tests using other validation statistics like Arcslielke (Watterson 1996) and a version of
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the RMSE that allows for the interdependence o dathin a particular component show
that the conclusions based on this more simple REig@Eobust. Overall, an adequate
evaluation of the mean climate provides a usefoktraint for climate predictions, though as

mentioned above, we believe that this is onheaessary but not sufficiecondition.

2.0 ‘ \ ‘
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0.0 i ‘ ‘ ‘ | | ‘ ‘ ‘ | e, |
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Figure 2. The unweighted (blue) and weighted (red) frequelistyibutions of climate sensi-
tivity estimated from the ensemble members. A Gauksrnel has been used to smooth the

distributions.

One use of the CPI is to weight the frequency ithigtion towards the more reliable cli-
mate model versions. We usep(-CPI1?) to estimate the weighting for each ensemble
member for the estimation of the PDF of climatesg@rnty. This weighting is effectively the
likelihood that the observed and modelled data cfsora the same probability distribution,
averaged over all components of the CPI and oVeridtbox values. Therefore, although
other forms of weighting function may be possid&p(-CPI*) seems a natural choice
when estimating probability distributions. The effef the weighting is to heavily weight
down the outlier with high climate sensitivity aimdrease the probability of climate sensi-
tivities in the range 2°%& to 3C and around 3°%& (see Fig. 2).
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However, this histogram is biased by the experiadegesign of the first ensemble in that
it places too much emphasis on the standard meadsion, HadSM3. This happens for two
reasons. Firstly, there showddriori be no preferred standard model version in theipfys
ensemble. This implies that the histogram is umlilgpersive because a different choice of
standard model might alter the position and sh&pleeodistribution. Secondly, there is a nar-
row peak centred on HadSM3. This narrowing of tetial peak about the HadSM3 climate
sensitivity may be misleading, and does not necgsaean that we have constrained cli-
mate sensitivity as accurately as is implied bydisgribution. This is because the physics
ensemble might include several parameters thabtaffect climate sensitivity (they may
still be important for regional changes of somenalie variables), whatever the choice of
standard model. Such parameters should not affedtrtal shape of the distribution but they
affect the estimate here because of the sampliatggy in the first ensemble. That is, runs in
which these parameters are perturbed will effelstivesample the standard model version
again and again. Consequently, this could prodymer@ounced peak about the standard
model version which gives a false impression of keell we have constrained climate sensi-
tivity.

Therefore, there is a clear requirement to re-adses the ensemble should sample pa-
rameter space. The key aims for designing thisraxjeat are to run another ensemble of in-
tegrations that a) span parameter space as mymissaible and b) are likely to be ‘good’
simulators of the present-day climate so that naeyas wasted on running poor climate
models that will be heavily weighted down in théraation of the PDF. The first aim im-
plies that we need to perturb several parametezach ensemble member. The second aim
requires the CPI of the current ensemble to predCPI for untried combinations of parame-

ter changes, which is the subject of the next gecti

3. Prediction of Climate Prediction I ndex

The CPI in its current form has one major advantagg many other skill scores. That is,
we can reliably predict the CPI for an untried camation of parameter values by making a
simple assumption that the response to severainedea changes is a linear combination of
the responses to the individual parameter chahgésr sections use this result extensively to
design the next ensemble of QUMP model integrat{ees section 4a) and estimate a prob-

ability density function (PDF) rather than a fregag distribution (see section 5). In the next
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subsection we outline the theory behind this cl@ims can be skipped by the reader if they
so wish). In section 3b, we test the predictionshtow that they are indeed reliable.

a. Linear prediction of CPI

The prediction of CPI is based on the experimesfgalign of the first QUMP ensemble
where we make perturbations to single parametens & control experiment e.g. HadSM3.

First, we consider one component of the CPI. Ferctmate variable which corresponds to

this component of the index, we Isig be the population mean of the control experimedt an
S;g be the population mean of ith member of the physitsemble. We run model versions

for each parameter perturbation in the ensembéstimate the climate variabl§,, so that

S =5,+N Eqn. 2

whereN' is the noise component which would tend to zerthadength of the ensemble
members tended towards infinity. Let

X' =8 -5 Eqn. 3
represent the change in the climate variable dteet@ingle parameter perturbation made in

the ith ensemble member.

The goal here is to predict the CPI component fougtried combination of the parameter
changes based on what we know from the single petearperturbation ensemble. We as-
sume that the population climate mean for an uwhg@mbination of parameter valudy, ,
can be written as the linear combination of thesilgaals from the individual parameter
changes

Py, =S5, +Ziaixi Eqn. 4

sig !

wherea, are coefficients which can be between 0 and Ligneé andX‘Sig = S;g -S5,. For
example, we may want to estimate the CPI compdioeiat physics parameter value of 1
when the value in the control run is zero and weelran a perturbation experiment for a

value of 2; in this case, the coefficiemt would be 0.5.

If we actually ran a model with this combinationpairameter values, we would estimate

its climate mean for the climate variable of ingtr® be

P=P, +NP =S} +> a Xy, +NP Eqn. 5
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The component of the CPI is the root mean squaoe ef the modelled mean for a par-
ticular variable compared against a correspondbsgivational mear® . We denote a spa-

tial average of a field by an overbar and from rowassume that the noise variance is inde-

pZ :NZ

pendent of the parameter perturbations so KfatE N =
If we denote the model bias 8fandP ase, =S—-0O ande, =P -0 respectively then
the mean square error Bfis then
2 _ 2
e, =(P-0)
=(S-0+) a Xy, +NP =N°%)?

=e_52+N"2+N°2—ZeS.NO+(Zaixgg)2+22aiesxgg
i Eqgn. 6
=g +2N' - 2N +(ZaX )+2Zaesx;ig

=e, +Za X +222aa X' X, +22ae Xq

Eqn.6 needs to be expressed in termX'o$ and X'’s, as Xj,and X, are not measured

directly. Combining Eqgns. 2 and 3 gives
X‘=X;Q+N‘—N°, Eqn. 7

so that

XX = (X5, +N'=N°).(XL, + N/ =N°)

XL XL +N”  wheni j . Eqn. 8

X;gz +N% +N”  wheni=]

Wheni =j, X X'. 2 >0 must hold. Therefore, K'X! <2N?wheni = j then we set

X' =2N2. Eqgn. 9

Using Egns. 8 and 9, Eqn. 7 can be rewritten as

&’ =e’+ Yal(x )+ 2  Taa, X -N )+ Za X +N)
i i i ) .
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to give the final form for our prediction of CPloPpredict the full CPI, each component
needs to be predicted, normalised as with the BEfRkhand then summed with the relevant

weights for each component.

b. Tests of prediction of CPI

To test the prediction of the CPI, we have run sduest cases which were originally de-
signed to try out various hypotheses about thetsffef perturbing several parameters at once
and were not designed to be cases where the poedaftthe CPI worked well. The first two
runs combine parameter changes that have alreaaytbed individually in the first ensem-
ble. The third run was designed to produce a mahbllow climate sensivity. The fourth
run was predicted to produce a better presentitagte than HadSM3, as measured by an
earlier version of the CPI (essentially no compdésidased on ISCCP). The fifth run was an
attempt to sample the interior of parameter spattanging parameters to halfway between
the values used in the ensemble of single paramet&urbations. The sixth was a run pre-

dicted to produce a reasonably good climate.

Table 2. Comparison of predicted and actual CPI for testgwvith several parameter
changes from HadSM3.

Parameter perturbations Actual CPI Predicted CPI
vfl=2, ct=0.0004, rhcrit=0.9, cwland=0.002, -4.436 -4.544
cwsea=0.0005

vf1=0.5, rhcrit=0.6, cwland=0.0001, cwsea=2e-5, -3.614 -3.705
minsia=0.65, ice_tr=2, cape=2

ct=5e-5, cwland=0.002, cwsea=0.0005, ent=9, cape=[1;6.918 -6.330
eacfbl=0.7, eacftrp=0.6

vf1=0.52, ¢t=0.000176, rhcrit=0.62, cwland=0.000171| -3.451 -3.331
cwsea=4.13e-5, minsia=0.636, ice_tr=2.525, ent42.38

icesize=29.9

vfl=1.5, ct=7.5e-5, rhcrit=0.8, cwland=0.001, -4.776 -4.762

cwsea=0.00025, minsia=0.54, ice_tr=7.143, ent=1.8,
icesize=33, cape=1.5

vf1=0.58239, ct=0.000276, rhcrit=0.80735, -3.783 -3.777
cwland=0.00108, cwsea=0.00027, minsia=0.54613,
ice_tr=6.705, ent=2.38935, icesize=33.316, cap&s1.9
0g0=8.6302, charnock=0.0127,
asymptotic_length_scale=0.18377,
conv_rough_length=0.00324, dyndiff=6.539,
eacfbl=0.51486, eacftrp=0.50743, k_gwd=14400,
k_lee=216000
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Table 2 shows that the prediction of CPI works weeji and only the third example is
moderately different; however, the predicted CPltiids third example certainly picks out
that this run is not expected to produce a verydgomulation of present-day climate as
measured by the CPI. Encouraged by these resultseg&qn. 10 extensively in the design
of the runs where several parameter values aregeldaat once (see section 4a) and in the

unbiased estimation of the PDF of climate sensgyti{see section 5).

4. Design of multiple parameter perturbation runs

a. QUMP parameters

Before discussing the design of the multiple patamgerturbation runs, it is necessary to
describe the nature of the physics parameters iNMBHds these affect the statistical tech-
niques we can use for predicting the responseeoimidel at untried combinations of pa-
rameters. There are three kinds of parameters MR he first kind are parameters that
take values in a continuous range e.g. the falipaed of ice particles, VF1, can take any
value between 0.5rtsand 2mg, as specified by an expert in the model’s larggescloud
scheme. The second kind are parameters that takigeanumber of values such as on/off
switches which take values of 0 or 1. Each unicalaesof a factor is calledlavel Forest
roughness length, which is implemented by preswgiloine of four vegetation ancillary files,
is treated as a four-level parameter. We shalingjgtsh between these first two types of pa-
rameters by referring to the latterfastors To complicate the issue especially from the point
of view of having to design an efficient experimehere is a third type of parameter in the
QUMP experiment which we will calllaybrid parameterThese hybrid parameters e.g.
CAPE closure time scale are like on/off factors limtome continuous when they are on.
There are three more hybrid parameters in QUMP.afwd factor and convective updraught
factor are only used when the convective anvildlscheme is switched on. Rhcrit must also
be regarded as parameter, because it becomes agduwriten the Rhcrit parameterisation

scheme is switched on.

b. The ensemble of ‘tuned’ model versions

In section 2, we noted that the estimated frequelstyibution was biased by the experi-
mental design of the first QUMP ensemble. For msta if a single parameter perturbation

had no significant effect on the climate varialiiénterest then we would effectively be sam-
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pling the response of HadSM3 again. Thereforehénfirst QUMP ensemble the frequency
distribution may be biased towards the responskeo$tandard run. Even if an ensemble of
this size was designed to be unbiased, it probdidyg not sample the parameter space of the
climate model well and the frequency distributioigint be considered unrepresentative.
Therefore, there is a need to sample the paramsgdee more thoroughly. However, as we
weight the contribution of the ensemble membetbiédrequency distribution, we want to
avoid sampling areas of parameter space which geaelatively poor simulations of the
present day climate. Here we describe an experahdasign for an ensemble of runs where
several parameters are perturbed simultaneoudlgainaples parameter space as efficiently
as possible given a finite number of runs thatadirikely to provide good simulations of the
present day climate. This design increases thecelsathat all ensemble members will con-

tribute significantly to the frequency distribution

For the second QUMP ensemble, the computer resoakealable to us are going to re-
strict the size of the ensemble to 100-150 memiserage of which will be used to test the
experimental design in section 4b. To illustrate riiethod, we will pick 50 combinations of
parameter values but the procedure allows thigtedsily extended. The procedure we use is

a three-step process:

1. We use a Monte Carlo algorithm to sample paransgtace. We assuraepriori that
the parameters are independent and each haveoanmfobability distribution, so that it is
equally likely to select any combination of thesegmeter values. For the first iteration, we
use a uniform distribution to randomly select auedior each parameter within the range de-
fined by the first QUMP ensemble. For this setafgmeter values we predict the CPI using
Eqgn 10. As the number of parameters increasesyttisod can become very inefficient at
locating areas of parameter space that are prddizctemulate the present day climate as re-
alistically as the standard model. For 8 paramgteesfound that 10% of randomly-generated
runs were predicted to be better than HadSM3. Bgua2ameters, only a few runs out of a
million were predicted to be better than HadSM3. the full 29 parameters, no randomly-
generated runs were predicted to be better tha®Madand the procedure had to be repeated
3.6 million times to find several hundred runs thate predicted to be only slightly worse
than HadSM3.

2. One way to improve on this situation might bénttrease the number of iterations in
the procedure described above but again this isimefficient. To make the experimental

design algorithm more efficient we used the faat the randomly-generated runs were un-
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unlikely to be locally optimal. Furthermore, itusry likely that there is a better model than
the randomly-selected one in the small region ocpeter space where the continuous pa-
rameters can change but the factors remain the. darties second stage a “Downhill sim-
plex” method (Press et al. 1992) is used to fitotally better solution for each of the top
500 combinations of parameter values. To restnetiptimal solution to a local region of
parameter space, the downhill simplex algorithmcdesd the region of parameter space
where the continuous parameters were allowed togehavithin 5% of the original parameter
value but remain within the original parameter gpaicthe first QUMP ensemble. As the al-
gorithm is only guaranteed to find a better rathan optimal solution, we ran four iterations
where the start-point of each iteration was themidt of the previous iteration. After this
second stage we have a set of 500 possible condrinatf parameters that are likely to pro-

duce good simulations of present-day climate, ifbeiter than HadSM3.

3. In the final stage we aim to select a subsé&te@b00 possible combinations of parame-
ters, which we can afford to run on the computée main criterion for our algorithm to se-
lect this subset was that we spanned parametee ggaefficiently as possible. We did this by
first of all selecting the combination of paramstrat was predicted to provide the best
model. This combination of parameter values isstagting point for the set of models to run,
(. The set of runs we chose for the final desigralked E. At this stage, E only contains the
run inJ that is predicted to be have the best CPI scdren,Tin normalised parameter space
where the values range from 0 to 1, we calculdteditstance;, between this first combi-

nation in(J and the other j=1,...499 combinations not in E using
D- _ (ajp _aip)z

e ioE P 6(a —%)2

where P is the set of parameters andothgoarameter value for the ith Monte Carlo run is

for jOO, Egn. 11

a,,- The weighting factor is designed to counteraetftict that parameter values at the edges

are more likely to be further away. This is partiely important for factors which take values
0,1/2, and 1 because it avoids the experimentajjnie®ing biased towards the 0 and 1 val-
ues. The next combination to be chosen to be iedud], was that which was furthest
apart from the first combination, that is with thegestD;. This combination was then added
to the sef]. Subsequent combinations were chosen to maximmessum of the distance from

the previous choices in sét The algorithm has the advantage that if we wisimé¢rease the



18

size of our experiment from;No N, members, we guarantee that the first?éembers of the
second ensemble are the members of the first edsemb
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Figure 3. Distribution of values for each parameter in therB@mber experiment. Red
dashes indicate values of parameters in the nevguae®he sulphur cycle will be included in
all runs so S-CYCLE is set to 1 only.

Fig. 3 shows how the values chosen for each paeamiéie algorithm generally selects
values which span the full range for each paramé&tesre are four exceptions to this. For
entrainment rate (ENT) and ocean-ice diffusion,alyorithm has restricted the range of val-
ues to avoid producing runs that are likely to picalow CPI scores. For the number of for-
est soil levels, the algorithm has rejected ang mhere there were 3 forest soil levels. Fig. 4
shows that there were very few runs in the sulbfis8®@ "'good" runs that had the number of
forest soil levels set to three. Finally, the \eatigradient cloud area scheme was not chosen

for any members of this experimental design. Rumis HadAM3H, a closely-related varia-
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tion of HadAM3, indicate that this scheme can iatewith other schemes to improve the
climate simulation. This illustrates a potentiabiplem with the prediction of the CPIl and is
presumably because the linear assumption behin@Rherediction cannot account for such

beneficial nonlinear interactions between schemes.
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Figure4. Plot of CPI against parameter values for each pagtanfrom the 500 "good™ runs
(black diamonds). The 50 runs chosen in the thand of the procedure are marked by red

diamonds.

Fig. 4 also shows that part three of the procedig@ot select runs with necessarily the
best predicted CPI scores. Indeed the run wittbést predicted skill stands out from the
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other selections. This may indicate that the bettes in the 500 ‘good” runs may have been
relatively close together in parameter space amndese not selected. More of these runs
would have been picked if the predicted CPI hadhhbeeluded in the cost functio®;. How-
ever, this was not done, as the CPI predictioroismore accurate than the range of CPI

scores covered by the top 500 runs; that is, hé&@® runs are all likely to be cost-effective.

The experimental design is dependent on the fotionlaf the CPI. Therefore, it is com-
forting to see that the experimental design alboritan still cover most of parameter space.
On the other hand, this indicates that there amyramall, disparate regions of parameter
space that are likely to provide relatively goatgiations of the present-day climate.
Whether this is a consequence of the way CPI digied or is indeed a real property of the
model over its parameter space, can only be téstednning the ensemble of multiple pa-

rameter perturbations.

c. Alternative experimental design for the first stage

The complexities of the algorithm described in imectia are necessary to solve the prob-
lem of how to sample the parameter space as effigiand as cost-effectively as possible
when the number of runs allowed is of the sameradehe number of parameters. That de-
sign is suitable for efficiently estimating frequgrdistributions. The method is equally vi-
able for larger ensembles but does rely on thdabilify of a single parameter perturbation
ensemble as a first stage. However, as we inctaassumber of ensemble members that can
be run, a number of alternative experimental desiggrome available to us. The experimen-
tal design outlined below would ideally be used whe size of the ensemble that we are
allowed to run is about 10+ times the number oapaaters. However, it can also be used
when fewer ensemble members can be run. Thergekign provides an alternative to the
single parameter perturbation ensemble as a fagedor the QUMP experiments but has
two clear advantages. Firstly, the sampling yieldsinbiased estimate of the frequency dis-
tribution. Secondly, it is possible to incorporatmlinear interactions between parameters in
the prediction of the response and CPI at untrigdlinations of parameter values. There-
fore, this design is more suitable than our curfiestt QUMP ensemble as a basis for a tuning
procedure and as a design used to estimate unipaseability distributions of the response

to doubling CQ levels. The reasons for this last point are disedelow.



21

I. Estimation of response at untried parameter values

The statistical principles behind the estimatiothef response of any climate variable at
untried combinations of parameter values dependbe®nature of parameters themselves,
whether they are factors or parameters or hybnidrpaters. Below we show that any predic-
tion of the response at any combination of paransetd factor values has two components:
the prediction based on the factor values plusdigtion interpolated from the error terms
based on the parameters. First, we consider thicpion of the response due to changes in

factor values.

It is necessary to estimate the response of a @inaiable for each different level of a
factor. These responses, often ca#ffécts are usually estimated using a regression equation
like Eqn. 12 wherg is anN-element vector of the response for a particulianate variable
from each of thé&l members in the ensemble. The effects of the factbeach level (a total
of p effects, say) are estimated fpyegression coefficients stored in {irelement vectog .
For example, if there three 2-level factors and Dhevel factorp would be 3x2+5=13X (a
standard notation for regression not to be confugddX in section 3) has aN-element
column for each of thp regression coefficients. Each elemenko;, stores a 0 or 1 de-
pending on whether the corresponding level of faiidhe ith regression parameter is in-
cluded in the jth ensemble member.
y=Xp+e Eqn. 12

It is also straightforward to consider additionti¢ets by two or more factors interacting
with each other. These additional effects are dafieractions. Each interaction can be in-

cluded in the estimation by adding another regoassoefficient toff and adding a corre-

sponding column t&X. This extra column is calculated as the produ¢hefcolumns irX of

the main effects that contribute to the interaction
The effect of each level of each factﬁr,, is estimated by
B=(X"X)*XTy Eqn. 13

and is only possible iK' X is invertible. The standard error of each estingmthe measured

by the square root of the diagonal elements ofrtatrix

9 Interactions are named according to the numbéaadbrs involved so that they are called two-watgriac-
tions, three-way interactions etc.
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var@) = (X"X)*XTy. Eqn. 14

For estimation of the response of a climate vagiabldifferent values of a continuous pa-
rameter, traditional regression techniques carskd.uHowever, this approach is relatively
inflexible in the way it can deal with nonlineateractions between two or more parameters.
Sacks et al. (1989) have developed an interpol&tionnique (similar to a technique called
kriging) for this purpose which can be used to estimaedhlponse in the presence of pa-
rameters and factors. The statistical model istiga. 12 but a smooth response surface is
fitted to the error termg at the same time the effects of the factors ammated. The work
behind this technique is a matter of statisticd#yermining the smoothness of the response
by fitting correlation functions for each contingoparameter. Sacks et al. (1989) discuss this
is more detail. The technique is a type of intempjoh because it guarantees that the predic-
tion at combinations of parameter and factor vafaesvhich a model has already been run,
will be identical to the response from the modeistul he technique can be modified to in-

clude uncertainty due to natural variability in leacodel run (e.g. Craig et al. 2001).

ii. The Latin hypercube and D-optimal design

An advantage of the Sacks et al. (1989) interpmiatichnique is that the response to
changes in factors and in parameter values careatet as independent. Consequently, the
experimental design could be split into a desigrttie factors and a design for the continu-
ous parameters. However, the presence of hybrahpeters precludes this. Therefore, we
first describe how to design a experiment with gbrid parameters and then adapt the de-

sign to cope with their inclusion.

One suitable technique for continuous parametdfgisatin hypercubewhich has been
often used in several scientific fields but onlyafew occasions in climate studies (e.g.
Bowman et al. 1993; Gough and Welch 1994). In anLlagpercube experiment, we want to
investigateP continuous parameters with a given number of modegrationsN where
N>=P+1 to ensure that the estimate of the respondeetdifferent parameters can be
uniquely determined. The number of model integretidetermines how well each parameter
is sampled because for each parameter, its rarggditisntoN intervals which are typically
evenly spaceld. The combinations of tHe-member ensemble are then selected randomly.

For the first member, one of tiintervals is randomly selected for each of thepeaters
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separately. For subsequent members and for eagmeptar, intervals are randomly selected
from those which have not been used for that paemrethe previous ensemble members.

In this way no single interval is selected morentbace for each parameter and the ensemble
is guaranteed to be sample every interval oncedoh parameter. Fig. 5 shows examples of

good and bad Latin hypercube designs for two patermesing 10 ensemble members.

However, it is possible to generate bad Latin hyplee experiments by chance. For in-
stance, the first ensemble member might samplérgidin of each parameter, the second
member samples the second bin for each parametesctaon. From this Latin hypercube, it
would be impossible to identify which parameter imilge causing the different responses
across the ensemble members as the values of amalf parameters are perfectly correlated
across the ensemble. This is an extreme and vdikelynexample but it illustrates the point
that to effectively identify which parameters aggponsible for various aspects of the re-
sponse, we require the parameter values to becasratated with each other as possible.
Iman and Conover (1982) provide an algorithm wiaah be used to design a Latin hyper-

cube experiment so that any desired level of caticel between the parameters is achieved.
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Figure5. Blue crosses indicate a Latin hypercube 10-memkger@ment for two parame-
ters, where the two parameters are uncorrelatedssithe ensemble. Green diamonds indi-
cate a perfectly correlated and not very good Latppercube. The red stars indicate where

the two parameters have been sampled.

2 Sometimes the parameter values may be transfoengetbgarithmically prior to the binning procedure
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The Latin hypercube is more efficient at spanniaggmeter space and very easy to de-
termine. It is also a more efficient design foliresting the response of the climate variable
of interest to doubled CO2 levels at untried corabons of parameter values. This is be-
cause there is always a model run that samplepanayneter in the interval(s) adjacent to the

one of interest.

For factors, as with the continuous parametersyadd ideally like our columns of to
be uncorrelated with each other. One solution iexgrerimental design where there is an en-
semble member for each combination of factorsstirealledfull factorial design(e.g.
Fisher 1935). This experimental design allows usaioonly estimate the main effects of
each factor but also all additional interactionsdaen two or more factors. In practice, we
are limited to run fewer ensemble members thanilpessombinations of the factors and so
at best we require that there is the least amdurtiroelation between each columnXofas
possible. One possible solution is to restrictgheblem to only estimating main effects

and/or interactions between pairs of factors, eatuiringN>=p.

In some special cases there are several desigilatdeauch as fractionally factorial ex-
periments, Plackett-Burman designs and Box-Behek@eriments (NIST/SEMATECH e-
Handbook of Statistical Methodsttp://www.itl.nist.gov/div898/handbook/index.him

10/06/03). However, in the QUMP ensemble we hawe @tlevel factors (the on/off

switches), two 3-level factors (number of soil llsvend the start level for gravity wave drag)
and one 4-level factor (forest roughness lengthg most flexible method for designing the
experiment for factors is to use a method calleabbmality (e.g. Pukelsheim 1993). D-
optimality uses the principle that we chos$euch thatXx " X has the maximum determinant
D=det(X "X ) to minimise the overall precision with which watimate the effects of the fac-
tors (see Eqn. 13). This works because the volurtteecconfidence ellipsoid around any es-
timate is inversely proportional to de&t{ X ) and we require this volume to be as small as

possible.

As the factors and parameters are treated indeptypdan efficient design could be a
combination of a Latin hypercube for the continupasameters (using the Iman and Cono-
ver algorithm) and a D-optimal design for the fast(see Matlab routine in Appendix A) to
do this.
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iii. Including hybrid parameters in the design

The inclusion of hybrid parameters in the experintamplicates the design because the
factors and parameters are no longer independemd&d regression technigues can be used
to analyse what are sometimes termethesmplete treatment structurés.g. Mead 1990).
However, we are not aware of any adaptations toettieniques of Sacks et al. (1989) to cope
with hybrid parameters. Here we propose to usetarfand a parameter for the cape closure
time scale and RHcrit parameters, and one facttwaa parameters for the convective up-
draught factor and anvil factors. That is, threstdes and four parameters in all. Therefore,
when we use the RHcrit parameterisation schemefabor is set to 1, and we have to set
the rhcrit parameter to a default value. Thereftre factor does not measure the effect of the
parameterisation scheme; instead it quantifieslitierence the scheme makes compared to
the effect of having RHcrit=0.7.

The experimental design depends on the availabteruof runs. There are 8 possible
combinations of the three hybrid factors. If thenfber of runs available was greater than 10
times the number of parameters for each permutafitibrid factors, it would be feasible to
design a joint D-optimal and Latin hypercube, ascdbed in the previous subsection, for

each permutation of hybrid factors and combineghes

In QUMP we have already committed at least 50 tartke ensemble of ‘tuned’ model
versions. Therefore, we will run a small D-optiraad Latin hypercube experiment to test
this design. This second ensemble will have 40 negmlit has the advantage that it can be

used to increase the size of the ensemble of ‘tumedel versions.

The first stage is to design the D-optimal expenmeEirst, there is a column X to
measure the baseline effect which is combined efiben each factor is set at level 1. The
effect at every level of each factor other thanfitst is measured relative to the baseline ef-
fect and there is a column it for each of these. Finbally, there are additimuimns for
the three two-way interactions between the hybaiimeters. A MATLAB' program (see

Appendix) was used to design the following 40-menib®ptimal experiment.

The second stage is to use Iman and Conover'sitigoto generate a Latin hypercube
where pairs of parameters are as uncorrelatedssspe To determine the extent to which a
Latin hypercube is uncorrelated, we calculate #temninant of its Spearman rank correla-

tion coefficient matrix. As this measure approachethe parameters in the Latin hypercube
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become more uncorrelated with each other. Afteeisdvthousand iterations of Iman and

Conover’s procedure, the highest determinant wa4-0

The final stage is to merge the two designs togdibaring in mind that when the three
hybrid parameters are off i.e. 0 in the D-optimasidn, the corresponding elements of the
Latin hypercube should be set to some default numidgch were chosen to be the median
value of 0.5. The effect of the Latin hypercubtisnake the parameters in the design more
correlated and therefore lower the determinanhefrank correlation matrix. The main work
of this first stage is to randomly combine the Dhmgl and Latin hypercube designs and re-
iterate until a suitably large determinant is fouRdr the D-optimal design above we found
the highest determinant was ~0.37, which refldwsnefficiency in the Latin hypercube due

to the hybrid parameters.

5. Estimating probability density functions (PDFs)

The aims of the ensemble of ‘tuned’ model versamesto sample parameter space as effi-
ciently as possible given a limited number of madels. Despite these efforts, our estimated
frequency distributions may still be regarded d@adpsusceptible to sampling error, mainly
because parameter space is so huge. To overcar@dhlem, we assume that the response
can be predicted reasonably well using linear fhebinerefore, we generate a PDF that is
conditional on the underlying structure and physicge model, and the formulation of the
CPL.

A PDF of climate sensitivityp(AT,,

O) constrained by some observational datean be
written as

P(AT,,

0) =LDX A T, [x). {x[O) & Eqn. 15

where y is the parameter spacejs an element of parameter spap(:x|0) can be viewed

as the relative likelihood that is the set of parameter values that best modeitikerved

present day climat® assuming that all combinations of parameter valuesea priori

equally likely (Leroy 1998).p(x|0) was set teexp(-CP1?). p(AT,,

x)is the probability
that the climate sensitivity will bAT,, given a set of parameter valuas,and is information
that can be obtained from the model estimatésigfand its uncertainty by running the

model. Clearly, the values qi(AT,,

x)and p(x|O) are known for values of for which we
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have run models. The key to estimatipfAT,,) in Eqn. 15 is that we can predict the CPI

and the response and heno@T,,

x)and p(x|O) at untested values of. From section 3a,

X),
the experimental design of the first QUMP ensemble impbinal for predictingAT,, for

we can already predict the CPI for untried combinationscdrpeter values. FQo(AT,,

any x ', but by making a linear assumption it is possible.

Climate sensitivity AT, , is often written as

AT, =Q, /A. Eqn. 16

whereQ,, is the radiative forcing due to doubling CO2 conceriratiand is a feedback

parameter.

For the ith ensemble member we estimafe, the change in feedback parameter relative
to A for the standard model versiofd is then set to zero if the climate sensitivity of tifie i
ensemble member is not significantly different at thel®%l to the control climate sensitiv-
ity estimated from the long 600-year HadSM3 run. Théents the situation where there a

large number of parameters which have small non-signifefétts but these can combine

linearly to produce a large erroneous predicted response.

For a givenx, we determine the,’s as in section 3a, and estimate

QZX
Ziai/]i .

AT, = Egn. 17

Using the runs in Table 2, we find our predictions havereor with a standard deviation
of about 0.4. A straightforward way to estimate thé-Riduld then be to run a Monte Carlo

experiment to randomly sample the parameter spaagsuming each parameter was inde-
pendent on the others. However, the method is verytsens the controlAT,, which has a

mean of 3.48C with a standard deviation of 007 as estimated from a 600-year HadSM3
run. Therefore the method has been adapted in the fatloway to allow for this sensitivity

to the controlAT,,.

M A Latin hypercube would provide predictions wittetleast uncertainty because it samples paranyees
more efficiently for predictions at untried parasretombinations, and allows for nonlinear inter@tsi be-
tween two or more parameters.
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1. Run a Monte Carlo simulation to generdteombinations of parameter values and use

Eqn. 10 to predict the CPI ar(x|O) = exp(-CPI?).

2. Use the 600-year long HadSM3 to estimate the climatéisgn®f the standard

run,ATy,,, and the standard deviation of natural variabiliy,,, . Divide the standard climate

sensitivity rangeATy,,, — 20 g, 10 AT, + 20 ,,; iNto M equally spaced intervals.
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Figure 6. a-e) Weighted (red) and unweighted histograms fof the M intervals in the con-

trol AT,, range, each centred on the climate sensitivittheplot title. Contribution is the

probability of each interval; f) PDF which does radlow for additional uncertainty due to

natural variability and the linear prediction mettialogy.
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3. Loop through each ®fl intervals in the control\T,, range and determine the probability
pi of the standard climate sensitivity actually coming ftbwith interval. For each interval,
predictAT,, for each Monte Carlo run using the centre of the intervilestandard value of
climate sensitivity. Figs. 5a-e show how sensitivehtiseogram ofAT,, is to the value of

AT,, from the standard model. When the contkdl, is low (see Fig. 6a), the majority of
ensemble members are effectively positive changes in feedbagbared to the standard
model, and so the resulting histogram has very large viduésl,, . The opposite happens
for high values of standaiT,, (see Fig. 6e). Using the CPI, estimate the weighted-histo
gram of climate sensitivity (red curves in Figs. 6aee)his interval in the climate sensitivity
range. Fig. 6f shows the effect of summing up the tiatms across thd intervals in the
control AT,, range, weighting by the probabilipy. This estimate does not account for natu-
ral variability or uncertainty in the linear prediction&T,, at untried parameter combina-

tions. Step 4 allows for these additional uncertainties.
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Figure 7. Comparison of unweighted (blue), weighted (blue) abservationally-constrained
(black) PDFs of climate sensitivity. 40% of theatvaitional PDF lies to the right of 2G.

4. PredictAT,, for the test ensemble of multiple parameter perturbatismg) the value

of standard model climate sensitivity in step 3. Calculatstdnedard error of the prediction,

which is a measure of the suitability of our linear aggiion but also encompasses natural
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climate variability. For each point of the PDF, usingstendard error of the prediction, es-

timate the total probability of the point occurringtive histogram.

5. Multiply the PDF from step 4 by the probabilgyfrom step 3 and add to the final PDF
(see red curve in Fig. 7). This PDF is not biased by sagput its validity depends on the
success of the linear assumption in predictkg, at untried parameter combinations. The

final PDF takes into account natural variability, and alility to predict the response at un-
tried combinations of parameters, allowing for the uncegtamtlimate sensitivity of the
control member. The use of the CPI can be omitted taupedn unweighted PDF (see blue

curve in Fig. 7) using

p(AT,.) O LDX AT, |x) k. Eqn. 18

The weighted and unweighted PDFs in Fig. 7 are similshape but the effect of the
weighting is to shift the mode by 6@ and to change the 95% confidence interval from 1.3-
8.6°C to 1.8-8.8C. The two model PDFs are also compared with one pesbly Gregory et
al. (2002), which uses a simple physical constraint basdde relationship between climate
sensitivity and observational estimates of radiative foramgjocean heat uptake. The
model-dependent PDFs are confined to a much smaller tazg¢he model-independent
PDF (black curve), which gives a 40% chance of having clisesitivities greater than
10°C.

6. Conclusions

Ensemble climate prediction in the QUMP project is a$tage process. The first stage
involves running an ensemble designed to explore the isgpsf the equilibrium response
to doubled C@concentrations to various parameter perturbations fretarmard slab
model, HadSM3. Section 3 shows such an ensemble pravgiesd basis for determining
other models within parameter space that would simulateliberved present day climate
well. However, the sampling strategy places too much engbashe standard model. Only
by making the assumption of linearity were we able to rertfevénfluence of the standard
model to provide annbiasedestimate of the probability distribution functi@®DF) of cli-
mate sensitivity. Therefore, the PDF produced in se&jas not only conditional on the ob-
servations used in the metric of climate model performacalled the Climate Prediction
Index (CPI), the underlying structure of the climatedel, and the choice of parameter

space, but also on this restrictive assumption of linearity



31

For the second stage, a second ensemble is generated sodhetpr space is sampled
as efficiently as possible in a way that is not biaseathyy particular combination of parame-
ters. The first stage is used to infer this secorseémble where each member has changes to
several parameters from those values used in HadSM3Igdréran described in section 4b
also uses information from the first ensemble to selgobawations of parameter values that
are likely to simulate the present day climate as well ibetter than HadSM3. This makes
the second ensemble very cost-effective in terms of the @lemesources needed to com-
plete it.

Both the design of the second ensemble and the unl@asathte of the PDF of climate
sensitivity rely on our ability to predict the CPI and éogiilibrium response to doubled CO2
levels atuntried combinations of parameter values. So far this has redgieegssumption of
linearity. Although tests in section 3 imply this midje a reasonable assumption for obtain-
ing good predictions of the CPI, it is unlikely t@mk for the response of climate variables at
sub-global or sub-hemispheric spatial scales. The reasbadvw® assume linearity was be-
cause of the sampling in the first ensemble. Ensemble®sbeeral parameters are per-
turbed simultaneously have greater potential for being alpestict responses on regional
scales. There are two reasons for this. First, pertudgagral parameters simultaneously en-
ables the statistical methodology to incorporate nonlimaractions between two or more
parameters into the prediction. Second, the ensemblieciésebe used to test the procedure
by trying to predict the response from one member basétearsponse from the other
members. This cross-validation technique can be then useddbbrmember in turn to calcu-
late an overall prediction error, which can be includetthénfinal PDF. The usefulness of this
PDF then depends on how large the prediction error isresavill vary with region and cli-
mate variable. It is not possible to cross-validatéismway with a single parameter perturba-

tion ensemble.

The second ensemble where several parameters at perturined &bon HadSM3 in any
particular run, does provide the scope to explore nonlinesmactions between two or more
parameters with more sophisticated statistical techniquaseter, the design of the second
stage requires a first stage. In section 4c, a combindt@meoptimal and latin hypercube
design (with some modification to cope with a few awkavparameters) was used to provide
an ensemble design which sampled the whole parameter spamntyfiand in a way that
was not biased towards any particular model. This ensewilblbe started after the comple-

tion of the second ensemble described above. We willhestenefits of including nonlinear
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interactions between parameters in the design of a new ss@gelensemble based on this
new first-stage design. Any benefits will not only bedidor ensemble climate prediction

but also will improve the prospects for objectively tunengimate model to the present day
climate. Another advantage of having an unbiased firgesdasign is that it can be used to
augment the second ensemble used for the prediction BDtReof the equilibrium response
to doubled CQlevels. There will be an element of luck in how usefid tll be because it

depends on the proportion of members in the first-stagemble with relatively good skill at

simulating the present-day mean climate.

In section 4c, standard techniques from experimensadjde¢heory were applied to design
this new first-stage ensemble. In doing this, it becaang apparent that a large amount of
work was needed to incorpordtgbrid parametergparameters that became continuous only
when a switch has been set). Therefore, we recommenathatudre projects, these hybrid
parameters are simply treated as on and therefore become relsttiaeghtforward to deal
with.

Another result from section 4c is that it is harder to effity sample parameters that take
a set of discrete valuefa€torg rather than those which are continuous. This has conse-
guences for future work where we explore the uncertaintlirmfite change predictions due
to the underlying structural assumptions made in theabtdimmodel. Structural changes in
climate models are often a matter of switching one schénama replacing it with another,
which makes their treatment very similar to that useddctofs. Therefore, large ensembles

will be required to explore structural uncertainty.

Overall, we expect the ensemble of multiple parameteunations to greatly improve
the estimation of the PDF. However, the acid test is lgtueining these two ensembles and
checking that they deliver the expected results. Whilst treeyuaning, other important areas
of work are to implement the interpolation procedur8acks et al. (1989) used to predict
the response at untried parameter values and to develop @drfatipredicting the CPI from

runs where several parameters have been perturbed at once.



Appendix

MATLAB " program to determine D-optimal design.

function status=qump_expt_design()

%QUMP experiment has seven 2-level factors, three o
%hybrid factors,
%two 3-level factors and one 4-level factor.

%Design the full factorial for these
f=fullfact([2,2,2,2,2,2,2,3,3,4]);

%Calculate the design matrix and remove the degnera
c=dummyvar(f);
c(:,[3,5,7,9,11,13,15,18,21])=[];

%set the first column to be the mean
c(:,1)=1,;

%set the last three columns to be the interactions
%three hybrids.

c(:,16)=c(:,2).*c(:,3);

c(:,17)=c(:,2).*c(:,4);

c(:,18)=c(:,3).*c(:,4);

%After some testing it seems that the candexch func
%guaranteed to produce the D-optimal design. Theref
%100 iterations and use the best D-optimal design

max_det=0.0;
min_tr=1.0e+30;
n=32;
max_det_rows=1:n;
min_tr_rows=1:n;

iter=100;
dets=1:iter;
trs=1:iter;

for i=1:iter
i
%candexch is the MatLab procedure that does all the
rows=candexch(c,n,'display’', off);
e=c(rows,.);
trs(i)=sum(diag(inv(e™e)));
% diag(e™e)
dets(i)=det(e"*e);

if dets(i) > max_det
max_det=dets(i);
max_det_rows=rows;
end
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end

dets
trs
max_det

%set e to be the optimal design
e=c(max_det_rows,:)

det(e™e)

e*e

diag(inv(e™e))

%save variable e

%save C:\mydata.txt e -ASCII
dimwrite('C:\mydata.txt',e," ")

34
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The design produced is
ABCDEFGH I JKLMNOPQRST

—_— e e e e e e e e e e e ) ) ) e e e ) ) ) e e e e ) ) e e e e e e e

4001000010010 00-1000CO000O0O0CO01T000CO0O1000CO0O-+H0O0

1001010000010000001000000100000010000110
1011100100010000010000000100000000100100
1100000110000000000010110000000111000000
0010001000110100000000000101100000011010
OOOOOO0000001010011000000010011000100000
0001110001000001100101001000000000000101

0001100101111101011100110001111011001010

1001010010000100010000001011110110001100

0110100100000011101100010100001001010001

1100101010100110111101101100100010101000

1100110011010101111010011110100000001010

1011101010000111001110110010110100100111
1011011_1_101011_101011110100100010100010001
0001101_1_10011001101000000111010011010100
0011011110100011010000101010000001001011
1001010010010001101001100110101010001110
1111100110011001010110000101001000101101
1011111101010100011000000100000110110110
11111111_1_1_1_1_1_1_11_111111111111111111111111

et et e e e et et e e b b bl et et e e b bt et e e e b b et e e b b bt et et e e b bt el e e

The columns are labelled as follows:

A: Mean

B: Cape closure time scale

C: Rhcrit parameterisation scheme

D: Convective anvil scheme

E: Order of dynamic diffusion
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F: Non-spherical cloud ice particles

G: Cloud area scheme

H: Canopy decoupling scheme

I: Stomatal conductance response to, 6D
J: SW water vapour continuum absorption
K: Number of accessible forest levels =2
L: Number of accessible forest levels =3
M: Gravity Wave Drag start level=4

N: Gravity Wave Drag start level=5

O: Forest roughness length type |l

P: Forest roughness length type IlI

Q: Forest roughness length type IV

R: Interaction between B and C

S: Interaction between B and D

T: Interaction between C and D
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