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by
R J Purser and R McQuigg
ABSTRACT
An empirical objective analysis scheme is described based on the iterafive
method of successive correction. The scheme employs recursive numerical filters
to disperse the observational informatian smoothly throughout the analysis grid.

The chief merit of the scheme is its simplicity and versatility of use. Some

mesoscale applications are demonstrated using conventional surface data.
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1. INTRODUCTION ’

The successive correction technique for meteorological data analysis has
been pioneered by Bergthorssen and D8Ys (1955), Cressman (1959) and others and
applied successfully in a number of operational forecasting centres. More
recently there has been a tendency to use methods more firmly based on rigorous
statistical principles as in the case of optimal interpolation developed by
Gandin (1963), Rutherford (1972), Bergman (1979) and Lorenc (1981), or else
to use methods which also incorporate a numerical model in order to guide the
analysis dynamically towards a state compatible with the modél's own balance.
These latter methods tend to be rather more expensive per analysis in terms of

computer time. For many applications it is not actually necesséry that analyses

. are optimal and accurately balanced, but rather tﬁat they are convenient and cheap

to produce. From work that began as an attempt to investigate the feasibility of
analysing mesoscale meteorological data in four dimensions a bi-product has been

a suite of analysis programs that can be readily applied to subsynoptic rectangular
areas for the analysis of conventional surface data. The technique is based cn

the multiple appiicationAof adaptive recursive averaging filters which ensure

that the corrections indicated by the observation residuals are smooth. In this

note a description is given of the strategy used for analysing data and examples

of the applications of the scheme are présented.

2. RECURSIVE FILTERS

The numerical basis of the analysis method is the recursive filter which is
used to produce a smooth local weighted average of the input field. The type of
filter used is exemplified by the following simple one-dimensional version of the

algorithm in which A is the input field and B is the smoothed output:

Bt A,
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The smoothing parameter, ¢o{ , lies between O and 1. When n is sufficiently

large for the boundary at M = O to be ignored then we may expand the recursion in

(1) and write B as the series:
1 ™
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then theconvolution (2) can be expressed symbolically:
B= E*A | (2")

There are a number of features concerning the basic filter that are worth

noting. Firstly it has an unbounded range in the sense that all Av\ with M £m

have an influence on the value of B« +» This enables the filter to carry information

input from A aéross the entire grid in a single sweep. The characteristic response
(ie a decaying exponential) retains the same shape for all permitted lvalues of

so the effect of a particular filter (or a combination of filters) can be easily
repréduced on a different size grid with a correspbndingly adjusted X . In fact

- there is a normalised continuous analogue to any basic filter used consisting of
the continuous convolution,

oo

Beo = _L,go( gA(:(-x') of dx/ )




which becomes an increasingly plausable approximation as X = | . Another
important properfy of the filter is that its effective smdothing range, given

by the standard deviation of the convolution kernel, E , can take any

positive magnitude according to the value of X . We shall always regard (4)

as a sufficiently good approximation to the discreet filters used when discﬁssing
theoretical aspects of them. Thus we may approximate the first and second
moments of the distribution (3) with those of (4):
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A measure \of the spread of the convolution is the variance of E about its

mean:
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Thus l may be regarded as an approximation to the characteristic smoothing
range of this basic filter.

Under the successive application of normalised (ie M¢* | ) smoothing filters
the quantities, Mc and M;_ y behave additively. It is easier to understand
the effect of several applications by inspecting the Fourier representations of

the fields involved. We define the Fourier transform conventions for one-dimension:
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and also the convolution theorem:

B:= £xA = E'EAV (8) .

The transform of the basic filter function becomes:

Eco £ (-0 % (d e—;k>

M=o
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(9)

Where again we have included the épproximation appropriafe to (4) which is valid
for Ak & | 5

By the convolutipn theorem the effect of the application of filter, [ ’
followed by its conjugate, E+ , acting .in the opposife direction, is given _in

spectral form by the response function:
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The corresponding analogue approximation gives:
A e ! - | /F ., r*
_S(K) - = L e ) (11)
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The function, .S\ , 1s in each case a symmetric pair of back-to-back decreasing
exponentials. When the discretisation error is small enough to ignore we notice

that successive applications of these filters necessarily leads to increasing

- smoothness as determined by the minimum order discontinuities in the field of

smoothed values. (A zeroth order discontinuity is a discontinuity of the function
itself, a first order discontinuity is a discontinuity in the first derivative,

~
and so on). Nth order discontinuities in A result in a contribution to /Q@) with

asymptotic rate of decrease of order, l ‘RT:TS for large k . Thus each
application of either Ef or é: increases the order of any discontinuity by one.
The repeated application of continuous filter, f; s L times results in the

spectral response:
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Which for sufficiently large Z. or small )K.is aphroximately:
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This is essentially a statement of the central limit theorem. As expected, the
effective lateral smoothing range from the standard deviatidtn of the Gaussian, C;,
is : vy

M/ o= >\/»/Z‘L‘ (14) ' ¥

2

The Gaussian approximation will usually sﬁffice, however, the exact forms of
the continuous kernels, [397€]L- , are derived in the appendix and, for [_= 1f
2 and 3, are illustrated in Figure 1 together with their corresponding transforms.
It is simple to generalise the filters to severai dimensions, but for use in
the two-diemsnional analyses described here the ﬁecessary filters are constructed
by the successive appiication of the simple onefdimensional filters in the x and
y directions. An important extension of'the technique is obtéined by permitting each

filter parameter,O(, to vary in space, thus allowing a different amount of smoothing

from one region of the field to another. Since the operators are linear it is e

possible to take various sums and products of them to obtain more general effective »
convolution functions.

3.  ANALYSIS STRUCTURE

Having described the basic principles involved in the applicatioﬁ of recursive
smoothing filters we are now in a position to show how these filters are used in the
constfuction of an analysis. In the notation we shall adopt, Greek suffices indicate
observation position while Roman suffices denote grid points. A bracketed
superfix represents the iteration index. Let C&, be each observation and the nth

; ()
successive iteration of the analysis at grid point 1 given by 12 . In the absence
(o)

-

of a background field we define | s N although in an operational setting E, 4
we would of course replace zero by the background field value. The field, Gl , 18
i

a distribution of weights derived by.interpolating each wéight (Q« associated with an

observation to the group of four surrounding grid points by bilinear interpolation.
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We shall describe exacfly how the weights are defined later, but in the
meantime it is sufficient to note that the weights are permitted to
change as the interations proceed. In the same way we can distribute the
observation residuals, ( Oy _-1320 ), weighted by CQZO by bilinear

interpolations to get the gridpoint distribution that we symbolically denote

by,

D(‘") = Q(w) (o _ p(m> = s

In the previous section we saw how recursive filters could be applied
repetitively to simulate the convolution or, as in ghe case of spatially
Varyihg filter parameters, a 'pseudo~convolution' with a Gaussian convolution
kernel. The effective standard deviation of the Gaussian is derived from the
filter parameters essentially by the two-dimensional analogue of equation (14)
and is deaned the 'range', 12(“). Representing the associated convolution operator

()
by (: X, we may write the successive correction algorithm:

P( 0) = 0

(=~ “—) i
P(\); P( )+‘ C( lX‘D

y z 7 (16)
C(h )9(‘ Q( ) :

At the start of the analysis the observations are each given equal weight,

o)
CQ“.= | « The individual weights may be diminished should it appear that any

~ observations are suspect. The field,

(w-1) (v-1)
96

O Q | (17)

providés a useful approximate measure of the local observation density on the

(m-1()
" scale of Fa and from this we imay infer a characteristic distance

proportional to the local standard observation separation:

-7




S | .
R = —o (18)

W | m ‘

in units of the grid separation.

Jt is possible to use %3w to ensure that we do not attempt to analyée
structures on a scale smaller than this. In an empirical analysis of this
type it is important to attempt to fit £he observations with smooth large scale
fields before introducing any small scale structure, otherwise the final analysis
would appear unnaturally rough. The minimum allowed scale of anzlysis at each

iteration is a value, ﬁzrl , which is provided by the geometric series:

(o) _,’?
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Then to avoid analysing detail unresolved by the observations the actual smoothing

range is given by,
(=) (») (n)
R = ch (RM ) F Rw > (20)

where FT is an enpirical factor..
; ()

It remains to describe how the successive observation veights, CQ« , are
chosen. If we could be sure that every observation gives a faithful and X 4
representative value then they would each be given unit weight. Experience shows

- that occasionally an observation has an error that greatly exceeds the usual
standard deviation of error, and this occurs more often than can be explained by
a Gaussian error distribution. In order to ensure that these spurious observations
(v)

have minimal impact on the detailed structure of the analysis the weights, R
: 5 - 5
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are determined according to a monotonically decreasing function of 1 e . |

Experiments have been conducted to try various forms and one that appears

to act sensibly is

| B l ;
A e 125 ‘+<'Oox mlj’ | (21)

. (M)
Tot

K )
Where —T;( is an error tolerance which is made to decrease (eg exponentially)

towards a fixed limit as the iteration proceeds.

Some steps towards a theoretical assessment of the analysis scheme may be
taken by assuming that the observation field is sufficiently homogeneous to
allow spectral methods to be used in a way that ignéres effects of more than

one wavenumber at a time. Thus, the approximation is not valid at scales as

small as the mean osservation‘spacing. Unlike the optimal interpolation method,
which is mathematically more rigorous, the empirical successive correction method
causes the.analysis to approach a perfect fit with the observations (although
convergence may at times be very slow).

Taking the Fourier transforms of (15) and (16) and regarding the weight

field, CQ y as a constant we obtained:

5 O =) N.H...) ~ . (-1

(K) +
col

(22)

From (22) we see that the rate of»convergence'is dependent on wavenumber, &g .

with the large scale structures converging most rapidly. The ratio of residual
departure from the observations before and after the nth iteration is
~N(w-)

; 3 4~(hkk) = C: (&).

Ztm-))
< C (o)

(23)
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According to this approximate analysis. The process of reducing the scale of
the smoothing function, (? y may be regarded as a method of increasing
the rate of convergence for large k (ie small scales) since the width of the
function Ef is inversely proportional to the width of (: itself and
both are Gaussian to a good approximation. The limitation on the extent to
wvhich we may accelerate the convergence by narrowing (: comes from the
non-homogeneities of the observation fielﬁ which force us to use a smoothing
range ﬁz slightly greater than the local observation separation in order to
avoid a form of scale-aliassing.

To obtain an insight into the behaviour of the iferations in practice we

show an example of successive iterations of the analysis applied to reported

PMSL. The fields of successive analysis increments are shown in Figures 2-11,

‘together with the residuals from which the increments were obtained. The final

analysis is shown in Figure 12. The quality control used the formula of equation

(21) with:

Q) i ) () — (0)

/E( Yy /é‘ L e o et (24)

The parameters of this analysis were as follows:'
Grid size: ) East-West 121
)
) North-South : 21

Smoothness parameter, Vs s of

equation (12) g2
Filtering scales and factors
of equations (19), (20), R; : 900 km
R, : 22.5 km
Sy 0.7
B a8
3 -—-(0)
Quality control parameters, loc : 10 mb

=10~




— (®)
Io( 1 mb
g~ 0.6

Total number of iterations, PJ s 10

Examples of the application of the scheme to surface wind data are illus@rated
in Figures 13 and 14 showing the inferred vorticity and divergence fields and the
locgtions of individual observations. These fields-are derived from the analysis of
wind components by taking the appropriate fourth order spatial differences in
the interior, but second order differences at the -edge. Temperature and
dewpoint analyses can also be routinely obtained and are exemplified in Figures 15
and 16 for a midday ‘case. All these analyses were created without a background
field and it is evident from Figure 15 that thé témperafures, which are especially
sensitive to the surface type, would have been better analysed from a forecast
background field that contains the realistic land-sea contrasts.

A useful modification of the analysis method can be.made when the variable
being analysed is naturally bounded. An example would be daily rainfall amount
which is never negative.' In order to minimise the occurrence of spurious negative
values in the analysis while preserving the smooth appearance of the field it is
helpful to scale the analysed variable in a way that exagerates its variations
close to its natural limit. &aking daily raiﬁfall a; an example, we may construct
~ pseudo-observations, CDL , derived from the actual observations, Cz& 3

according to the formula,

A

Ox = Log (Oo( e 5) (25)
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where 8 is a small positive value. A scaled analysis, F) , is obtained
from the set, {'o’d} , by the standard method and the final analysis, (i

is obtained by the inverse formula:

P/
p‘ e -9 (26)

An objective analysis of rainfall using a value, <S = 1 mm, is shown in
Figure 17. Obviously, a similar Scaling technique could be used to advantage.
on other variables that have either one or two natural limits.

L,  DISCUSSION

We have described the construction of recursive filters and demonstrated
their use as the baéis of a simple empirical analysis method for mesoscale
domains. This method is still experimental but has already proved a useful and
reasonably_adaptable research tool. The scheme as described here represents the
basic standard analysis method and for many applications. in numerical modelling
a considerable benefit could be obtained from more elaborate versions. Possible
extensions that can be accommodated by the recursive filtering technique are
as follows:

a) Generalising the recursive filters (and hence the analysis scheme)

~to a mu}tivariate form.

b) Involving upper level data and smoothing increments vertically.

¢) Including data for different times and smoothing the increments

temporally.

d) Applying non;isbtropic smoothing of increments in regions subject to

recent flow-deformation.

i -
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Other changes that would be desirable but which would require more than a simple
modification of the reéursive filtering technique are:
e) Inclusion of statistical ideas to account for observational errors.
“ f) Inclusion of a balancing procedure to ensure that mass and wind fields
are dynamically consistent.
Bach of these changes should lead to improved analyses, although at the expense
of greater complexity. It remains to be seen. which changes will be justified by

the associated benefits.

=13



REFERENCES

Bergman, K. H. (1979) Multivariate analysis of temperatures and winds using
optimum interpolation. Mon. Wea. Rev. 107 pp 1423-1443,

Bergthorsson, P. and DY8s, B. (1955) Numerical weather map analysis. Tellus 7
pp 329-340.

Cressman, G.P. (1959) An operational objective analysis system. Mon. Wea. Rev.

87 pp 367-381.

Gandin, L.S. (1963) Objective analysis of meteorological fields. Leningrad,
Gidromet; Jerusalem, (Israel program for scientific
translations. 1965 242 pp).

Lorenc, A. (1981) A global three-dimensional multivariate.statistical interpolatign
scheme. Mon. Wea. Rev. 109 pp 701-721.

' Rutherford, I.D. (1972) Data assimilation by statistical interpolationAof forecast

error fields. J. Atmos. Sci. 29 pp 809-815.

T



APPENDIX

| i XA
Derivation of the functional. form of L -S ]

According to equation (11):

(54

b @

- |
RS (v +:n)" (1= ik i

} '
e dk . (29)

A
2R g (|+:kk)L(l’:7\K)L

For X”0O the integration contour can be closed in the upper half plane of

/
complex K enclosing the singularity at k"’ “/lk- . Let K =K + #)‘ .
Then: !
P4
_éi 5 kO
[S ] }x = IL ; )\K’ & (30)
ZTV(’Z > K (' gl Lo )
LG ) / 2
where contour C  encloses k “0 but not the point, K= =
By the calculus of residues we obtain the result:
K11
afact: =t P17
[S¥] = = = (31)
Rk o N ied
- @b B -
K'=o
Using Leibnitz's theorem: L~ . L=
e_lX/'?\ Z- (L ‘) l‘xl%( |X> (21.‘2"‘%)',
[S%][ , L=t % | (32)
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Where (,h ) are the usual binomial coefficients. Figure 1 shows these

functions for L = 1, 2 and 3.
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‘ LIST OF FIGURES

. L
‘ Figure 1 ' Kernels of the convolution operator, [.S*] 5 for L = 1,
i.‘ 2 and 3 (a, b and ¢) and the corresponding Fourier transforms,
| e
& S (d, e and f).
Figure 2 Observations and first analysis increment (using TOL = 10)

in intervals of 0.1 mb corresponding to the analysis of
pressure at mean-sea-level shown in Figure 12.

Figure 3 Observation residuals and the resulting 2nd analysis increment
using TOL = 6.4,

l‘oal‘*o

Figure 4 Residuals and 3rd increment using TOL =
Figure 5 Residuals and 4th increment using TOL = 2.94.
Figure 6 Residuals and 5th increment using TOL = 2.7
: Figure 7 Residuals and 6th increment using TOL = 1.7Q.
Figure 8 Residuals and 7th increment using TOL = 1.42.
3 Figure 9 Residuals and 8th increment using TOL = 1.25.
Figure 10 Residuals and 9th increment using TOL = 1.15.
Figure 11 Residuals and 10th increment using TOL = 1.09.
Figure 12 Analysis of PMSL for 127 2.6.81 in millibars, composed by
the accumulation of succeésive corrections shown in
Figures 2-11.
Figure 13 Vorticities from a surface wind analysis for 127 2.6.81 in
units of 1072 s™ .
Figure 14 Divergenceg from a surface wind analysis for'127 7.6.81
in units of 1072 &~ .
' Figure 15 Analysed screen tempgratufes in units of 1°C for 127 2.6.81.
o < Figure 16 Analysed dewpoints in °C for 127 2.6.81.
Figure 17 Detailed analysis of daily rainfall for the period between

09z 5.6.80 and 092 6.6.80.
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