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Abstract

Methods of measuring the spread and skill of ensembles of numerical
forecasts, which emphasise either amplitude or phase predictability, are
described. An ensemble forecast is regarded as a sampling approximation to
a continuous distribution representing the complete set of possible
predictions consistent with the errors associated with some particular
initial analysis. Assuming that the forecast model is perfect, theoretical
estimates are obtained of the improvement in forecast skill obtainable
through ensemble-averaging a number of individual integrations.

In theory ensemble spread and forecast skill should be related, and
correlation coefficients are introduced to quantify the extent to which the
skill may be predicted from the spread. In the case of amplitude
predictability expressions for two such coefficients are derived in terms
of the ratio of genuine variations in predictability between independent
forecast distributions (so-called 'climatic' variations), to random
sampling variations within a particular forecast distribution.



1. INTRODUCTION

The idea of the ensemble forecast arises from the uncertainty
associated with an analysis of an atmospheric state used as the initial
conditions for a numerical forecast. This uncertainty implies that we can
conceive of an infinite number of states, each consistent with observation
and analysis errors, which are equally likely to represent the true state.
Running an integration from each of these states would yield an infinite
set of alternative predictions, each equally likely to correspond to the
true evolution of the atmosphere. Such a distribution of forecasts may be
represented by a continuous probability density function (p.d.f.) in the
model phase space (see next section).

Due to the inherent instability of the equations of motion, the spread
of the forecasts would increase with time, until eventually the mean
separation between pairs of forecasts became equal to that between
randomly-chosen states from a suitable model climate distribution, and the
mean of the forecast p.d.f. became coincident with the model climate mean.
At an intermediate stage, with the spread significantly greater than its
initial value, but still short of the aforementioned saturation level
indicative of complete loss of predictability, the mean of the forecast
p.d.f. would, on average, be closer to the true state than would its
constituent individual forecasts (Leith, 1974).

We cannot, in practice, run an infinite number of forecasts. However,
if we produce a finite ensemble of forecasts from a number of appropriate
initial conditions, the ensemble-mean will give a more accurate estimate of
the mean of the forecast p.d.f. than will an individual forecast. 1In
addition, the predictability information carried by the ensemble spread may
in principle furnish a useful a priori indication of forecast skill
(Hoffman and Kalnay, 1983; Dalcher et al, 1985; Murphy, 1986).

The extent to which these benefits are realised in practice depends on
the deficiencies of the forecast model (Murphy, 1986). The maximum
benefit, both in terms of improving skill through ensemble-averaging, and
also of the a priori prediction of skill, would be achieved with a perfect
model, i.e. one which, given a perfect analysis, would produce a perfect
forecast of the subsequent atmospheric evolution.

In this paper we shall describe simple measures of forecast skill and
ensemble spread, and derive estimates of the improvement in skill through
ensemble-averaging and also of the correlation between ensemble spread and
forecast skill, under perfect model conditions.

2. PHASE SPACE FORMALISM, ASSUMPTIONS AND TERMINOLOGY

The statistical description of ensembles is facilitated by visualising
the evolution of an individual forecast as the path of a point in a
multi-dimensional phase space, defined so that each dimension corresponds
to a prognostic variable of the model (see Epstein, 1969; Gleeson, 1970;
Leith, 1974). At any instant such a point may be represented by a general
state vector u, each element of which corresponds to a phase space
dimension.



If we were to make a large number of analyses, based on independent
observations of the atmospheric state at some instant t=0, we would obtain
a cloud of such phase points centred, in the absence of bias in the
observing system and analysis method, around the true state, with a
dispersion reflecting measurement errors. In the limit, as the number of
analyses tends to infinity, the cloud becomes a continuum which may be
described by a p.d.f. y(u,t=0).

In practice we have only a single analysis of the atmospheric state,
and must therefore generate alternative initial states artificially if we
wish to run an ensemble forecast. This may be achieved either by
perturbing the single analysis in some way consistent with our knowledge of
observation and analysis errors (Seidman, 1981; Shukla, 1981; Murphy,
1986), or by extrapolating previous analyses up to the start of the
forecast period using the forecast model (Hoffman and Kalnay, 1983). With
either method we obtain a finite ensemble of phase points, Y'(t=0) say
(dropping the explicit dependence on u), which constitutes the set of
initial conditions for the ensemble forecast.

Ideally ¢'(0) should be identical to Y(0) within the sampling limits
imposed by the finite size of the ensemble. However, if we use the
perturbation approach y'(0) will not in general be centred about the true
state (Leith, 1974), and if we use the lagged-average forecast approach the
spread of y'(0) will be too large due to the growth of prediction errors
during the extrapolation of lagged analyses up to the start of the forecast
period. Nevertheless we shall assume in subsequent discussion that y'(0)
is identical to Y(0) within sampling limits. Each individual integration
comprising the ensemble forecast Y'(t) is assumed equally likely to
represent the true atmospheric evolution. This is obviously not strictly
true for lagged-average forecasts although, if the interval between
successive analyses is sufficiently short and, say, only the long-wave
component of the forecasts is considered, the differences in skill due to
time-lag should be small. Even for ensembles created by perturbation
methods the assumption is not perfectly valid, if the unperturbed initial
state provides one member of the ensemble, although the difference in skill
between this integration and those from the perturbed initial conditions
should be unimportant beyond the initial stages of the forecast (Murphy,
1986). Following Leith (1974), we shall consider only the first two
moments of Y(t), thus treating it as effectively a normal distribution,
although in practice its structure may in some cases be more complex
(Murphy and Palmer, 1986).

In what follows, we shall take the origin of phase space to be
coincident with the model climate mean at all forecast times. (The climate
distribution appropriate to a given forecast may be obtained by running a
large number of independent integrations using initial data from the same
point in the seasonal cycle in different years. 1In general the resulting
model climatology will vary with forecast time if, for example, the model
itself contains the seasonal cycle). The elements of the state vector u
are then anomalies from the climate mean, and if <> denotes an average over
an infinite number of states chosen at random from the model climate
distribution, then <u>=0 for all t. An average over an ensemble of M
individual forecasts shall be signified by ©, so that Qi(t) is the
ensemble-mean forecast, or centroid of yY'(t). Averages over the full



forecast p.d.f. y(t) shall be denoted by ~, so_that, for example, its
centroid is represented by u(t). Thus as M»=, u(t)»u(t), under our
assumptions.

In this respect our interpretation of y' is different from that of
Leith (1974) who, in a similarly-motivated study of forecast error
statistics, dealing specifically with perturbation-style (or Monte Carlo)
ensembles, considered yY' as a distribution of possible true states centred
around the single analysed state Unhs rathQr than vice versa. Thus
whereas under our assumptions, at t=0, (uo-u) do = 0 in the limit as
M»=, where d, (uo—u) is the squared distance in phase space from the
true state uo to the centroid of y, under Leith's interpretation (u, u)
(u- uobs)2 as M»w If u; is an arbitrary state within y, then
<dj> =<(u; —u) >= <(uobs—u 2y, Therefore, if we assume that for t>0,
<dy(t)>= <dj (t)>, our framework becomes effectively identical to that of
Leith Slnce u, evolves away from u during the forecast due to the
non-linear nature of the dynamics (Lorenz, 1965), this assumption should be
reasonable beyond the short range.

As well as by Leith, the statistical interpretation of ensemble forecasts
is discussed by Hayashi (1986). However, whereas these authors use error
variance to quantify forecast skill, we use a normalised version of this
amplitude-based score, and also consider the phase-emphasising anomaly
correlation score, in addition to investigating the a priori prediction of
skill. The reader should note that our notation is not in general the same
as that used in either of the above papers.

3. MEASURES OF FORECAST SPREAD AND SKILL

The simplest measure of the spread of the forecast p.d.f. ¢ is its

variance D, given by D = aj=(u -u)2. Initially D is small, reflecting
observation and analysis errors. As the forecast proceeds D becomes
larger, eventually approaching the climate variance as predictability
disappears. From an ensemble of size M we may estimate D through the
ensemble variance sy, given by

M -
sy = (I (uy-)%)/M= - (0-)° (1)
M M
351 k§J+1

The second term in equation (1) is a sum of random covariances, whose
average value is zero.

=((M-1)/M)8y +(2/M2) (uy-u). (w,-0).

Thus if we consider an infinite number of size M ensembles drawn
independently from y, we have

Sy = By = ((M-1)/M)D, (2)

so that from a single ensemble of M forecasts, (M/(M-1))sy is an
unbiased estimate of the 'amplitude' dispersion D of y.
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A measure of skill corresponding to D is the error variance, the
squared distance in phase space from the forecast to the true state. The
error variance of an ensemble-mean forecast is

o= (-Uy) 2=(0-1) 2+ (ug-0) 2-2(0-0) . (uy-1)
'aJ/M*‘do—Z(l‘;"ﬁ).(uo-a)- (3)

Thus EM, the mean error variance of size M ensembles drawn independently
from y, is given by

EM=éM=aj/M+do=D/M+do- (u)

If we average over an infinite number of independent forecast p.d.f.'s,
created from initial state p.d.f.'s sampled from an appropriate
climatological distribution (see section 2), we obtain

<Ep>=((M+1)/M)<D>. (5)

Alternatively, we may express the right hand side in terms of the skill of
individual forecasts, in which case

<Epp=((M+1)/2M)<E¢>. (6)

On average, ensemble-mean forecasts are therefore closer in phase space to
the true state than are individual forecasts. From this result, first
obtained by Leith (1974), we could argue that ensemble-mean forecasts are
consequently more skilful than individual forecasts. However, a reduction
in the error variance of an individual forecast may also be achieved simply
by smoothing it towards the climate mean. For example at some large
forecast time, when all predictability has disappeared, and u is thus
coincident with the climate mean, the mean error variance of a climatology
forecast, <u°2>, is one half of the mean error variance of an individual
forecast chosen at random from Y. Clearly, however, the act of smoothing
such a forecast towards climatology would not render the forecast useful in
any practical sense, despite the reduction in error variance.

A more appropriate way of measuring the usefulness of a prediction is
to use a 'normalised' error variance e'M for the verification of
ensemble—-mean forecasts, where

e'y=em/ (Kwy>+<w>) ,
and hence

SE'y>=<Ep>/ (<wp>+<We>) , (7)
where E'y=e'y, and w, and wy are the 'anomaly intensity' uo2 and (u)2 of a
true state and an ensemble mean forecast respectively. The denominator is
equal to the 'no-skill' level of error variance calculated by verifying

M-member ensemble-mean forecasts against randomly chosen, unrelated true
states.



By normalising the error variance in this way, we express forecast
skill essentially in signal-to-noise terms. When the signal (i.e.

predictability) is large, e'y is small, and as predictability disappears
and Y approaches the model climate distribution, e'M+1_ This skill score
should therefore reflect aptly the benefit of ensemble-averaging, namely
the separation of the signal, u, from the noise, D, in the forecast p.d.f.
On this basis we may expect the normalised error variance to decrease with
increasing M, as u approximates u more precisely.

To derive the variation of <E'y> with M, we first combine equations
(6) and (7) to give

E'y>=((M+1)/M)KE"' 1>/ (1+<wy> /<Wp>) .
Since

<wo>=<(uo—ﬁ)2>+<ﬁ2>=<D>+<wm>, (8)
where ww=ﬁ2, and similarly

<Wiy>=<D> /M+<Weo> (9)
we have

SWy> /<W>=1-((M-1)/M)<D> /<>

=1-((M-1)/M)<E' >,

giving

<E'p>=<E'1>/(KE'1>+(2M/ (M+1)) (1-<E'¢>)). (10)

Equation (10) confirms the improvement in skill (i.e. the decrease in
<E'y>), as the size of ensemble increases. As M7=, KE'M>¥<E'1>/(2-<E"¢>).

In addition to these amplitude-based statistics, we may also measure
predictability in terms of the phase correspondence between members of a
forecast p.d.f. An appropriate measure of the dispersion of ¢y in phase
terms is R, the squared anomaly correlation between u, and all the
individual forecasts in y taken together, which is given by

R=(ﬁ.uj)2/wwﬁj=wm/ﬁj. (11)

At initialisation time R is close to unity. As errors grow during the
forecast R decreases, eventually tending to zero as u approaches the
climate mean, at which time complete loss of phase predictability has
occurred. We may obtain an estimate of R from an ensemble of M forecasts,
using the squared anomaly correlation between the ensemble-mean, and all
the individual forecasts within the ensemble taken together, given by

M
ay=(M" Yy uj)z/wajum/wj (12)
j=1
If we write GaM-aM-EM and 6w -w —w to represent sampling variations in ay
and wj, then from equation (?2) we have



aM ﬁj + éadej = QM’

We shall assume that the second term, representing a correlation between
sampling errors, may be neglected, so that

ay ;IJ = WM.
Since Wy = D/M+We, and wj=D+we, it follows that
Am=am=(1/M) (1+(M-1)R). (13)

As for the amplitude case, the ensemble phase dispersion ay is not an
unbiased estimate of the dispersion R of the forecast p.d.f.

From the definitions of the phase (aM) and amplitude (sy) ensemble
dispersion, it follows that the two are related by

aM=1’(SM/Qj).

Similarly, from the definitions of the corresponding quantities R and D
relating to the forecast p.d.f., we have

R=1—(D/ﬁj)=1—F<wj>/i-, (14)
where the variance ratio F=D/<w;> expresses the amplitude predictability of
¢ as a fraction of the model's Climate variance. Equation (14) shows that,
for any particular forecast p.d.f., phase and amplitude predictability may
be regarded as complementary. For example if F=1, representing complete
loss of amplitude predictability, we may still have phase predictability
(1.8, R0); 1T §J><wj>. Similarly if R=0, we may still have F<1 if
ﬁ-((wj>. If we average over many different forecast p.d.f.'s, the mean
pﬂase and amplitude predictability may be deduced from each other, since
<R>=1-<F>.

The phase skill of a forecast is measured by the anomaly correlation
score, which, for an ensemble-mean forecast, is given by

cM=G.uo/(wao)1/2. (15)

Using & to represent sampling deviations, so that &cy=cy—Cy, Swy=Wy~ Wy, and
8Wo=Wo~Wj (note that <wp>=<wj>), we may rewrite (15) as

(5M+60M)(§M+6wM)1/Z(WJ+5wo)1/2=ﬁ.uo.
We shall assume that such sampling deviations in anomaly intensity are
negligibly small, so that (WM+5wM)1/2-WM1/2, and <(ﬁj+5wo)1/2>-<ﬁj1/2>,
giving

<Gy Wy /205125 ug > =<wa>



If we assume also that 'climatic' variations, in anomaly intensity, such as
SCQM=§M—<GM>, are also small, we may write, noting that <ey>=<cy>,
<Wy>=<wWyM> and Swy>=<wj>,

o> =<Wad/ (<uy><uy>) 12, (16)
From equations (8) and (9),

<wM>=(<wj>+(M—1)<ww>)/M.

Substitution into equation (16) gives

<ey>=M'/2(<wg>/<ws>) 7 (1+(M=1) (Cug>/<wy>)) /2, (17)

With M=1 (i.e. for individual forecasts), equation (17) gives
<c1>=<wm>/<wj>,
so that equation (17) may be written

<epp=M'/2<cq>/(1+4(M-1)<ey>) 172, (18)
showing the variation with M of the ensemble-mean forecast anomaly
correlation. Clearly <cy> increases with M, and as M»=, <cM>+<c1>1/2.
This reflects the elimination, through ensemble-averaging, of random phase
errors attributable to the 'noise' R in the forecast p.d.f.

Equation (18) is found to predict well the mean improvement in phase
skill observed in a series of seven—-member perfect model ensemble forecast
experiments carried out using a 5-level GCM (Murphy, 1986), and the
improvement in amplitude skill also corresponds closely to equation (10).
Further discussion of the implications of these results is given in the

above paper.

4, CORRELATION BETWEEN FORECAST SPREAD AND SKILL

In the previous section we indicated the two possible causes of
variation in skill between ensemble forecasts created from independent
initial state p.d.f.'s. One is the sampling error incurred, in any |
particular instance, by approximating the forecast p.d.f. Y with a finite {
ensemble of size M (21), and the other is the climatic variation caused by
genuine case-by-case differences in Yy, in terms of mean and/or spread.

The extent to which the variation in skill may be predicted in advance
from the corresponding variation in ensemble spread depends on the relative
magnitude of the sampling and climatic contributions, with the former
representing the 'unpredictable' proportion of the variation and the latter
the 'predictable' proportion.

We may use a correlation coefficient to measure the relationship
between ensemble spread and the skill of an ensemble-mean forecast. 1In
terms of amplitude predictability, if we measure the spread of an ensemble
by its variance sy, and its skill by the error variance ey of the
ensemble-mean forecast, then the correlation p, between these two
quantities is



We may use a correlation coefficient to measure the relationship
between ensemble spread and the skill of an ensemble-mean forecast. In
terms of amplitude predictability, if we measure the spread of an ensemble
by its variance sy, and its skill by the error variance ey of the
ensemble-mean forecast, then the correlation pp between these two
quantities is

<(ey—<ey>) (sy-<sm>))
DA e T o e . (19)
[<(ey—<ey>) 2>< (sy-<sy>) 2>11/2

The choice of ey rather than the normalised error variance e'y is made
purely for the sake of simplicity, since p, remains unaltered if e'y is
used.

We wish to express p, in terms of the sampling and climatic variations
alluded to above. The sampling deviations of Sy and ey are

GSM=SM’SM

66M=eM—EM.

The climatic deviations of the mean spread SM, and skill Ey, of size M
ensembles drawn independently from ¢, is

() CSM= SM_ <SM>
8 cEM=EM~<EM> -

Since sampling and climatic deviations are statistically independent, and
noting that <sy>=<Sy> and <ey>=<Ey>, we may rewrite equation (19) as

<6eM65M>+<GCEMGCSM>
AT -"—_—5_’—'—°‘§”"'--5 """"""" / . (20)
[(<8ey2>+<8Ey2>) (<83y2>+<8,8y2>) 1172

The mean extent of sampling variation is represented by <é&d 2>, where

§d:=d;-D is the amount by which the squared distance in phase space from

forecast j to the centroid of y differs from the average value D for all

forecasts within y. We may express the sampling variations in sy and ey in
2

terms of <6dj > as follows,

From equations (1) and (2) we have

83y=((M-1)/M) (d5-D)=((M-1)/M)sd;, (21)

where we have assumed for the purposes of this calculation that the random
covariance term in equation (1) may be neglected. The typical size of this
term depends on the number of independent variables in the model, and the
typical space scale on which, in a given forecast selected from vy,
deviations from the distribution mean at different grid points are
correlated. This in turn would depend on the structure of initial state
errors and the manner of their growth during the forecast. The degree of
spatial or temporal filtering applied to the forecast fields would also be
a factor. However, it is reasonable to suppose that, for a model with a

10
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large number of degrees of freedom, such a term will always be small
(Clearly if this is not so, <GsM2> is liable to be larger, and p, smaller,
than our theoretical estimates indicate.)

M
Thus, with 6dj=( X 6dj)/M, we then have
J=1

M
63M2=((M—1)2/Mu)(j§16dj)2.

Since the cross-terms in the expansion of the right hand side are
uncorrelated, we obtain

<8sy2>=((M-1)2/M3)<8d;2>. (22)
Similarly, from equation (3),
sey=(5d3/M)-2(u-B) . (ug-0). (23)

Again we shall assume that second term on the right hand side in equation
(23), which represents a random covariance, may be neglected, in which case

<ey2>=<8d;2>/M2=<8d;2> /M3, (24)

The covariance between §sy and Sey is found by multiplying equations (21)
and (24) together, from which we find

<Beybsy>=((M-1)/M2)<8d;52>=( (M-1)/M3)<8d;2>. (25)

(Note that it is not necessary to assume random covariance terms to be zero
for the purpose of deriving equation (25)).

Thus sampling variations in spread are ~-M2 larger than sampling
variations in ensemble-mean forecast skill (equations (23) and (24)), since
deviations of individual forecasts about an ensemble-mean are essentially M

times larger than that of an ensemble-mean about the mean u of the
forecast p.d.f.

We may derive the climatic variation in spread from equation (2).

Defining the climatic deviation in the variance D, of y, as §,D=D-<D>, we
have

GCSM-((M—1)/M)GQD, (26)
from which we obtain
<6 oS2>=( (M-1)/M)%<6,D?>. (27)

The climatic variation in skill may be deduced from equation (4), by
writing

1



8 cEM=(8oD/M)+(dy=<D>)
=(8,D/M)+(dg-D)+(D-<D>)
=((M+1)/M)68 D+ (do-D). (28)
Squaring and averaging equation (28) gives

<8 oEy2>=((M+1)/M)2<6 ;D2>+<6dy2>, (29)
assuming that, just as <do>=<d'>v <5d02>=<6d-2> for t>0>with
representing a forecast selected at random from y. The covariance between
spread and ensemble-mean forecast skill follows easily by multiplying
equations (26) and (28), giving

<8 GEpb oS> =( (M+1) (M=1)/M2)<6,D?>. (30)

We may define «=<§ D2>/<6d 25 as an appropriate measure of the ratio
of climatic to sampling variations, in which case, substituting the
relevant results into equation (20), we find

pp=[M 2+ ((M+1)/M)a]/[ (M T4a) (M3 +14((M+1)/M)2) 11/2. (31)

Equation (31) shows the correlation between ensemble spread, and the
skill of the ensemble-mean forecast, that we may expect under perfect model
conditions using ensembles of size M, in a scenario where a ratio « exists
between the real case-by-case variation <6 D2> in the spread of the
forecast p.d.f., and the mean extent <d&d; > of sampling error involved in
the measurement of the spread. In practice the effect of model
imperfection would render p, smaller than predicted by equation (31), which
represents an upper limit.

Clearly, for given M, we should expect p, to increase with «, which is
confirmed by equation (31) (see Table 3 and associated discussion in
Murphy, 1986). It is important to appreciate the variation of p, with «
for several reasons. The value of « is likely to depend on season, and
also on whether spatially or temporally filtered fields are being used. In
addition, although we may estimate « from a finite number of model ensemble
forecast experiments, the value will be subject to sampling error, and may
also of course be model-dependent. The value of « determines how
accurately we need to know the true spread of y in order to obtain a
satisfactory prediction of skill. As ensemble size increases, the estimate
of the true spread of y becomes more precise. The coefficient p, is not
suitable to quantify the effect of this increased precision however. This
is because two terms contribute to the case-by-case variation <GCEM2> in
the average skill Ey of M-member ensemble-mean forecasts drawn
independently from w (equation (29)), one being a predictable' element due
to variations in the spread of Yy, and the other an 'unpredictable' element
arising from the prior uncertainty of the distance in phase space from the
true state to the centroid of Y. As M increases, the size of the
'predictable' term ((M+1)/M)2 <GCD > decreases, which inhibits the increase
in pp that we would anticipate through having available a more precise
estimate of spread.

12
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We may better illustrate the benefit of this extra precision by

considering E;, the mean error variance of all individual forecasts within
Vv. The correlation p', between ensemble spread and Eq is given by

((E1-<E1 >) (SM"<SM>)>

[<(E1—<}5:1>)2><(sb,1—<sM>)2>]1/2
<8oEq 8oSM>

s e bttt . (32)
[<8oEq 2> (<83y2>+<8,52>) 1172
From equation (4) we deduce
8 oE1=6oD+dy-<D>=28,D+dy-D . ; (33)

Thus
<8 GE1 2>=U<8 D2>+<8d,2>=H<8 ,DZ>+<5d;2>,

independent of ensemble size, as required. The covariance term <§,Eq8.Sm>
follows from equations (26) and (33), giving

<8 Eq 85w =2( (M-1)/M)<§D?> .
Substitution into (32) gives the result
o' y=2a/[ (asM™ 1) (Ua1)11/2 . (34)

The proportion of <60E12> predictable from variations in spread is
constant, thus rendering p'A a suitable statistic with which to demonstrate
the increased precision in our prediction of skill achieved by increasing
M. Table 4 of Murphy (1986) shows the increase of p'y with M for various
values of «, and the implications of the results are discussed further in
that paper.

It is worth emphasising the complementary nature of the correlation
coefficients p, and p'p. We should use p'p to deduce an appropriate value
of M which achieves a satisfactory degree of precision in our prediction of
skill, and having done this, p, then reveals the (maximum) extent to which
we could predict variations in the skill of the best available forecast
(the ensemble-mean), if we were to produce regular ensemble forecasts of
membership M in practice.

The expression for p, is easier to verify by experiment (see Murphy,
1986), than that for p'p, since in the latter case we would require
ensembles of a very large size to obtain sufficiently accurate estimates of
Eq. A problem we face in verifying experimentally obtained values of
either coefficient is to determine the appropriate value of « from the
data. We cannot estimate <d&d 25 directly, since in any ensemble forecast
experiment we do not know u, gut an approximate value may be obtained by
calculating, from each experiment, the quantity vg given by

M ~
vg = ( T ((uy-w)Z-s)?)/M, (35)
3=1

13



which represents the ensemble variance of (u —3)2. From the above
definition, and equation (1), with the random covariance term again
neglected, we obtain

M -~ ~
= (T (ds-(1-2/M)d;-26u;.6u)?)/M,
et g
where 6uj=uj—ﬁ, and éﬁ=ﬁ-ﬁ. But we may write
& M
duj.su = (k216uj.6uk)/M = dj/M, (36)

again disregarding covariance terms Guj.duk. Thus we have

M “
((1-2/M)2/M)< T (d4-dj)2>

<vs> =
3=1
- (1—2/M)2(<d32>—<(aj)2>). (37) -
Since <6dj2>=<dj2>-<D2>, and <5(8j)2>=<(8j)2>—<D2>, equation (36) becomes :

<vg>=(1-2/M)2(<8d;32>-<5(d4)2>)

=((M-1) (M-2)/M3)<8d;2>. (38)
Thus an estimate of <&d.2> may be recovered by measuring vgq in a large
number of independent ehsemble forecast experiments, assuming that the
approximation concerning covariance terms is reliable. By also measuring
<(sM—<sM>) > experimentally, we may then deduce <§ D2> and hence «,

Phase correlation between spread and skill

We may define a correlation coefficient pp, analogous to pp, which
shows the relationship between the phase spread ay of an ensémble, and the
phase sk111 of the ensemble-mean forecast measured by c'y, where
c'm=tlcyl<, choosing the negative sign if cy is negative so that we may
distinguish between instances of positive and negative anomaly correlation.

<(ec! —<c'M>)(aM-<aM>)>
pp = g i 2 (39)
[<(eym<ety>) 2><(ay-<ay>) 2>]
The phase correspondence between an individual forecast j, within vy,
and u, may be measured by

ry = (ﬁ.uj)z/wmwj . (40)

If we assume that both the covariance term u.(u;-u), and the term
(r —r )(w -Wsi), are negligible, then it follows from equation (40) that
2 Sampl § variations in phase spread may then be characterised by
>=<(r —R) 1 with climatic variations represented by o2
g2>-<(R <R>) >. In theory we might derive an expression for pp in terms
of <6r;2> and <60R2>, in analogy to the calculation for p, leading to
equation (31). A problem exists, however, in that at large forecast times,
as u»0, <6r32>+0. This contrasts with the amplitude case, in which the

{t.a
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corresponding quantity <&d 2y remains finite as t+®», Thus the necessary
assumption , that random covariance terms may be safely ignored relative to
such sampling terms, becomes invalid in the phase case as predictability
attenuates with time. For this reason we do not perform the calculation
for Pp analogous to that for p,.

5. SUMMARY

We have derived simple theoretical estimates of the effect on forecast
skill of ensemble-averaging a number of individual model predictions, based
on the assumption of a perfect forecast model, namely that given the
correct initial state, the model produces an error-free forecast. An
ensemble forecast is a sampling approximation to a continuous probability
density function (p.d.f.) composed of an infinite number of equally-likely
forecasts, each consistent with the errors which inevitably accompany a
given initial analysis. Although such a p.d.f. may in principle have a
complex form we consider only its first two moments (thus making no attempt
to distinguish it from a normal distribution), which give the best-estimate
forecast and its associated uncertainty.

Two measures of predictability are considered, emphasising
respectively the correspondence in amplitude and phase between the forecast
and actual anomaly patterns. The amplitude measure is the forecast error
variance, normalised by the mean 'no-skill' error variance between a
forecast and an unrelated, randomly-chosen actual state. This
normalisation is important as the no-skill error variance of an
ensemble-mean forecast varies with the size of the ensemble, so that the
unnormalised error variance gives a misleading indication of the variation
of useful skill with ensemble size. The anomaly correlation score is used
to measure phase predictability.

Equations (10) and (18), which give respectively the mean amplitude
and phase skill of ensemble-mean forecasts in terms of individual forecast
skill, show that skill increases with size of ensemble, reflecting the
increased precision in the estimate of the mean of the forecast p.d.f.
available from a larger ensemble. The implications of these results for
extended range forecasting are discussed further in Murphy (1986), where
the theoretical predictions are shown to compare well with
experimentally-obtained perfect model results from seven-member ensemble
forecasts. The use of a perfect model assumption means that our
calculations will represent an upper limit to the improvement in skill
likely to be obtainable in practical ensemble forecasting.

Another important question is that of the a priori prediction of
forecast skill. 1In theory the spread of an ensemble should provide an
indication of the likely skill of the forecast. Measures of amplitude and
phase ensemble spread are discussed and correlation coefficients defined to
measure the relationship between spread and skill. In the amplitude case
expressions are derived for two correlation coefficients (distinguished by
slightly different methods of measuring skill), in terms of 'unpredictable'
sampling variation within a given forecast p.d.f., and 'predictable',
so-called climatic, variation between independent forecast p.d.f.'s.
Results show that larger correlations apply for larger ratios of climatic
to sampling variation, and that the precision of the prediction of skill
increases with ensemble size. In the phase case the corresponding

15



calculation is omitted, since a necessary simplifying assumption, that
random covariances between model state vectors may be neglected in
comparison with other terms, whilst reasonable in the amplitude case, is
not valid in the phase case at forecast times corresponding to the extended
range period. Further discussion of the correlation between forecast
spread and skill is given in Murphy (1986).
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