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Introduction

Often the initial conditions used for 2-D integrations in boundary
layer modelling are the steady state one-dimensional solutions of the
momentum and buoyancy equations. Unfortunately, the iterative procedure
used to obtain these solutions, discussed in Mason and Sykes (1980), does
not remain numerically stable with increased grid resolution. Such
increased resolution is needed to represent the region of an inversion in a
convective boundary layer. To overcome this, the use of a time marching

scheme is considered.



1. The Model

The one-dimensional momentum and buoyancy equations may be written as

i s e Fikal
%__t 2(v-vyg) -y (1 1<)
gy —\Q(u~uo>*5g?;tn Q-\L)
ok
9B . ¥(R-B.@) Yy K, . ogz<D (tihe)
AT

) is a turbulent Reynolds stress

tensor, H’L is a turbulent buoyancy flux vector, T (': S(T-:T) /'1-:3

where F is the coriolis parameter, e

represents the fluid buoyancy, 5(3"BO(E)> represents a damping to some
prescribed state B(z)on a time scale 5—‘ and D is the depth of the model
domain. The form of the buoyancy equation is discussed in more“detail in
Mason & Sykes (1982). 1In this work only its representation in a finite
differencing scheme is important.

a) Turbulence Parametrization

To parametrize 't and HL a simple mixing length model closure
0 )

hypothesis is considered following Smagor‘insky (1963).
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 where D= Q(%) X (1(E>S> - 9\ (E) is a prescribed mixing

length scale and
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From the turbulent kinetic energy balance equation, the buoyancy

‘I
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effects imply a velocity scale of Q(i‘:> 5(' TQk> . Accordingly, in
; . NVa,
the unstable region of the flow, the factor (\ -Qu) was included in the
definition of V.
So that 1(2) may be smoothly changing through the various regions of

the flow it is formulated as
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where Zo is the roughness length, k is the von Karman constant,L;(E)the
background mixing length and Ri) the Richardson number, is defined as 9%; /52
The choice of the empirical functions (t) and \P is discussed in Mason
and Sykes (1982) and they take the values
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b) Boundary Conditions

The upper boundary is positioned high enough to effectively simulate

an infinite depth. This boundary is a stress-free rigid 1id, i.e.
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where é{t is the initial buoyancy gradient.

On the lower boundary, conditions consistent with i@) are derived
assuming that the flow between the surface and the first grid point is in

local equilibrium. It is assumed that
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where ZQ is the specified roughness length, W4 the square root of the
surface stress; V the total velocity at the lowest gridpoint and 'H* i, %x
where l;; is the specified buoyancy flux and (t) is defined as in equation
(1.5). The value of Uy is calculated using an iterative procedure

involving the integration of the above equations.

e¢) Numerical grid

Variables are stored on a staggered grid which is stretched in the
vertical (see fig 1). The variables W,V and B are stored on the ZN
grid whereas their respective vertical gradients (l-e- éb\ ,QSL ,é&) and

therefore 7 and Q‘L are stored on the Z grid.

R



2. Finite difference scheme

Since a steady state solution of the momentum and buoyancy equations
is eventually required, any explicit finite-differencing scheme seemed
unlikely to prove beneficial. Although explicit methods are easy to
program and require few computations at each timestep they are restricted
to very small timestep intervals, Both the classical FTCS (Forward-time
Centred-space) and the Dufort-Frankel methods become numerically unstable
with increasing Z&t .
In view of this, an implicit scheme was adopted but incorporated into
it is the facility to use explicit terms if necessary. It is based on the
"method of weighted averages" used by Crandall (1955). The finite
difference approximation to equations (1.1a) - (1.1c) at the gridpoint
(e &) i
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S denotes the variable, either W, V or B ) A = and AE!\( are the
grid intervals (see Fig. 1); ')) is the viscosity and F represents the
coriolis term in (1.1a) and (1.1b) and the damping term in (1.1¢). The
conditions mentioned in section 1.b are applied at the upper and lower
boundaries.

Note that with a constant 77 specified, in both space and time, and
also constant grid intervals (ie A"‘:NH“ AENK" AE( > AELH Y ¥k )
equation (2.1) reduces to a much more familiar form:
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The scheme is effectively second-order accurate in both space and
time; the central difference approximation having been used for both the
first-order time derivative and the second-order spatial derivative.
However, if necessary, either a weighted or simply averaged (ﬁ"”/ﬁ ) value
of the diffusion term approximation, over a 2Dt time interval, can be
used.

If the weighting factor ﬁ“ this method reduces to a fully
implicit method except for the coriolis term, F, and the viscosity, N T
include F or 7 in an implicit form would make the scheme extremely
difficult, if not impossible, to use.

If @"’a_ the method becomes very similar to that due to Crank
and Nicolson (1947). In their method to solve the one-dimensional
diffusion equation, with no coriolis term and a constant viscosity, they

define the finite difference approximations at the point ( K ,t*"zbt )e



10 i ﬁ:—O a fully explicit method is defined but this case was not
considered. To choose a value for FS (for simplicity this was limited to

either 1/5 or 1) some trial integrations were performed and will be
discussed later.

a. Method of solution

Equation (2.1) may be rewritten as
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Commencing with the fields at t = 0 and t = 1 (SL = S: = VK ),
and then taking t = 2, 3, .... in turn, the right hand side of equation
(2.3) is known for Yis o fad (RR=) ) 'Applitation’ of thé boundary ’ .
conditions which define the values of 55?3‘ and E;f: then yields a set
of simultaneous equations in the unknowns S‘;':‘ D s DR & S
These equations are solved using Gaussian elimination followed by back

LS|
substitution. The resulting fields, Syg are used to find the new

cal
viscosity field, 7, , for use at the next timestep.
To reduce the cumulative effects of rounding error all calculations in

the Gaussian elimination and the back substitution are performed in double

precision.



b. Some initial integrations

A comparison was made of the steady state solutions reached by the
finite differencing scheme (with ﬁg*qzand %g=-{ ) and by the matrix
inversion technique used by Mason & Sykes (1980).

The model was integrated from initial conditions, given below, using
timesteps of i) 10 secs and ii) 2500 secs to reach a steady state in both
neutral and unstable cases.

i) Neutral case

The velocity fields were initialised with a geostrophic wind of 10ms-1
(ie LK51:(5>, \{5 = O ) throughout the height of the model except at
the surface. Since the differencing scheme requires known fields at the
previous two timesteps the fields at a time t-= 'lYt were set equal to
those at time €=>C. This should have no effect on the eventual solution
but a slight decoupling of the even and odd timestep was apparent in early
runs so a timesmoothing factor of 0.5 was introduced at each timestep. All
other fields were initialised at zero except for the viscosity at #=0O
which was determined from Wy (the square root of the surface stress),
itself initialised at 0.4 ms-1.

A background mixing length, 10(§> of 4O0m was used, following Mason &
Sykes (1982), and the value of other parameters used were Z_ = 0.'m,
f = 10-4s-1 and D = 104m. The grid resolution was ~415m near thé surface
increasing to 50m throughout the rest of the boundary layer and eventually
reaching ~400m in the upper half of the model domain.

To reach the steady state solution given by the matrix inversion the
integrations had to be performed for about 80 hours 'real-time' to attain

an accuracy of ~10-2ms-1 throughout the velocity fields. At this time the




values of U given by the matrix inversion and timemarching methods

differed by ~10-3ms~1 and although inertial oscillations persisted they
were ~10-4ms~-1. The resulting fields are shown- in figure 2.

No significant differences were apparent between the integrations
where ﬁ = 1 and (5= 1/5 nor where b‘t: 10 secs and At: 2500
secs. It seemed that only the time evolution of ALy from the initial
conditions might provide a suitable criterion as to the choice of F)~ This
was left until integrations in unstable conditions were made.

ii) - Unstable case

All fields and parameters were initialised as in the neutral case
above except that a gt;tic stability, éﬁ%ﬁ; e 2 10-4s-2 was used
together with a specified buoyancy flux, E): 10-3m2s-3. The damping term
coefficient, X’ , in equation (1.1c) was chosen to ensure that the depth
of the boundary layer, &% , was about 1d’m.

Results from the integrations again showed similar accuracy although a
numerical problem was experienced just below the inversion. A high
positive anomaly occurred in the viscosity field at this point but as in
Mason & Sykes (1982) an under-relaxation of the change in viscosities
prevented this problem. The resulting fields are shown in figure 3.

As mentioned above, the time evolution of +Wy was considered. Figure
4 shows the evolutidn from the initial conditions for the first 10000 secs
of each integration.

With such contrived initial conditions it is hardly surprising to find
that the use of very large timesteps (eg 2500 secs, effectively halved to
1250 secs due to the 50% timesmoothing) gives highly erratic values of usx
at the start of the integrations. The fully implicit method (FS = 1) does

seem to have coped rather better than the Crank-Nicolson ( ﬁ = 1/),
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With At“-k}s the time evolutions for both methods are almost
identical, being smooth but falling from a very high value for W, of 0.82
ms-1 reached within 30 secs of the start. However, in under 1000 secs, all
integrations have a value of Wy within a range ~10-2ms-1.

On the evidence of the above integrations there seems little to choose
between the fully implicit and Crank-Nicolson methods. Noye (1978) noted
that numerical solutions to the one-dimensional diffusion equation were
invariably more accurate when f5 = 1/5, However, his system of equations
was somewhat less complex with no coriolis term or variable viscosities.

Based solely on the time evolution of Wy the fully implicit method
was chosen for future use although it was also noted that with FFW the
right hand side of equation (2.3) reduces to ZAEF; n SE-\ and much
CPU time could therefore be saved.

c. Effects of variation in grid resolution about the inversion

Figure 5 shows the buoyancy profiles of two steady state solutions
obtained using the matrix inversion technique. All the parameters used in
the integrations are specified as in section b) above except for the
geos£rophic wind which is setbat 10 and 20ms-1 in turn.

It is clear from the profiles that a sharp numerical discontinuity
exists between two grid points (;Air = 50m) above the well mixed layer.

Increasing the grid resolution in this region produced numerical

instability using the matrix inversion technique so the timestepping

- routine was used in an attempt to resolve this feature.

Grid resolutions of 50m, 10m, 5m and 2m about the top of the boundary
layer were used and figures 6-9 show the resulting fields where Uﬁ,=

20ms-1.
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Increasing the resolution has smoothed the buoyancy profile and
consequently the Richardson-Number profile quite noticeably, although no
difference is apparent between the 5m and 2m integrations. Fortunately,
increased resolution did not shift the discontinuity about (and therefore
not resoive it!); a problem that was experienced using the matrix
inversion technique.

It may be deduced that the discontinuity present with a 50m grid
resolution is not a serious numerical problem and that it is just a coarse
representation of the smoother, higher resolution profile.

d) Stability

No mention has so far been made of the method's stability
requirements. The fully implicit method with no coriolis or damping term
and a constant viscosity and grid resolution is unconditionally stable.
However, the inclusion of an explicit term together with variable
viscosities and variable grid resolutions imposes stability restrictions.
These are not easily found by analytical means and Table 1 shows the
maximum tiﬁestep,bthp , found empirically. Also shown in Table 1 are the
corresponding max. timesteps, Athp , for the explicit FTCS method.
These values were calculated explicitly from the viscosity field using the

stability criterion

Noow By ity

H»

where both £¥£ and ) vary with height.
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The value of Atmf’ for the 50m integration is possibly even higher
than the 3000 secs stated, this being the largest A‘t used. Relative to
this large value the remaining values for Atw'\p appear remarkably small.
No investigation has been made into this as yet but the larger values of
were obtained when a suitable stretching algorithm was used. The grid used
for the 50m integration has an almost constant 50m value for A& throughout
the boundary layer. Increased smoothing of the grid used for the 10m
integration was responsible for £thuf rising from ~50 secs to ~100 secs.
In all integrations a maximum of 140 grid points was used - certainly not
enough to produce a smoothly changing grid for a 5m or 2m resolution away
from a boundary. This is an important point. The stability criterion
(2.4) is unaffected by the rate of change of the grid intervals ( 152 )

Since the rate of change of l}% imposes stability restrictions on the
timestep in an implicit scheme it would not seem unreasonable to assume
that similar restrictions could also be imposed on the timesteps in an
explicit scheme. If this is so, the 5m and 2m values of Atfﬂamight be
much smaller than indicated - probably less than the corresponding values
°f‘btﬁﬂ0‘ No further investigation was made into this anomaly.

The Crank-Nicolson method was also used for the 10m and 5m
integrations to see if any improvement in hthmf could be achieved.
However, the results, as previously, showed very little difference from
those obtained in Table 1.

e) Conclusions

The fully implicit method appears to be a satisfactory means of

reaching a steady state solution. It also allows for investigation into

the time evolution of the vertical profiles. The stability restrictions of
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the method certainly require further investigation if high resolutions are

to be used. However, with the coarser resolutions very large timesteps are

possible without any apparent loss of accuracy.

Grid Resolution

About the Top

Max

Timestep (secs)

Max

Timestep (secs)

of the boundary layer At‘mo Atex(’
50m 3000+ ~25
10m ~100 ~14
5m ~10 il
2m o~ ~T

Table 1 Empirically derived maximum timesteps, ﬁtm? , for the fully

implicit method and theoretically derived max. timesteps, At‘-._“; $

for the FTCS method.
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Figure 1. The stretched vertical grid. The variables U, V and B are
stored on alternate grid points (ZN»grid). The respective
vertical gradients are stored on the remaining grid points (Z
grid). A'E(t> and A%ri (K> represent the intervals Z(K) -
Z(K-1) and ZN(K) - ZN(K-1) respectively.

Figure 2. Steady state profiles of v and u in netural case.

10 ms-1

Ug
Z, = 0.1 m

Figure 3. Steady state profiles of'?, U and B in convective (unstable)

case.
Ug = 10 ms-1
Zo = Qerlm

b = -10-3m2s-3
Figure 4. Time evolution of us (unstable case)
Ug = 10ms-1
b = -10-3m2s-3
Zo = 0.1 m
Figure 5. Steady state buoyancy profiles for unstable cases where Z, =
0.1m.
b = -10-3m2s-3, Ug = (10ms-1
(20ms-1 ~~7
Figure 6. Steady state velocity profiles for unstable case where
Zo = 0.1m
b = -10-3m2s-3
Ug = 20ms~-1

AZ = 50, 10, 5, 2m about inversion

17



Figure T.

Figure 8.

- Figure 9.

Steady state viscosity profiles for unstable case. Legend as : s

for figure 6.

Steady state buoyancy profiles for unstable case. Legend as for _ 

figure 6. w5

Steady state Riohérdson no. profiles for unstable case. Legend i.jf,;}'

as for figurelﬁ.
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