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Abstract

We develop the linearization of a semi-implicit semi-Lagrangian model of the one-dimensional
shallow water equations using two different methods. The usual tangent linear model,
formed by linearizing the discrete nonlinear model, is compared to a model formed by
first linearizing the continuous nonlinear equations and then discretizing. Both models are
shown to perform equally well for finite perturbations. However, the asymptotic behaviour
of the two models differs as the perturbation size is reduced. This leads to difficulties in
showing that the models are correctly coded using the standard tests. To overcome this
difficulty we propose a new method for testing linear models, which we demonstrate both

theoretically and numerically.
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1 Introduction

A feature of many modern data assimilation systems is the need for a linearization of
the nonlinear forecasting model. Such a linear model is used directly within incremental
four-dimensional variational data assimilation (4D-Var) systems to model the evolution
of a perturbation (Courtier et al. 1994). It is also appears within the extended Kalman
filter as an explicit model of the background error covariances (Ghil and Malanotte-Rizzoli
1991, Thepaut and Courtier 1991) and is used within 4D-Var in its full, non-incremental
form as a means of obtaining the adjoint model (for example Chao and Chang 1992, Li et
al. 1994).

The usual method of obtaining the linear model is to linearize the discrete form of
the nonlinear model. This is known as the discrete method and the discrete linear model
formed in this way is called the tangent linear model (TLM). The adjoint model is then
found by a transposition of the matrix representation of the discrete TLM. This method
has the advantage that the TLM can be found by directly linearizing the nonlinear model
source code. The adjoint model can then be found by transposing the TLM source code.
This process is known as automatic differentiation and can be performed either by hand
or using one of the automatic differentiation compiler tools which are available, such as
TAMC or Odyssée (Chao and Chang 1992, Rostaing et al. 1993, Giering and Kaminski
1998, Bartholomew-Biggs et al. 2000).

For the incremental 4D-Var scheme being designed at the Met Office, an alternative
approach to obtaining the linear model has been proposed. The continuous equations of
the nonlinear model are first linearized to form a set of linear equations. These continuous
linear equations are then discretized using a suitable numerical scheme to form the discrete
linear model, called a perturbation forecast model (PFM). The adjoint model can then be
obtained from the perturbation forecast model by a transposition of the PFM source code,
so that the incremental 4D-Var scheme still contains the exact adjoint of the discrete linear
model (Lawless 1996, Lorenc et al. 2000). We refer to this approach as the semi-continuous
method. !

There are two principal advantages to the semi-continuous method. The first is based
on the premise that although the tangent linear model is valid for infinitesimal perturba-

tions, what we actually want to model are finite perturbations of the size of uncertainties

"The term semi-continuous is used to distinguish from the continuous method of obtaining an adjoint

model, whereby the model is coded from the continuous adjoint equations.



in the initial conditions (Errico and Raeder 1999). A PFM can be designed with this
aim in mind. Thus it can be based on physical principles and can make some small
approximations to the true TLM. This is consistent with the original proposal of the in-
cremental formulation of 4D-Var (Courtier et al. 1994) which proposed that the exact
TLM could be replaced by a model close to it, provided that the error in this approxima-
tion is smaller than the approximation error made in neglecting the model error terms.
The semi-continuous approach to developing a linear model allows such approximations to
be made both in the equations of the linear model, before any discretization, by appeal-
ing to scale analysis and in the actual implementation of the numerical scheme. In this
way savings can be made in the execution costs of the linear model and its adjoint. As
numerical models become more complex such approximations are likely to become more
important, since a direct linearization of the discrete nonlinear model is likely to lead to
many small terms which are costly to evaluate, but add little information to the data
assimilation process.

A second advantage to the semi-continuous approach is that it is possible to avoid
some of the problems which occur when linearizing complex schemes. For example, it
has been shown how problems may arise in the direct linearization of interpolation with
semi-Lagrangian advection schemes or the direct linearization of iterative solution proce-
dures (Polavarapu et al. 1996, Tanguay et al. 1997, Polavarapu and Tanguay 1998). By
forming the linear model from the continuous linear equations, many of these difficulties
are avoided.

In this study we examine whether a PFM formed by the semi-continuous approach
can provide a linear model as accurate as a TLM. The model we use is a semi-implicit
semi-Lagrangian model of the one-dimensional shallow water equations. The numerical
scheme used contains both semi-Lagrangian advection and an iterative solution of an
elliptic equation and so has some of the complexities of a full weather forecasting model.
In the next section we set out the continuous equations for the nonlinear model and show
their linearization for use in the PFM. Section 3 then describes the numerical schemes.
We describe the scheme for the nonlinear model and show how we obtain the schemes for
the TLM and the PFM. Section 4 discusses how we should measure the accuracy of the
linear models. A weakness in applying present methods to test a PFM is identified and
we derive a new method designed to test such a model. The two linear models are then

compared numerically in Section 5. Further numerical experiments in Section 6 are used
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to verify the new method for testing a PFM introduced in Section 4. Finally Section 7

summarizes the conclusions of this study.

2 Analytical models

2.1 Nonlinear equations

The model we consider is the one-dimensional shallow water system describing the flow of
a single-layer fluid over an obstacle in the absence of rotation. The governing equations

can be written

Du op .. OH

T e ey )
where
% = % - u% (3)

is the material derivative. In these equations H = H(z) is the height of the bottom
orography, u is the velocity of the fluid and ¢ = gh is the geopotential, where ¢ is the
gravitational constant and h > 0 the depth of the fluid above the orography. The problem
is defined on the domain = € [0, L] and we let ¢ € [0,T]. The spatial boundary conditions

are taken to be periodic, such that at any time t we have
a0ty =ull.t), 9(0,1) =¢(L,t), HO)=H(L): (4)
The values of u and ¢ are specified everywhere at the initial time, with
u(z,0) = uo(z), ¢(z,0)= ¢o(2). (5)

The system (1), (2) has a steady state solution which obeys the relationships
u? ;
?+¢+gH:I\‘1 (6)
and

up = Ky, (7)

where u = u(z), ¢ = ¢(z) and K;, K, are constants of integration which are independent

of  and t.



2.2 Linearized equations

In order to form the set of linear equations we consider the fields u, ¢ as perturbations
du, d¢ about a spatially and temporally varying basic state u, ¢ which satisfies the non-

linear equations. Thus we have

w(z, ) = alz, t)+ dule,t), (8)
d(z,t) = ¢(z,t)+ 6d(z,t). (9)
These expressions are substituted into the nonlinear equations (1) and (2) and products of

perturbations are neglected to give the linear equations. We obtain, for the linearization

of the momentum equation (1)

Déu . 0u 98¢

and for the linearization of the continuity equation (2)
D /é¢ . O(In @)  0(du) s
sl (1)

where the material derivative D/Dt is defined as in (3), but using the linearization state
wind #. The linearized system also has a steady state solution, which obeys relationships

equal to the linearization of (6) and (7). Thus we have
udu + 6¢ = 6K, (12)

and

8¢ + dud = Ko, (13)

with 6K, and 6K, constant. These solutions will be used to interpret the results of the

linear models in Section 5.

3 Numerical models

The scheme for the numerical models is chosen to match as closely as possible the new
integration scheme being developed for the Unified Model at the Met Office (Cullen et
al. 1997, Davies et al. 1998). We employ a two-time-level semi-implicit semi-Lagrangian
scheme, based on the scheme of Temperton and Staniforth (1987), but with an off-centred
time averaging of the forcing terms along the trajectory, as in Rivest et al. (1994). In the

scheme of Cullen et al. the mass continuity equation is treated with an Eulerian scheme,



but for this study we also treat this equation with a semi-Lagrangian discretization. This
is similar to the scheme being used operationally in the GEM model of the Canadian
Meteorological Centre (Coté et al. 1998). We use a staggered grid, with points at which
the wind u is held being half a grid length from points at which ¢ is held. This reflects

the Arakawa C grid being used in the Met Office scheme.

3.1 Nonlinear model

We indicate the arrival and departure points for the u variable by the subscripts au and
du respectively and the arrival and departure points for ¢ by a¢ and d¢. The time

discretization for the nonlinear model is then

M C O SR a aH @ 0 aH a5
Uqu Uy i (1 A Q'l) (_d) < (/—5’—1:—> + o <—¢' -+ ga_r> =8 (14)

At dx di ox o
(In ¢)2;1 = (In¢)4, ou|" u|™t!
At +(1—a2) %dd)-{ha‘z .(-?—.’I?ad) —0, (15)

where superscripts indicate the time level and the coefficients oy, ay are time-weighting
parameters chosen to lie in the interval [0.5,1]. The numerical solution consists of the

following steps:

1. First we calculate the position of the departure points 24, and 44 for each grid
point. For this step we follow the method of Temperton and Staniforth (1987) and

use a time extrapolation of the wind from the time level n and n — 1 values.

8V

. The next step is to calculate the known terms of (14) and (15) at the departure
points. The terms are first calculated at the grid points and then interpolated to

the departure point using a cubic Lagrangian interpolation.

3. Having calculated the known terms we are left with a system of coupled equations
for u and ¢ at time level n + 1 at all spatial points. We eliminate u at each grid

point to obtain an equation at each point ; of the form

—CoL + 2047+ — Co™l + (ln )Pt = RY, (16)
where
2
i _O‘IZ?t (17)

and R} is a known right hand side calculated from time level n values of the fields.
This is a discretization of an elliptic equation on the domain and is weakly nonlinear

through the presence of the In ¢ term on the left hand side.




4. In order to solve (16) we must define a suitable iterative procedure. We first put

(4"’:'l+l oz (I)ref S (#‘):'v (18)

where @,y > 0 is a constant reference value. Then rewriting (16) and adding a term

@;/®rey to both sides of the equation, we obtain

1 ¢’

(prej :

~Clyr + (20 + 5—) ¢! - Cgiy = R} — In(Bres + ¢)) + (19)

ref

This equation is mathematically equivalent to the original equation (16). However
the left hand side now consists of a strictly diagonally dominant tridiagonal matrix
and is therefore invertible. The solution of the system can then be found iteratively
by successively solving the series of equations
1 (m+1) ; (m+1)
~Ci ™+ (204 z— )" - ol
Y141 + + Qre] (Px ¢: 1

¢{(m)

SR ; 1(m)
= R}—In(®res+¢; ')+ s !

(20)

where m is the iteration count and d);'(o) = 0 for all 7. This is a fixed point iteration
which is guaranteed to converge for ®,.s less than any value of ¢; at time level n 41
(Lawless 2001). Assuming that convergence occurs after M iterations we obtain
updated values of ¢; from

n ‘/1 Iy
! = &,p + M), (21)

5. As a final step we use these new values of ¢; to calculate values of u at each grid

point at the new time level from (14), thus completing one time step of the scheme.

3.2 Tangent linear model

In order to form the tangent linear model we follow the normal procedure and differentiate
the nonlinear model source code. The non-differentiable procedures within the semi-
Lagrangian part of the scheme are treated by assuming that the perturbations do not
move the departure point outside of the grid interval defined by the linearization state.
For the cubic Lagrangian interpolation we are using this may lead to some errors in the
linearization, but the error made by this assumption will be small compared to that made
by assuming linearity (Polavarapu et al. 1996).

When we come to the linearization of the solution of the elliptic equation, a different

method is used to derive the TLM. Instead of linearizing the iterative solution procedure



we linearize the discrete equation of the nonlinear model (16) and then solve this linear
equation, thus following the normal procedure of automatic differentiation (Bartholomew-
Biggs et al. 2000). The linear equation can be solved by using the same direct solver as

is used in the nonlinear model.

3.3 Perturbation forecast model

To develop the perturbation forecast model we begin by taking the continuous linear
equations (10) and (11) and seeking some suitable discretization. A comparison of these
equations with the nonlinear model equations (1) and (2) reveals that they have the same
structure, but with the linear equations having an extra term in which the perturbation
wind multiplies the gradient of the linearization state. The most natural method of treating
these terms in a semi-implicit semi-Lagrangian context is to discretize them as off-centred
averages along the trajectory. The other terms in (10) and (11) can be discretized in the

same way as the corresponding terms in the nonlinear model. Thus we obtain the scheme

959" 95¢ "t
o n+1 i A
At ((511 du(lu) T Hah Oz du - Ox au
ou\" 01
+ (1-a3) (511,%) - + as (()uﬁ) . = (22)

()7 -(2))+ - v ™
At b ) ) 5z do Y2 oz -

o
+ (1-ay) <5u (lal.lqb ) ( )"“ =0, (23)

where «; are time-weighting coefficients for i = .,4. The numerical scheme used is

very similar to that used in the nonlinear model and proceeds as follows:

1. We first calculate the departure points 24, and 244. Since the perturbation fields
are advected only by the linearization state wind, these departure points and hence

their derivation is exactly the same as in the nonlinear model.

8

. The next step is to calculate the known terms of (22) and (23) at the departure
points. As for the nonlinear model, we calculate these terms at the grid points and

then interpolate to the departure point with a cubic Lagrangian interpolation.

3. Having calculated the known terms we are left with a system of coupled equations
for du and ¢ at time level n+ 1 at all spatial points. We find that we can eliminate

du to form a system of equations for 6¢ provided that At < (ag|0u;/dz|)~! for each

10



spatial point @; (further details of this are given in Lawless 2001). This may seem

to be an extra restriction which is not present in the TLM. However the iterative
procedure by which we calculate the departure point itself imposes the restriction
At max|du;/0z| < 1 (Pudykiewicz et al. 1995). Hence for values of a3 in the range

[0, 1], this extra condition on the time step must hold in any case.

4. The resulting equations for §¢ at time level n + 1 form a diagonally dominant tridi-
agonal system, which can be solved using the same numerical solver as is used in
the nonlinear and tangent linear models. The result can then be used to calculate

updated values of du at the new time level using (22).

4 Measuring the accuracy of the linear models

4.1 Standard measures of accuracy

Before trying to compare numerically the two different linear models, we must decide what
measure of accuracy we will use to assess the models. The usual method of testing a TLM
is to compare the evolution of a perturbation in the linear model to the evolution defined
by the difference of two runs of the nonlinear model. We define xg to be our model state
vector at initial time ¢y and v0xg to be a small perturbation to this model state, where v
is a scalar parameter. We let S be the solution operator of our nonlinear model, such that

at time t,, the model state x,, is given by
%= Sl 10y %) (24)
Then the perturbation evolved in the nonlinear model at time ¢, is
N, [vdx0] = S(tn, to, X0 + ¥0%0) — S(tn, to, Xo). (25)

We compare this with the perturbation evolved in the linear model, which we write
L(t,.t0)70%0, where L represents the solution operator of either the TLM or the PFM.

In order to quantify the error we define the linearization error E,, of the linear model
at time level n by

E, = N,,[y0x0] — L(tn, to)ydxo. (26)

The size of this error can then be compared to the size of the linear or nonlinear perturba-
tion. If we compare to the linear perturbation, we have the relative error Eg of the linear

model, defined by
|| En ||

Ep =100 A
. L (tn, to)70%o ||

(27)

11



for some given norm || || (Rabier and Courtier 1992). A comparison with the nonlinear

perturbation gives the solution error Eg,

| En ||

Es =100 —————
: Il Nn["/‘st] Il

(28)

(Vukicevi¢ and Bao 1998).

A standard method of proving that a TLM is correctly coded is to show that the
relative error Ep tends to zero as the scalar parameter 7 is reduced. For a correct tangent
linear this will be true, since if L is exactly equal to the first order part of the discrete

nonlinear model, we have
Na[y6x0] = L(tn, to)y8x0 + O(7?) (29)

and E,, is second order in v. However, for a PFM, in general the linear model operator dif-
fers from the nonlinear model by a first order residual term, which we write R(t,,, to)vdxo,
so that

Nin[78%0] = L(tn, to)Y6X0 + R(tn, to)¥9%0 + O(7?). (30)

Hence we find that as v tends to zero, the relative error Er tends to a non-zero constant
which is determined by || R(tn,t0)0%0 || / || L(tn,t0)0x%0 || and so is dependent on the
linearization state. Thus for the PFM we do not have the same objective test as we have
for a TLM. This is not a problem for our present study, since we can compare with the
true TLM. However, in a realistic 4D-Var system, such as that being developed at the Met
Office, the PFM will be developed as an alternative to the TLM and so this comparison
will not exist. Some other method must therefore be devised to test a PFM. We now
propose a new method of measuring the accuracy of such a model, which does not require
the use of a TLM. We use the nonlinear model to estimate the linearization error we would
obtain if we did have an exact TLM. This can then be compared to the actual linearization

error obtained using a PFM.

4.2 Estimating the tangent linear model error

We consider our discrete nonlinear model to be of the form (24) and expand the nonlinear
model operator using a Taylor series. To do this we follow Rabier and Courtier (1992).
We assume that the vector Xq is represented by p components @' and that the model S is

represented by p scalar components S! with [ =1,...,p, so that
zti= 808, 1, X0)- (31)

12



Then for a perturbation dxg to X¢ a Taylor expansion gives

% 05'
S’(fn-fu-XO‘}'()XU) — S n t() xO +Z u f() xO)(S’EO

1 ek 0251 - .
SF 2[ a,l,a ] tn, tO,X())().’L'O6_’l)'6
g== e
1 Y geg o
+ 3' ;JZ]]\Z] 31'0110? ” f03x0)57105'l, (5'10
+ h.o.t. G5

Hence the linearization error E,, of a true TLM at time level n consists of the p components

E! given by

1Rl glat
E:; = 5 . IZ 920z J(tmto,XO)(S'Lo(s’IIU
==l
p P
L !Zzzal,ar,a —(tn to, Xo) 0z} Stk
=1 =1 k=1
+ h.o.t. (33)

It is this quantity that we now seek to estimate. The method proceeds as follows. We first
run the nonlinear model from three different initial conditions, xg, %o + X0, X0 + Bdxo,
where [ is a small scalar parameter. From these runs we can calculate the two nonlinear

perturbations

Nn[éxo] = S(ta,to, %o+ 6x0) — S(tn, to, X0), (34)
Nn[Bdxo] = S(tn,to, %o+ Bdx0) — S(tn,to,X0), (35)

consisting of the components N} n[0%0], N, 1[B6x0)] respectively, with = 1,...,p. We now

define a function £,, by
2o N,,[,B(SX()] 2 BNn[éxO]

o 36
e p (36)
with components S,’,. Then using the Taylor expansion (32) we find that
L 928!
l — —
gﬂ g, 2! g J=Zl 835‘0:1,1 (tnato, xo)(s'l,o()'l,o
LA B 935! o
4 (o 5)? Z Z Z W(t"’ to, x0)5$65$66$0
: i=1 j=1 k=1
+ h.o.t. o

A comparison of this expression with (33) shows that for small values of 3 and small

perturbations we have for each of the p components &, ~ E! and so £,, ~ E,,. Since the

13



expression (36) is calculated by using only the nonlinear model, it provides an estimate of

the expected linearization error of a TLM without the need for such a model. This estimate
can then be compared with the linearization error of a PFM to assess its accuracy.

We can quantify the size of the expected linearization error with respect to the per-
turbations by adapting the formula for the solution error of a linear model (28). Since
we know the size of the nonlinear perturbation and have an estimate for the linearization

error of a TLM, we can define the estimated TLM solution error Es using

; [ €n |l

F¢=100——m——. 38
5= o o

This can then be compared with the actual solution error (28) calculated with v = 1 for
a PFM.

Although these formulae are analytically robust, it is necessary to test them numeri-
cally to see how well they hold in practice. Since for the model being used in this study
we have the TLM available, we can verify these formulae experimentally. We do this in

Section 6. First we compare how the two linear models behave.

5 Numerical experiments

The experiment we use to test the models is based on that described by Houghton and
Kasahara (1968). For time ¢ < 0 the fluid is at rest and the geopotential ¢ is equal to
¢o—gH (2), with ¢ constant. Att = 0 the fluid is impulsively set in motion with a constant
velocity ug for all z. From this impulse a wave motion develops and moves away from the
obstacle in both directions, while the solution in the vicinity of the obstacle converges to a
steady state solution. This problem is defined over an infinite domain —oco < & < oo, but
Houghton and Kasahara use a periodic domain with boundaries far enough away from the
obstacle such that the asymptotic conditions are established around the obstacle before
any of the wave motions can feed back into this area. We also follow this approach.
The experiment we run is based on Case A of Houghton and Kasahara’s paper. The
height of the obstacle H is given by
23
) = 1. (1 - ;ﬁ) fon0 < el <ias (39)
and H(z) = 0 otherwise. H, is the maximum height of the obstacle and a is half the
length over which the base of the obstacle extends. The domain is defined to be periodic

over 1000 gridpoints, with a distance Az = 0.01m between them, so that @ € [0m, 10m].

14
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Figure 1: Fields of (a) v and (b) ¢ from the nonlinear base state run after 250 time steps.

The value of a is taken to be 40Az = 0.4m and the height of the obstacle H, = 0.05m.
The parameters needed for the scheme we have chosen are taken to be ay = ay = 0.6
for the time weightings, the reference geopotential is ®,.y = 1.5m*s~? and the extra time
weightings for the PFM are a3 = oy = 0.6. The gravitational constant g is set to 10ms ™2
and the model time step At is 9.2 x 10~ 3s.

For our nonlinear base state run we take the initial conditions at time t = 0 as
(x) = ¢o — gH(z), with ¢g = 2m?s~2, and u(z) = up = 0.1ms~!. Perturbed nonlin-
ear model runs are then generated by adding perturbations (ydug,¥d¢o) to the initial
conditions, for various values of a scalar parameter 4. The initial perturbations are taken
at t = 0 to be dup = 0.01ms™", d¢g = —0.2m%s™2, representing a change of 10% in each
field. We compare the difference between the two nonlinear model runs with the output
of both linear models initialized with the same perturbation. The run time is taken to be
250 time steps, corresponding to 2.3s. The nonlinear base state fields at the end of the
run are shown in Fig. 1. We first consider how well the two linear models represent the

difference between the nonlinear model runs.
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Figure 2: Plot of relative error Er against perturbation size after 250 time steps for (a) u field

and (b) ¢ field. The solid line is for the TLM and the dashed line for the PFM.

5.1 Tests of linear models

For the first experiment we examine the difference between the nonlinear and linear evo-
lutions as the perturbation size is reduced. We set vy = 10? for p = 0,-1,...,—5 and
calculate the relative error (27) for the TLM and PFM after 250 time steps. In Fig. 2 we
plot the relative error Ep against perturbation size for each linear model, calculated for
the u and ¢ components of the error separately using the root mean square norm. We see
that for the TLM the relative error tends linearly towards zero, showing that the model
correctly represents the first order part of the discrete nonlinear model. For the PFM the
error tends to a non-zero constant, as expected from the theory of Section 4, and so this
test does not verify the correct coding of this model. However, it is encouraging that for
the larger perturbations both linear models show the same relative error. This indicates
that both methods of obtaining the linear model lead to equally valid approximations for
reasonably sized perturbations.

We now consider the perturbation fields themselves for the experiment with the largest

perturbations, that is for v = 1. In Fig. 3 we compare the perturbation to the wind field
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Figure 3: Comparison of nonlinear and linear perturbations of u after 250 time steps for (a) the
TLM and (b) the PFM. In each case the solid line shows the nonlinear perturbation and the dashed

line the perturbation from the linear model.

w from the nonlinear model at the end of the run with the perturbation fields from the
two linear models. We see that the solution from both linear models follows the nonlinear
evolution of a perturbation accurately. The models show very similar errors with respect
to the nonlinear evolution, with an amplitude error in the stationary solution in the centre
of the domain and a phase error in the outgoing gravity waves. Similar errors are also
seen in the ¢ fields (not shown). We examine more closely the reasons for these errors in

the two linear models.

5.2 Examination of linearization errors

The phase errors in the outgoing waves are found to arise solely from the perturbation to
¢ (further details can be found in Lawless 2001). We can understand this by calculating
the dispersion relation for the original analytical system (1), (2), linearized around an
equilibrium state Uy, ®o which is constant in time and space. For this constant-coefficient
system we find that the difference in phase speed between the two nonlinear model runs

is given by

500 £ (/B0 + 6%0) ~ v/30) , (40)
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which is linear in Uy and nonlinear in ®3. Thus we would not expect a linear model to

represent correctly the phase of a gravity wave when the perturbation to ¢ is non-zero.
In order to understand the amplitude errors in the stationary solution, we refer back

to the analytical properties of the equations stated in Section 2. There we found that the

stationary solution of the nonlinear model satisfies
u(z)o(x) = Ky (41)

and for this problem we have K3 = ug¢o. From this we can define a nonlinear variation

(@) + 6u(2)) (B() + 68(2)) — U(2)$(x)
= a(z)dp(x) + du(x)d(x) + du(z)dp(z). (42)

i

Then using the asymptotic solutions we find that for the nonlinear problem the analytical

value of V'V (2) asymptotes to a constant value 5K£V , given by
SKY = ugdpo + Suodo + Sugdeo. (43)

We can define a similar variation for the linear models. The stationary solution satisfies
(13) and for the problem being described in this section we have §K; = ugdgo + Sugdo.

Then defining the linear variation
VEi(z) = a(z)do(z) + du(z)d(z), (44)

we find that for perturbations calculated from the linear problem, the variation V% (z)
asymptotes to 6 K. For the initial values used in the experiment of this section we find
that § K} = —0.02 and 6K, = 0.

From the numerical solutions we calculate V¥ and V% around the centre of the do-
main. In Figure 4 we plot the variation over time of V"V calculated from the nonlinear
perturbation and V¥ calculated from the TLM over the interval @ € [4.5m, 5.5m], together
with their analytical asymptotic values. For each quantity we plot the absolute value. We
see that after approximately 200 time steps both V'V and V¥ asymptote to the analyti-
cal values of 5I\'."£V and 0K, respectively. Also shown on Fig. 4 by the dotted line is the
quantity V'V calculated using the perturbations from the TLM. The asymptotic value of
this quantity does not equal that of the nonlinear model, but has a larger value. Thus
above the orography the linear model asymptotes to a solution consistent with the linear
equations. This explains the difference in amplitude between the linear and nonlinear

solutions in the centre of the domain. Graphs of V* and V" from the PFM (not shown)
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Figure 4: Variation of linear and nonlinear perturbations to u¢ in the centre of the domain with
time. The solid line is the value of V'V given by the nonlinear perturbations, the dashed line is
the value of V% given by the TLM and the dotted line is the value of V"V given by the TLM. The
dot-dashed lines show the asymptotic values K and §K5. In each case the absolute value is

shown.

are essentially the same as those for the TLM, indicating that the two linear models have

the same underlying behaviour.

6 Verification of the linearization error estimate

We have illustrated by the theory of Section 4 and the experiments of Section 5(a) that
the testing of a PFM is made more difficult by the fact that the linearization error does
not reduce to zero as the perturbation size is reduced. However, we have also seen that for
finite perturbations the PFM may be as good an approximation to the nonlinear evolution
as a TLM. It is therefore important for a given perturbation to know how much of the
linearization error we see from the PFM experiments is second order (and would therefore
be present also with a TLM) and how much of the error is due to first order effects. The
formulae derived in Section 4(b) were designed to measure this and since for this simple

model we have the true TLM, we can measure the usefulness of these formulae.
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Figure 5: Comparison of the time evolution of the actual TLM solution error Eg (solid line) and
the estimated TLM solution error Fg (dashed line) for estimates calculated using values of 3 equal

to (a) 0.5, (b) 0.1, (c) 0.02 and (d) 0.01.

We run again the experiment of the previous section with a value of ¥ = 1. The non-
linear model is then run again perturbed by a variation (Bdug, Sd¢p), where we use values
of 3 =0.5,0.1,0.02,0.01. For each value of 8 we calculate the estimated linearization error
using (36) and the estimated solution error using (38). Figure 5 shows the time evolution
of the estimated solution error Es for the u field for the different values of 8. We choose to
plot the u field rather than the ¢ field since its solution errors are larger and thus we have
a better test of the formulae. We see from Fig. 5 that for S = (0.5 the estimated solution
error is a good approximation to the calculated TLM solution error only for approximately
the first 70 time steps. As the value of /3 is reduced, the estimated solution error matches
better the actual solution error calculated from the TLM.

One problem we have is how to choose a suitable value of 3 in practice when we do
not have the true error to compare with. We must ensure that the value chosen is small
enough to ensure an accurate estimate of the linearization error. However, inspection of
(36) shows that if too small a value is chosen, then there may be problems with numerical
rounding error. A method for choosing the parameter can be obtained by examining the

evolution of the estimated solution error. We see from Fig. 5 that as the value of 3 is



reduced, the estimates of the solution error converge to the true value. Thus by calculating
the estimated solution error for different values of 3 it is possible to see at what value the
estimates begin to converge. This convergence can be seen even without reference to the
true TLM value. The largest value of  for which the estimated solution error appears to
have converged can then be taken as the most suitable value of the parameter with which
to calculate the error in the fields. For this experiment we define convergence to be the
point at which smaller values of 3 do not change the estimated solution error at the end
of the run by more than 1%. This leads to a choice of 5 = 0.02.

We now look at the estimate of the linearization error itself. In Fig. 6 we plot the true
linearization error E,, of the u field after 250 time steps and the estimated linearization
error £, for values of # = 0.1 and 0.02. We see that qualitatively £, is a good estimate
of the true linearization error for the chosen values of 5. Figure 7 shows the differences
between these estimates and the true error. We find that using a value of 8 = 0.02 com-
pared to 3 = 0.1 introduces approximately a five-fold decrease in the maximum difference.
The values of the maxima for these values of 3 are 3.43 x 10 *ms~! and 6.78 x 10~ °ms™~!
respectively. This would be expected, since we see from (33) and (37) that

e s S

which is proportional to 3. The size of this difference should be compared to the maximum

1 The estimate of

value of the linearization error over the domain, which is 4.5 x 10 3ms~
the TLM linearization error with the parameter value g = 0.02 is accurate to within 1.5%
of the true value. For the stationary solution in the centre of the domain the linearization
error is 1.3 X 107?ms~! and the estimate differs from this by approximately 0.25%. Thus
it seems that with the value of 8 = 0.02, which was conjectured to be a suitable value of
the parameter, the estimated error £,, does indeed provide a good quantitative estimate
of the TLM linearization error. Experiments with smaller perturbations have shown that

this estimate remains valid as the perturbation size is reduced, provided that the solution

error is greater than approximately 0.001%.

7 Conclusions

We have compared two methods for deriving a linear model, the discrete method, which
produces a TLM, and the semi-continuous method, which produces a PFM. Using a semi-

implicit semi-Lagrangian model of the one-dimensional shallow water equations we have
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Figure 7: True TLM linearization error minus estimated TLM linearization error for values of 3

equal to (a) 0.1 and (b) 0.02.

shown that for finite perturbations the PFM can be as accurate as the TLM when com-
pared to the difference between two runs of the nonlinear model.

We found that in the limit of small perturbations the PFM does not converge to the
difference between the solution of two runs of the discrete nonlinear model, whereas the
TLM usually does. In practice this is unlikely to cause a problem, since the linear model is
either used to model finite-sized perturbations (in incremental 4D-Var) or to model explic-
itly a finite background error covariance (in the Kalman filter). It does however provide
a problem for testing a PFM, since the usual method of showing that the linearization
error tends to zero as the perturbation size is reduced cannot be applied. Within this
study we have developed an alternative method of testing a PFM, which uses the nonlin-
ear model to estimate the linearization error an exact TLM would give. This method has
been illustrated theoretically and numerically and has since been used to verify tests of
the three-dimensional PFM at the Met Office. Results from this work will be reported in

a future paper.
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