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Abstract

The triple-~deck analysis of boundary layer flow over topography is
extended to include the effects of stable stratification in the free—
stream. Analysis of the linearised three~dimensional flow shows that
gravity waves generated in the outer region have a significant influénce
on the flow in the boundary layer due to the interactive nature of the
triple—deck structure. Numerical solution of the two-dimensional
non-linear equations shows the inhibition of seﬁaration by the strati-
ficiation, and also gives larger amplitudes of the generated gravity

waves than would be expected from the linearised theory.
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1« © Introduction

In a recent paper, Smith, Sykes, and Brighton (1977) developed
a three-dimensional theory of boundary layer flow ovér topography and
on the 'triple-deck' analysis, see Stewartson (1974). This
analysis is restricted to particular length and height scales of

- Yopography, but these are in fact very important scales for the
boundary layer dynamics. The triple~deck analysis determineé the
size of surface features which induce an interaction between the
boundary layer and the free stream, and also determines the nature
of the interaction. The effects of topography were first analysed
for two~aimensiona1 flow uy F T Smith (1973), and for three-dimensional
pipeflow by F T Smith (1976).

Although the flow described by Smith, Sykes, and Brighton
(hereafter referred to as (4)) is a laminar flow, an understanding
of such problems is an important preliminary to the study of atmos--
pheric flow over hills., The atmosphere is usually stably stratified
outside the boundary layer, and topography of suitable
horizontal dimensions, roughly 1 — 10 km, will generate internal
gravity.waves. Most theoretical ireatments of stratified flow over

.fopog?aphy, eg Queney (1949), Scorer (1953), Brétherton (1969),
.assﬁme an inviscid‘fluid, and attention has been concentrated'on
investigating the éffects of vertical variation of temperature
gradient and velocity. However, since most hills -on scales
shorter than 10 km are smaller than.fhe depth of the boundary layef
(1.e. typic§lly less than a few hundred metres high), the boundary

layer dynamics might be expected to play a significant role.




In this paper; the effects of stratification are included in
the triple~deck interaction on the assumption that buoyancy effects
are only appreciable in the flow outside the boundary layer. For
typical values of atmospheric parameters, specifying a'gonstaﬁt eddy
viscosity of 5 m23-1, this will bg shown to be a reasonable
assumption,

The next section describes the analysis of the stratified upper
deck: problem, and the matching with the boundary layer solution.
Section 3 presents the linearised solution of the three-dimensional
probicm, valid for very small hills, Section 4 describes a
numericai scheme for the solution of the two-dimensional non-linear
problem, and Section 5 presents some numerical results. Section 6

discusses the forces due to the presence of the topography.

2. Triple-deck analvsis with stratified free-stream

The flow under consideration is illustrated in figure 1, and
consists of a uniform flow of speed L{o in the x-direction above a
no-slip boundary., The hill has lengths of order [ in both the
x* ana y* -directiqns, and the fluid has kinematic viscosity ¥ .
These three quantities define a Reynolds number Re. = (f,{%!: « The
_geometry is identical to that in (A), where it was shown that |
£ z'R.eJ/s is the important small parameter for the triple-deck
interéction. The boundary layer muét have a depth of order 81;, and
the height of the hill is C>(£?L). The boundaryxlayér scale,

Z* = O(Elb then becomes the main dzacik, with a lower deck in which
z*: O(EzL) , and an upper deck with Z’:"-'-'O(L), these three scales |

forming an interactive flow system. The effects of stratification
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can be incorporated into this structure without changing the nature

of the interaction, provided the buoyancy is only important in the

upper decke.

The dimensionless number associated with the stratification is

written asan inver{se internal Froude number S sg._f;, vhere N is the Brunt - V;isglg
g dfoTR |
frequency [ ] df_,?,;] . |

Here g is the acceleration due to gravity, ? is the mean density,

and t—‘%-;;’is the undisturbed density gradient in the free-stream. We
assume g is a consiant since we will be making the Boussinesq
approximation later, i.e. the variations in density are much smaller
than —§>_ . We show below that S"O(f) is the required magnitude of the
inveérse -Froude number.

Before proceeding, some typical parameter values are presented.. Ve
assume an eddy viscosity of Lmts', and a boundary layer depth of 300 m.
These values represent typical atmospheric values, although it must be
remembered 'that the turbulent boundary layer has a significantly different
-detailed structure. For a geostrophic wind of 10 ms-1, this gives & £ 0'2)
so the length of the fopography is of order 1.5 km, and its height

of order 60 m. If N is teken to be 1072 s~1, this implies S = 1.5.

The Beussinesq equations of motion are

: Su* Sk s daf 9P » Viur :
.a!-é_;* + V*%—* s A = = +? Vi - €2 l>

P e iy o ..gi’?* A% (2.2)
8 X y Z

% 25
u* g%’: - v*'g_g: « W -gifﬁ ~ 9?3 cwPut s Az

% 6 ¥ % 6 % 2 %
kA V*%; L0r S, e V' . (2.4)
* dvE 3
b e i 80

where ?* is the density perturbation,K is the thermal diffusivity, and

an ast'erisk denotes a dimensional quantity.
Scale the variables, (':(*,g*) = L (I,g} :

W v wr) = U, (47 WY | and P L(ff:.




The basic density al’?;’( can be eliminated from (2.3) by subtracting
e ¥
* .
out the hydrostatic pressure P, , defined by é__@' = "8% , hence the
& %
*
buoyancy term in term in (2.3) can be written as fﬁ (S’ - fo(z:*‘))
®
So if we define the dimensionless density O= g '?0, , then the
£
. . LN%p . P
buoyancy term finally becomes e. z

The lower deck scale Z is defined by Z”= EQLZ , thus the lower deck
density equation (2.4) in dimensionless variables is > 9,
2., 3¢, 99, €%
v o £°w of «W:ﬂﬂﬂr+.8&£
U %g + é—g -+ b:g Sx2 osz 372
It was pointed out in (A) that in the lower deck u = O(E

provided. the Prandt( numbet a)/,K is O()
and W=O(€9, ‘hence (7--6) shows P= O(*),  The buoyancy term in the

2 ! : 2
vertical momentun equation is -S 9 yo80r AT S;:C{{) this term is O(E ).
However g'g = O( 0 since P"O(Ez) throughout the flow, hence the

lower deck momentum equations are unchanged.

A similar argument, using the velocity magnitudes from (4),

shows that the main deck equations are unchanged.

R e e SL T e o directly
from (4)
Main deck
We expand the solutions :
u= Ug (=) + EU + o(?) .
Ve g2y + O(ed) e
W= g2 + O(s?) ' |
P = £2P1 + 0(?3>
vhere Z =£ , and Ug(Z) is the upstrcam dimensionless

boundary layer profile.



The main deck solution is therefore
u, = Ay uiz)
wom =W () | (2.2)
V = 'DOf q)/ug(?)
po= Plup)

where N) a _,_bP , and A and P are to be determined,
by oYy

Lower deck

Define i cll OGS
\f =e »’ + C)(ff) :2 <?
w= g3/ + 0(c%) 2.9)
p = €2 Plxy) + OG?)

Then the leading terms in the equations of motion are

UM, VU WU _oP 4 oll

UY . vov Wik 3P (2.00)
3% % YA oy o7

U @y TR )
with boundary bondltgons %

Vo W=0 om =~ ’1(7‘; y) (:.g bwer Bouna’arg

U~ Z ¢ Aby) @-11)
V & D)/ 2 7 w4 h 0

X
; :
Here we have assumed thet W3 (O) = 1 y since other values of the

undisturbed skin friction are obtaiued by re~scaling the variables,

as shown in (A).
Stratified voper deck
. The displacement A(x,g) at the top of the boundary layer induces a

pressure field in the upper deck, which is ccmmunicated to the surface and

drives, q't_he lower deck flow, Thus the upper deck solution provides the relation
between the streamline o!isr!ﬂcemené', /f('z,y), and the pressure P(ft,a)




The velocity scales are unchanged by stTatification if S —’-‘-O('() .

so we expand the variables as

ae ety +:00%)
V= E'IU( o ¥ O(£z>

Q.4
wa 8 Wi+ O(sY) C 2)
p = g2 (?1, + O(£3>
e = 82 g).( * O(€3>

Then substituting in the Navier — Stokes equations (2.1) = (2.5)

gives (}__Z_éf s bf)
J%
W . w ,
-T2 8 E
A7 TR (2-3)
ox 03 _
0 o U

: K-
vhere 3: Z*/L-, .
Equations (2.13) can be combined to give
s 30 el/¥0  ¥E Y O (2.1¢)
V Tt + N a2
e 5z 3y
The boundary conditions at 3 = 0 on (2.13) are obtained by

matching with the top of the main deck, giving

£ (xy,0) = Plxy) (2.15)
oo oA |
‘and Wi lry,0) = — 3% 2 ;
. o g 3° A (2.6
i 351 15 + g ?1 ’5 20 39& oe oa ->¢.(I<74(U

Define the Fourier'transform Xy(}g 4, 5) f f ('f!,
00
then (2 14) and (2.15) give

£ = Ple,0)e™
where m'z' = (/e2+ ¢ a)( S.z__ z) y and the overbar denotes a Fourier
k)?.

transform,



1f ” l > S then m is imaginary, and the decaying mode must
2, p2\"2 f12 ~2\V2 )
be chosen, i.e. (k '&e > ([( ) p) “3[ >S (2“7

Vhen {.’Ql(S, the solutions are wavelike in the vertical, and the
mode which fransports energy upwards must be chosen.

This is most easily seen by transforming into the frame of the fluid
in the free—stream, i.e. the lower boundary is now moving with velocity
(—-1,0, 0). The full dispersion relation is then

(K £7)"
W= +
(k% e Yt

_ where () is the wave frequency and the sign is to be determined. The

vertical group velocity of this wave is

2 g2 %
360 . n[a)) m S(k )
om 43 Gt )

Since we are seeking a steady solution in the frame of the lower

. boundary, the waves must have a phase speed equal to -1, i e. @ = -k; thus
the sign ofa) is opposite to that of k. If we now demand that 360 > O

om
then sgn(m) = sgn(k). Thus

m= (k% 1)z (S /ra2>/z/lz , kl < S (2.1%)
Using (2.13) to relate ?( to A at 5._._0, A the s
boundary condition (2.16),

gt T

| P
e 2 S (2.19)
k- S*

where m is determined by (2.17), (2.18).




Thus the problem is to solve the lower deck equations (.2.10) subject

$o the boundary conditions (2.11) together with relation (2.19). The
linearised three-dimensional solution is described in the next section,
and some two-dimensional numerical :solutions are presented in section 5.

3.  Linearised solution (three-dimensional)

If we assume the hill is very small, i.e. h(x,}p = ;’o F(’Qg)

with ,19 X 1 , the equations (2.10) can be linearised about the basic
.state, and then solved by Fourier transforms. This approach is

identical to the method used in (4), and the details are omxnlted.

Ve expand u"Zf“o (VWA P) ’1(44 A P)

A
The only difference in the analysis is the relation between A and P >

so the result is simply stated here. In Fourier transform space, we find
e BF
= a z
P " (o BB (1 ) - ke (k= SN

vhere Q ( 3/41 (0)3 , Ai is the Airy functiocn, and (‘k) : is defined

with a branch cut along the positive imaginary k -axis, and * 3” <N8 h <T 2

The value of m is determined by equations (2.17), (2.18).



Expressions for the other fields are obtained as described in (A),
and we now present some results for S=‘- 3 obtained using the Fast
Fourier Transform for the numerical calculations, Figure 2 shows
the pressure field for flow over the hill
(ol P 7 3
cos® ( (F4)%) | oty ¢ o
FC%I 53 = ? 3.4
; & » othervise ;
The local velues around the hill are very similar to the
homogeneous case, but downstream the wave structure is evident, The
asymptotic behaviour is also quite different, An analysis along the

same lines as (A) gives
A S o¢ &) x?‘{.b,z <A DA
‘P(’f\g) N (xz‘eyz)f’/z

which is a slower decay than the homogencous problem.

A
all
0L 2o

The reduction in the magitude of the minimum at the rear of the hill,~ fTomthe

Figure 3 shows the streamwise skin friction perturbation

homogeneous value of -0.42 to -0.21 by the stratification, implieé that separatioh will
+ be inhibitedThe waves downstream appear to be restricted léterally to
a corridor as in the homogeneous case, Asymptotic analysis confirms
the existence of a corridor with the same width as the hill, and g_g
: decaying like x:-(;/s inside this corridor, The regior&s of accelerated
surface fluid at the outer edges of and outside the corridor are also
removed by the stratification. .
There is also a corridor effect in the streamline displacement,
-—Zl\('l,g) ; illustrated in Figure 4. The gravity waves. are particularly -

obvious here, extending downstream inside the corridor. The apparent

upstream corridor is a result of the periodic boundary conditions; §n'the
isolated case there is very little upstream influence in the displacement.
The transverse velocities are not shown here, but the ficld at the top of the

A . -
lower deck, given by'D(a',:a:), is not substantially affected by the stratification.




However, the transverse skin friction has waves which cause it to
"keep changing sign downstream; this destroys the secondary flow

vortices of the homogeneous flow, see Figure 8 of (A4).

Thus the buoyancy forces appear to generate waves confined to
the downstiream corridor, and also give slower asymptotic decay rates

than the homogeneous flow.

4. The numerical model (two-dimensional)

For finite values of h,, the lower deck equations (2.10) are
non-linear, and must be solved numerically. For simplicity, we only
consider two-dimensjonal flows, therefore V = O, and there is no variation
in the y-direction, Since.separation in the triple-deck structure is
a regular phenomenon, Stewartson (1974), a numerical model can be used
to investigate separated flows, provided reverse velocities are not
too large. Previous numerical work has often used an implicit Crank—
" Nicholson technique requiring a nonlinear relaxation at each step,

e.g Smith (1974), Jobe and Burggraf (1974). . - .. A scheme for
ﬁarching in the x-direction without iteration is présented below. The
scheme is second — order accurate, and copes with reasonably separafed

‘flows without instability.

First, we apply a simple transformatién to the lower-deck

equations to give a horizontal lower boundary. Define

5. = 2 -igfx)

VLR Ty - (4.1)
- .d-i' y
Substituting (4.1) into the equations (2.10) simply replaces Z by z’ and

W hy'w/. So dropping primes, but remembering we are working in the
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transformed variables, we have to solve

Uil w Wil = —dP . ¥U

82 az ax 622 .2
o oz

with boundary conditions
U=W=0 at Z=0

U~vZ+rAsh
W —(ZtA< 11)0& (A+h)

The solution method is to guess a displacement field, and,

oy Z~> 6o

integrate (4.2) through the domain to obtain a pressure field. A

new displacement can then be calculated in wavenumber space from (2.19),
and the process continues until the change in the displacement is

sufficiently small.
Equations (4.2) are integrated by finite — difference methods,
using a2 uniform grid, with spacing 8x and &z in the x— and z-direct—

ions respectively., Let u‘d denote the horizontal component of

~ velocity at the point (xi>21a') = ((1~-M) 8x, (7 -1)0z )« We
suppose that velocity values UV, ((‘-,,,J are known for j = 1to N then
the values u‘”i are obtained by a three stage process as described
below,
Stage 1
Define u"iq 2 :1?:(6(;..,3 + a‘J> s then write the momentum
equation as

Llc (U.“L : Uy ,)> (W)Jz EZ (U ‘u‘ )) Oyt \z,d.(>

26? .
0.3
= =6+ (“**aﬂ - A "‘“w*»i U s

‘where thJ is the first estimate of the advanced velocltles at
v
o %- g and G-‘. is the estimated pressure gradient at the

point i, which is to be calculated. Note that the viscous term in

(4.3) uses the Du Fort - Frankel representation because of
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unconditional instability of the explicit form. The vertical
velocities can be calculated from the finite difference form of the
continuity equation

S t=2
The boundary conditions on a{, are applied in the obvious
manner, i,e. a;,f 0 ; ‘

Ui = =08 + As hE)

where A; is the value of A at Xy

L .
G: . Equation (4.3) is linear in a“""l«‘& s So first ignore thg

[

pressure gradient term, and advance the velocities, obtaining the
¥ : -

values a‘."is‘i s 5ay. Then calculate /3 > ,)-’-2 ) N-{

such that

J

and choose the value of G which gives

Wen-y = ~((0-3)82 ¢ At htx )) (A‘“ "A“ < h,("J)

It can be shown that
R 1AL e 3>
z i 02° is';z 237:

J
;zax/& e 26(", (ac..yﬂ" "J'f>

Then'. : (é'—i." (w‘-,p.i - W.’,U’!i>
| = 5 e
A

where \,‘\/‘ N- is defined by (4.6), ana \’\lg N -g is obtained from

Wijs = SZ S (¢.4)

N

The boundary condition W at Zy.1determines the pressure gradient
2

ZZ’u—, = at‘f"\. Z ﬂ.) 2::: B (45-)

(4-6)

and E ﬂ. = 287(4. (L(t,d'é(.'u")“>2ﬁr N J>2

the continuity equation (4.4) using ul‘*%.,j for the advanced velocity.

o~
Having obtained , substitution in (4.5) gives the values of [,{‘.

4,
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Stage 2
(o %

In this stage, the velocities L(Ug)s are used to obtain a first
~.
guess for the velocities at 93'.';.(." iC. (,(.c‘.u)j,This stage is almost
identical to Stage 1, but is shifted by half a grid-length in the

x~direction. We therefore only present the momentum equation.

au,,) (([‘4{ -.—[{‘J> {l\/‘ti J-l + “"(U‘J Uu.J>} ((/((4{,‘)4(51 u,”-{>
dx

N~

512 J

(4.9)

Stage 3

This is the final stage, which uses the velocities from Stage 2
to produce the values of agu,‘, . The viscous terms are treated
implicitly in this stage, since the Du Fort — Frankel scheme tends to

produce oscillatory solutions in the vertical,

Hrite the momentum eq'uatlon in the form

. a“iao (U, : ,.U‘)} % Wu— Witd g (a‘u,.,u Ui, g = Uity - ‘l/lw-l) (4 ﬁ)
: K

oz
e G-t.-‘lz 28 2 (a“4‘)J4( + l( t?m'('l'j "’2 it fl/““{)j"“{'a‘.,d.'l)

wgele &\il»‘p.‘, =4 (m‘u,‘;f“sﬂ ) \'\/&1 i3 8’ {2: (Ut ~ lAul ‘") AL (L(‘J -'a‘u

and 6'1*2_ is the pressure gradient, whlch is still to be determlncd.

:.))J

Note that in this stage, vertical velocities are calculated
explicitly from the previously estimated flelds. - However, we choose

G‘..el to make the final vertlcal velooity

\'JL‘U' }'J“L = ((’(('F‘ o D(Hl r > . (4-(0)

?(. =22
satlsfy the upper boundary conthlon.

If we write (4.9) in matrix notation as

/45'—"' - "‘"44_2"-!-}3



A3~

andb contains all the explicit terms in (4.9), then the solution
is -{ -1
U= /4 :'l?. s C"h;’_ A A (4'(0

This is precisely analpgous to (4.5) in Stage 1, and since A is easily
inverted, the pressure gradient can be determined from the boundary
condition on vertical velocity, M’{lz,n—:;_ - The value of 4‘“{. is

then used to advance the pressure field.

After completing the sweep through to ?CM , & new pressure field
has been calculated, By means of the FFT routine, this is
numerically transformed, and hence, using (2.19), a new dispia.cement
field is calculated. The adjustment of the displacement is under—

relaxed, i.e
’ .n. .y (ca(c>

(e“’) = ((—8)4(J)+ e A

; A(&(c}

where is the displacement value obtained from the latest
pressure field, and O € £ { . mhis procedure is neces;sa.ry to
Iireve.nt divergence in the displacement values, see Jobe and Burggraf
(1974). The value of & is adjusted automatically to maintain the
maximum rate of convergence. The iteration is terminated when

. m;«x lA:m'c\_A:olcﬁl Ve e IO‘Z m?x lA_':(old)l
For simplicity,_ periodic boundary conditions are specified in. the

x-direction, so the final values obtained at the end of a sweep

‘become the starting values for the next sweep.‘

Note that the mean value of A is not determined by (2.19),

since any constant can be added to the pressure field, The mean
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value was adjusted during the iteration procedure to ensure that the pressure

returned to its upstream value at XmM .

In order to deal with separated flows, it is assumed that the
horizontal advecéion is negligible in reversed flow regions, the
Reyhner — Fligge — Lotz (1968) approximation, so the first terms in
‘equations (4.3), (4.8), (4.9) are set to zero in such regionsii It is
the problem of separation which necessitates the use of two initial
estimétes of the advanced velocities., The explicit calculation
tends to produce oscillations in the x~direction with a wavelength
_of 257(,, but taking two such steps seems to maintain the phase of
this oscillation, and prevents it growing. This allows relatively

strong separations to be calculated without signs of instability.

5« Numerical results

e first present a solution for homogencous flow over the ridge

héx) = {ho(("“> ,:::<11

which will be the shape used in all the 1ntegratlons presented in
this section, - Figure 5(a) shows streamlines of the lower deck flow with A 25,
and the surface pressure and skin-friction appear in Figures 5(b) and (c).
Only the central part of the domain of integration is shown, i.e.

[l S‘l{- y &~ '1(7.)5\2, vhilst the range used in the calculation is

~10 $x €40 , O € Z-hx) € _
Note that Z is the original.Caftesian coordinate rather than the transfprmed
‘variable, The solution shows an appreciable separétion bubble behind
the obstacle, and a corresponding reduction in the adverse pressure

gradient in this region. The regularity of the separation is demon-

strated by the smooth behaviour of the preésure and skin friction.

oen. 2
- Te v N ~
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There is a small oscillation associated with the maxiﬁum feversed
velocity evident in these figures, but this can be reduced by
increased resolulkion, and does not have any significant effect on
the solution. The general form of the solution is similar to that
of linearized analysis, but the magnitude is slightly larger than
might be expected. The flow first separates athdﬁlxﬁ whereas
extrapolation from the linear result implies the critical height
is about 2.k.

Figures 6 and 7 illustrate the streamlines for the same hill,
- but with § = 3, and S = 5 respectively. It can be seen that when

= 5 the separation is completely suppressed, but S = 5 gives a
similar result to the homogeneous case. (The minimum ékin frietion
value achievéd for the flow in Figure 6 is 0.1 at the rear of the
hill.) There is evidently a type of resonant response when the
natural wave-length,%gf,is near to the length of the topography as
is the case in Figure 6. The waves produced are then of large
amplitude, and in phase with the hill, so theAflow tends to remain
attached. When S = 5, very little gravity wave energy is excited,
and the streamlines are similar to those in Figure 5(a).

The solutions described above show that the presence of staﬁle
stratification in the {ree-stream can have é signficiant effect on
the flow near the surface. Figure 8 shows the flow with S = 2 and
vhere the wave amplitude is sufficient to induce ; separation bubble
downstream of the hill. This is a similar phenomenon to the 'rotors'

generated by trapped lee-vaves, e.g Long (1955).
The length of the domain of integration has been varied to ensure

that the periodic boundary conditions do not have a significant effect



on the solution , and a length of 20 was found to be sufficiently long for all

the flowe described here. Most of the solutions converged within about 20

&weeps through the mesh, although the higher values of Iqoand S tended to take longer
6: Forces due to the hill

The total change in momentum transfer between the free-stream
“and the surface is the quantity of interest in meteorological applic—
ations. This is the sum of the preséure force on the hill and the

change in total viscous force on the surface.

We consider the two-dimensional case, and use the transfor-

mation described in §Q— i.e.
A Z [4(76)
w=tW- M
erte the momentum equation in the formp 2[( :
S )+ & (Uw') = -odP . oU % |
X oz! Skl 9B ( )

Integrating (6.1) over all values of x gives
[
v = 3T uwdx] (6.2)
oz QZ! & *-pe
6

were Fxye (“(8 -Odx , 0 F (0)
is the change in viscous drag on the surface.
The other terms in (6.1) venish upon integration since P—-o0
as x> oo and the velocity perturbations decay too rapidly

downstream for a momentum—deficit to be maintained.

Integrating (6.2) from 2’ = 0 to infinity gives

() : : ;

F(O) 2 - lm f UW,A“ : (6'3>
Z ‘b Yo :

Using the upper boundary condition or W ’ and the equations of

motion, asymptotic expansions for U, ' valia for Z") 62 can be

obtained. These are ( : >
e 25 + A+h + O(Z"
W~ o Z‘[ (A+h) - (Ad\)g(/h‘w) 45 * O(ZM'>

So substituting in (6.3) gives

F(o) y(?ﬁﬁgyx

e —— o S




Hence the total force on the surface, after adding the pressure
: S 7
forceis = giflol [ P o o (6.¢)
. —bo d?:.
This is precisely the force due to inviscid flow over the topog-
raphy =~ A(x), since P(x) is the pressure at the bottom of the upper
deck, The only mechanism capable of prbduoing a force in such a flow

is the radiation of energy to infinity by gravity waves. Thus the

total force on the surface is changed only by the gravity wave drag.

The analysis can be carried out in three-dimensional flows, although
the algebra is more complicated, and gives a similar result,

i.es the only extra momentum transfer is due to wave radiation,

The variation of the dfag with § for small hills can be calcula-
ted from the linear theory. The results for the ridge used in
are illustrated in Figure 9. The graph shows 2 maximum wave drag
when S'&'S, vhich is the value. giving a natural wavelength the same
length as the topography. For S small, the force grows roughly
linearly, while for S large, it decreases like S-1. ~ This variation
of wave drag with -inverse Froude number is-quite different to that
of the inviscid, linear, wave-generation theory of Miles and Huppert
.(1969). The inviscid theory gives a forde vhich continues to grow
iinearly with S, provided that the vertical Eroudéa nunber &£ 28 ’
which is based on the height of the obstacle rather than its length,
remains small, The reason fo; the difference is that for the
inviscid flow there'is no boundary iayer, and the wave amplitude must
be of the same order as the height of the topography. However, when
jhe hill lies inside a viséous boundary layer there is a cushioning

effect between the surface and the free-stream, and the displacement
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#t the top of the bogndary layer is generally smaller than that at
the surface. For higher values of S, the free-stream becomes more
resistant to vertical displacement, and solution of the linearised
equations shows that the amplitude of the streamline displacement

A
/4) decreases like S-1, resulting in a reduction in force at large S,

.The growth of the drag force with increasing hy is shown in
Figure 10, The results are obtained from the numerical modcl,;sing
S = 2, The linear result is shown as the dashcd line, which
coincides with the numerical results for small hoe However for
bo >'1 y the force increases significantly faster than hg 7 the slope
of the graph is approximately 2,32, This is due to the fact that the
Aamplitude of the waves grows like k;dé; so for ho>»1 y the waves will

be larger than predicted by linear theory.
The upper line in Figure 10 shows the wave drag predicted by

inviscid linear theory, i.e. no boundary layer present. The height
of the hill is O[e’L); therefore the linearisation is valid. The

results are obviously quite different, due to the interaction with the

‘boundary layer dynamics, and in this case, the inviscid theory predicts

a larger drag for small values of hy.  However, since the triple deck
results show the drag growing faster than hoz, the two curves will
eventually cross, but for this particular hill the cross-over point

will be at very large hg. :

6. Remarks
It has been shown that the presence of stable stratification in
the free stream can have dramatic effects on the boundary layer flow.

Within the framework of the triple deck aﬁalysiu, it appears that




separation can be inhibited, and downstream rotors can be p?oduced.
Although the inter;c£ion with a turbulent boundary layer w0u1d'
probably be less strong, it seems likely that there would be a
qualitative similarity. Such features in the flow near the surface

could be of importance in the dispersion of pollutants near hills,

The gravity waves iﬁduced in the free stream are quite different
in amplitude and shape to those predicted by an inviscid theory:
Although the slope of the topography is asymptotically small,C)(flA;>,
i% is found that the wave amplitude increases like ho1°16. Effects
such as this may be of importance in determining the amplitude of
éravity waves in the atmosphere, since inviscid linear theories often
seem inadequate, sce e.g. R B Smith (1976).

Finally, I would like to express my thanks to Dr F T Smith for

many helpful discussions of this work.
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Figure oczptions

Schematic diagrem of flow geometry and coordinate systom,.

Ll)

Figure 1

Figure 2 : Contours of the linsarised pressure soluticn, ?. The square illustrated
is |x{< 7.5, |¥|{ 7.5, and the topogrephy iz given in equaticn (31)%
The contour interval is 0.02, and solid cantours denote positive values,
dashed contours negative values.

Figaxre 3

Contours of the linearised skin-fricticn pertubetion oJJ
Z 0

The contour interval is 0.
Contours of the linsarised streamlins displecement solution, = ﬁ.

Figurs L.

The contour interval is 0.02, and positive values imply upwexd displace-
ment. : g
Figure 5 : (a) Streemlines from numsrical solution with h, = 3, 8 = 0, 8x = 0.08,
Oz = 0,25, Y = 256, N = 60. Tho domain illustrated is |x|g %,
Z -h(x)<12.
(b) Grid-point va,lues of dimensiohless pressure P for ho =3, S =04

_(o) GI‘ld—pOlntZOI skin friction U
: 64

Figure 6 : Stroemlines for h, = 3, S = 3, other paramsters as figure 5.
Figure 7 : Streamlines for hy = 3, S = 5, other parameters es figurs 5.
Figare 8 : Streamlines for hy = 6, S =2, =5 = 0,5, other parameters as figure 5.
Domein illustrated is |x| €6, Z ~ h(x)£ 2k,
Figarc 9 : Graph of linearised wave drag, F , against S.
6"" ho2-<)-U02
Figure 10: Graph of dimensicnless wave drag F , against hy.
£%3 Ul 1

Numsrical results are represented by crosses.
= « — =— ropresents results from the linear theoory.
o s = Yepresents results from invisoid linsar theory.
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