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1. Introduction.

The semi-geostrophic equations have been shown to describe most
motions of interest i1in weather forecasting, see for example Cullen,
Norbury, Purser and Shutts (1987). The equations can be applied globally
although their ability to predict atmospheric motion on a global scale for
a period of days has yet to be proven. We consider using an implicit
finite-difference scheme to solve the global equations. The method we use
combines techniques developed by Meek and Norbury (1984) and Cohn et al
(1985). This approach leads to the need to be able to solve large sparse
matrix systems efficiently. The ease in which the equations can be split
into x-z and y-z slices lends them to solution by an Alternating Direction
Implicit (A. D. I.) method. In this note we concern ourselves with finding
the optimum strategy for their solution by this method. Various schemes are
presented along with the motivation behind them. They are then all applied
to the same idealised test problem and their rates of convergence compared

he u ons to be lv

The dry semi-geostrophic equations in spherical polar co-ordinates
(A, p) are as follows:
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do

(ps/ 1000)* ,x= R/C_. ,0 = p/pa T,

The boundary condition is S=0 at o0=0, 1.

Elimination of ¢ between (5), (6), and (7) gives

TOuUL "=agRoR= 58 =1 Gl o 00 On =829
b0 a Op : —;; ;;

fov, = 1 i i=nRor=1 D8+ G o da o i (5940
;;_ a cosp : ;;_ ;; ;: ;

Equations (6) and (7) are applied at o0=1 with ¢ = @.(\, p). The notation is
standard, except that (U, V, S) represent (p,u, Ppav, px«¢). H represents a
source term for potential temperature: F_,, F_, are friction terms.

The equations are stepped forward in time using a predictor/corrector
method. Here we describe only with the corrector step. Starting with an
initial balanced state defined such that if
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then DE, (1<k¢N> = O and DN, (1¢k¢{N> = O and then perturb it so that the
DE.'s and/or the DN.'s are no longer zero. To return the model to a
balanced state we solve the following:
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To simplify the solution of equations 14-15 and 16-17 we introduce
stream—functions as follows:

for equations 14-15 consider the continuity equation (4) on an east-west
slice
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Taking the vertical mean of this yields
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where 0 denotes the vertical mean of U.
Subtracting 19 from 18 gives
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so we can define a stream-function y such that
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The corrections A8, Ap., Av, in equations 14-15 can be written as follows:
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We can now substitute for U and S in 22-24 using 21 and hence write the
corrections in terms of y and 0. To ensure a unique, numerically stable
solution to these equations it is necessary to oust certain terms in 22 and
24 and also the terms in A® in 14 and the terms in Ap. and d/d0 46 in 15 as
explained in Cullen (1988). It is also necessary to adjust the fields to
satisfy a stability criterion before the equations are solved. These
omissions are equivalent to wunder-relaxation and means that extra
iterations may be needed to reduce the residuals by a given amount.

22 becomes:
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with stability criterion:

f(vg + fx) must be monotonic increasing in the positive x-direction and
»6/d0 > O.

Substituting 23, 25 and 26 into 14 and 15 gives & system of equations which
is solved by the block tri-diagonal method described in Appendix B. The
corrections A8, Ap., and Av_ are found by reapplying 25, 23 and 26 again
respectively.

A similar argument is applied to equations 16-17 on a north-south
slice. The analogous terms to those ignored in 14-15 ,22 and 24 sre ignored
in this slice with the stream-function defined by :
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where U denotes the vertical mean of V. The corrections to A8, Ap. and Au,
are given by
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with the stability criterion that f(-u, + fy) must be monotonic increasing
in the positive y-direction and »6/2%0 > O.

When the corrections are calculated at the end of the east-west
slice different strategies for their use before the north-south slice
begins may be employed, similarly for the corrections arrived at at the end
of the north-south slice. Various alternatives are described in the next
section. The solution of east-west then north-south slices is iterated
until the residuals are removed. The correction strategies are discussed in
the next section. The dlscretisation of the equations i1s described in
Cullen and Mawson (1987) and the grid used is illustrated in Appendix A.

3. A.D. 1 Strategies.

i) Normal.

This is the control run with the full correction applied at the
end of each slice.

Procedure:
East-west slice update: 0, =8+ AQ, 2 £k ¢N
P» = P« t Op«
Vak = Vo + Av.g 1 ¢k ¢£N
North-south slice update: 0, = 6. + A8, 2 ¢k ¢N
P» = Pa t+ Apa
DV b L 8 aUG TR 1 <k §N

ii) Delayed:
Here no correction is applied to 6 and p. at the end of the East-

west slice but is remembered and applied at the end of the North-south
slice.

Procedure:
East-west slice update: store Afg,
store Ap.e
Vo B oviid oA 1 ¢k ¢N
North-south slice update: 0. = (A6g, + 088,,.0/2 + 0, 2¢k¢N
Ps» = (Apaxe + Opan)/2 + P»
Ugk & Ug + Aug 1 ¢k ¢N

The motivation behind trying this is as follows :

Suppose A8, = A8, and Ap.e = Ap.«n then DE_ =0, DN,=0 for all k and we have
removed all the residual in one iteration. However if we had used method
(1) then this solution would have taken more iterations to arrive at.

111) Relaxed 6 and p, approach.
This version is the same is 1) except that instead of applying the

full correction to 6 and p., at the end of each slice o times it is applied
with O ¢ o ¢ 1.



4. Problem posed.

Consider a uniform, stably stratified fluid at rest asbove a sphere
with no orography. A perturbation is introduced by redefining the surface
pressure in a particular area and calculating a consistent ¢, using 0.0r 6
but not altering the potentiesl temperature or velocity fields . This can be
considered as growing a mountain in the fluid. The mountain is specified
such that it is symmetrical.

5. Model Solution.

The problem described above was solved on a 3 x 3.75 degree grid
with 11 1levels in the vertical which were almost .equally spaced. The
mountain covered 20 grid-lengths from corner to corner with a mountain top
pressure of 920 mb initially, chosen so that none of the ADI schemes needed
to call the routines which adjust the geostrophic wind and potential
temperature fields to ensure the stability criterions are satisfied. These
routines are described in Cullen and Mawson (1987). The mountain was placed
so that the top was at 45 N . Figure 1 shows the plan view of the mountain
along with the lines of the cross-sections taken through it.

The cold dense air originally at the top of the mountain flows down
the sides as can be seen in the sequence of figures 2-4. This flow is
deflected by the Coriolis effect and a circulation characteristic of a high
pressure vortex is set up with subsidence above the mountain and an anti-
cyclonic circulation at the surface. To balance the outflow at the surface
there is a corresponding inflow aloft and associated cyclonic vortex due to
coriolis effect. This can be seen in the wind component cross-sections,
figures 5-12.

These figures are taken from runs using ADI scheme (i) and the
behaviour of it can be clearly seen. At time-step 1 the East-west slice
removes all its residual producing a modified potential temperature field
which is close to the final one. However the North-south slice still sees a
large residual and also produces a change to the temperature field in the
same sense as the East-west slice. Now the East-west slice sees a residual
of the opposite sign to before and corrects the potential temperature in
the opposite direction to the first time-step. The north-south slice now
sees a residual of the same sign as its first time-step and so corrects
tthe field accordingly.

Schematically:

Time-step e b s Ve
E-W 1 + +
N-S 1 + +
E-W 2 = =
N-S 2 + *

where the {(+,-) denote the increase or decrease of the quantity implied by
the solver.



This can be seen happening in the model by comparing the wind
components after 1 and 5 time-steps. u, time-step 1 is in figures 5 and 9
and the corresponding v, in 6 and 10, the 5 time-step u; is in figures 7
and 11 with v, in 8 and 12. Trying to remove this oscillation was the
motivating idea of scheme (ii) whilst scheme (iii) was an attempt to damp
it to see if that would improve convergence.

6. Comparison of schemes

The three schemes were all applied to the problem and the following
measure of their convergence rates was compared.

where V is the implied correction at sigma level 4 in the North-south slice
summed over 15 points from the top of the mountain northwards. The graph of
U against number of time-steps is shown in figure 13. The graph for scheme
(111) 1is with the parameter a = 0.7 which provided the best result. The
difference between this line and that of the control scheme (1) is small
and choice of which approach to use is not obvious. Scheme (ii) is worse
than the other two and this is due to the assumption about the temperature
corrections being equal from both slices being untrue. A possible way to
decide between schemes (i) and <(iii> 1s to run them with the mountain
placed at the equator.This will be invesigated in conjunction with other
work studing the models behaviour in the tropics.

7. Conclusion.

The ADI approach 1s a practical method for solving the corrector
step of this scheme although there appears to be more than one variant
capable of solving a problem with similar efficiency. It is hoped that a
clearer indication of which to use may be gained later and furthur variants
which may possibly be more efficient will be tried if and when they come to
light.



Appendix A.

The variables are staggered in space as

E-W Slice

Sigma

2% o= Uz vgs

Assume that there are N levels 1in
corresponds to the Nth 8 point.

rizonta T ement.
Vi
| |
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The data is arranged to be doubly periodic in the horizontal.

follows :
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The finite-

difference scheme is fully implicit in time and centred in space.



Appendix B. Solution of slice equations.

The method applies equally to latitudinal and longitudinal slices since the
data has been arranged to appear doubly periodic. In both situations the
equations take the form

Cu.\(-b)-, + Au..\' + Bu»-:-o-nr-u = f ( Al )

where capitals denote a matrix and lower case a vector. A, B, C are NxN and
u, f are of length N with Al periodic.

Assume the points in the x-direction are numbered 1 to L. The
cyclic system is solved by combining a non-cyclic algorithm for points 1 to
(L-1) with a special procedure for point L.

The procedure is then divided into the following stages.

a) Forward sweep.

e VR o By i o ( A2 )
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G =0 2¢1 ¢L~2 C A3 )

R e
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¢) Back substitution.
el e Wl e e PR SN L=229v40 )0 g ¢ A6 )
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d) Solve for Lth point.

( Al_ e BL D] i C._ DL.---'I )UL_ = f._ = Bl. O B CL. W Sy GoRZ0

e) Correct other points.

Uy = v, = Dy u. st S R G P | ( A8 )
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List of Figures.

1.

2

10.

11.

L2,

13,

Plan view of mountain and lines of cross-sections.
to 12. are cross-sections.

Initial potential temperature, East-west bottom 5 levels only.

1 time-step potential temperature, East-west bottom 5 levels only.

5 time-step potential temperature, East-west bottom 5 levels only.

1 time-step u,, East-west bottom 5 levels only.
1 time-step v, East-west all 11 levels.
5 time-step u,, East-west bottom 5 levels only.

5 time-step v, East-west all 11 levels.

[

time-step u,, North-south all 11 levels.
1 time-step v, North-south bottom 5 levels only.
5 time-step ug,, North-south all 11 levels
5 time-step v, North-south bottom 5 levels only.

Graph of Convergence measure for the 3 ADI schenes.
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