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Summar!

Recent research in dynamical extended-range prediction at the UK
Meteorological Office (UKMO), based on 40-day integrations of a global
11-1level general circulation model, is described. The forecast anomaly
correlation scores, calculated with respect to some set of background
atmospheric normals, contain a significant contribution due to differences
between the normals and the true atmospheric climate for the years
containing the experimental initialisation dates. This contribution varies
according to the choice of normals. The best set to use in practice are
those which minimise the measured scores, since they are closest to the
true climate. The model's own climatology is sufficiently realistic for it
to be suitable for long-range forecasting. However, significant climate
drift still occurs in all seasons, and empirical correction for this
increases the model's skill substantially, although the use of dependent
data exaggerates the improvement somewhat. On average, the skill of winter
and spring forecasts exceeds that of summer and autumn cases for days 1-15
and 6-20, for the domain 30-90°N. Although the mean skill remains well
above zero throughout the forecast period, there are few cases of high
skill, on the hemispheric scale, at extended-range. However, study of
local skill, over a region centred on the UK, shows that the model's
ability to forecast surface pressure anomalies compares favourably with
that of the experimental long-range forecasts produced at UKMO using
statistical forecasting techniques and medium-range dynamical predictions.
The major improvement is for days 6-15. Based on the anomaly correlation
score, encouraging results are obtained concerning the frequency with which
the degree of local skill reaches a potentially useful level, and the
prospects for predicting this skill in advance. However, further analysis
using alternative skill scores is required to confirm these results.
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T Introduction

It is well known (eg Lorenz, 1982), that there is no prospect of making
skilful predictions of instantaneous weather patterns beyond a range of two
weeks, due to the growth with time of small analysis errors. However on
certain occasions (Mansfield, 1986; Miyakoda et al, 1983), skilful
forecasts of temporally or spatially filtered fields are possible on the
monthly time scale using general circulation models (GCMs). Such filtering
methods isolate the larger, more predictable scales of motion (Shukla,
1981). Since the extent of low frequency variability depends on
geographical position (Blackmon et al, 1977), extended-range predictability
may be higher in some regions than others.

The influence of tropical sea surface temperature (SST) anomalies on
the tropical and extratropical atmospheric circulation has been
demonstrated (eg Horel and Wallace, 1981). Significant improvements in
forecast skill in tropical regions have been obtained through the inclusion
of observed SSTs (Miyakoda et al, 1986a; Owen and Palmer, 1987), although
for extratropical regions results are less clear cut (Mansfield, 1986;
Cubasch and Wiin-Nielsen, 1986; Miyakoda et al, 1986a).

In this paper only mid-latitude predictability is considered. The
integrations reported all use climatological SST, so any forecast skill
arises purely from the initial conditions. The technique of ensemble
forecasting involves running a number of forecasts from slightly different
initial states, each compatible with the errors associated with the latest
available analysis. This enables any skilful signal to be separated from
unpredictable noise arising from imprecise knowledge of the initial state.
Results from 'perfect model' experiments show that improved extended-range
skill, relative to that of individual forecasts, can be attained through
ensemble-averaging (Seidman, 1981; Hoffman and Kalnay, 1983; Murphy, 1988).
Recent 'real data' experiments suggest that some degree of increased skill
can also be realised in practical predictions (Miyakoda et al, 1986b;
Molteni et al, 1986; Murphy, 1988). 1In addition the last two studies, and
also Kalnay and Dalcher (1987), show that, at least locally, ensemble
spread may provide a useful a priori prediction of forecast skill.

The members of an ensemble forecast may be assumed to represent
equally probable evolutions of the atmosphere. An important question in
this context is whether the atmosphere obeys a unimodal, near normal
distribution of states, or resides mainly in one or other of a limited
number of quasi-stable flow regimes, with intermittent rapid transitions
between them. Reinhold (1987) gives a discussion of relevant work.
Evidence of bimodality in the space-integrated large-scale wave amplitude
has been found by Benzi et al (1986), although the distribution of zonal
wind values was unimodal. Benzi et al show that modification of the
Charney and de Vore (1979) resonance theory of multiple equilibria, through
the inclusion of some non-linear effects, produces results consistent with
these observations. If a view of the general circulation based on flow
regimes is appropriate, ensemble forecast distributions may sometimes
exhibit clustering (Murphy and Palmer, 1986), each cluster representing a
different regime, rather than taking a Gaussian form.



Since the skill of medium and extended-range forecasts varies |
considerably from case to case (Bengtsson and Simmons, 1983; Mansfield, |
1986; Molteni et al, 1986), the ability to predict skill in advance is of |
paramount importance. The use of ensemble spread is one possible approach. |
In addition, relationships between the skill of medium-range forecasts, and
diagnostics such as the amplitude and persistence of the large-scale flow,
measures of local synoptic activity, or certain characteristic patterns
such as Wallace and Gutzler's (1981) PNA teleconnection pattern, have been
examined by Hollingsworth et al (1985), Branstator (1986), and Palmer and
Tibaldi (1986), with promising results.

Major experimental extended-range forecast projects are now underway
at several centres (eg Tracton, 1986), encouraged by the research outlined
above. (See Hollingsworth et al (1987) for a comprehensive review of
topics in extended-range mid-latitude prediction.) 1In this paper results
are presented from recent experiments conducted at the UK Meteorological 7 e
Office (UKMO) using a global 11-level GCM. A large sample of individual
40-day integrations is used to determine the model's mean forecast skill,
and the variability thereof, for different seasons of the year (section 4). g .
The GCM's climate drift is discussed briefly in section 3, and its effect
on skill is subsequently assessed. Some consideration is given to the
general problem of forecast verification, relating to the contribution to
the measured skill arising from differences between the true atmospheric
climate, and the background normals used in practical assessment. Finally,
in section 5 the model's skill in the UK area is compared with that of the
experimental monthly long-range forecasts produced at UKMO, to assess the
likely impact on current extended-range forecast procedures of regular
input from monthly GCM integrations.

Study of these individual forecasts also provides a suitable background for
the future assessment of the practical impact of ensemble forecasts, which
is also a central part of the UKMO project.

25 Model and experiments

The model is a global, 11-level grid-point GCM with a latitude/
longitude grid of resolution 2.5 x 3.75°. Described in detail in Slingo
(1985), it is primarily designed for long climate integrations, and is
therefore considered suitable for extended-range forecast experiments,
although it cannot match the short-range skill of a high resolution
numerical weather prediction model. Particular features include an
interactive radiation scheme (incorporating the seasonal cycle) with i
predicted clouds, and a parametrization of gravity wave drag (Palmer et al,
1986), put in to ease the problem of excessive winter-time westerly flow in
northern mid-latitudes (see Slingo and Pearson, 1987).

(1)
L

Table 1 shows the initialisation dates of each of the sixty-four
40-day integrations considered in this paper. The same version of the
model was used in all experiments. Each forecast used climatological SSTs,
updated every 5 days during the integration. Initial data was taken from
the years 1982-7, with 16 forecasts for each season. The dates were
centred around the appropriate solstice or equinox with a maximum of four
dates per season per year, any pair of dates in the same year being at




least 10 days apart (with one exception where the gap was 9 days). No
attempt was made to pre-select dates likely to yield forecasts of
anomalously high skill. The integrations used initial data interpolated
from UKMO operational analyses, apart from a few cases (asterisked in Table
1), where the data was obtained from the European Centre for Medium Range
Weather Forecasts (ECMWF).

Most of the results presented subsequently, including the calculation
of model climate drift, are based on the 48 forecasts marked A in Table 1.
The remaining runs (marked B) are used to provide an independent test of
the reliability of the climate drift estimates.

In addition to these experiments, a set of ten 7-member extended-range
ensemble forecasts have been produced along the lines of the case discussed
by Murphy and Palmer (1986), using the lagged-average forecast technique of
Hoffman and Kalnay (1983), with initialisation dates chosen to correspond
with parallel work at other centres. It is intended to continue producing
these ensemble forecasts at a rate of one every three months, and results
will appear in a future paper.

3. Model climate drift

(a) Systematic error

In general systematic errors (SE) develop during a GCM integration
initialised from real data. The model climate, determined from a large
number of runs started from independent initial conditions, 'drifts' away
from the corresponding observed climate towards its own internal
statistical equilibrium. The SE in the model forecasts must be corrected
to maximise their usefulness. The best way, of course, is to improve the
GCMs to remove the shortcomings which cause the development of the SE in
the first place, and much work is already being done in this area (see
Hollingsworth et al, 1987). However, until such errors can be totally
eradicated, schemes for mitigating the effects of the SE will be required,
based on empirical statistical corrections. Recent work by Miyakoda et al
(1986b) and Molteni et al (1986) has shown that improvements in skill can
be obtained, by subtracting estimates of the SE in the mean flow from the
forecasts prior to verification, and some relevant results are given in the
following section. Firstly, a brief illustration of the model's SE is
given using 500 mb geopotential height (H500) maps.

In Figures la-d the mean forecast flow for the A integrations,
averaged over days 16-30, is shown along with the corresponding mean
observed pattern, and the difference between them, for each season. Heights
are lower than observed in most areas, although the mean latitudinal
gradient is quite realistic in all seasons. However areas of large
difference are apparent in each case, caused by errors in the positioning
of the jet stream, or by troughs and ridges being wrongly positioned or of
incorrect amplitude. For example, in common with other GCMs, the amplitude
of the winter-time Rockies ridge is underestimated, resulting in a large
area of negative difference centred to the north of Alaska. Two major
areas of difference in the spring patterns lie in the eastern Atlantic,
where the jet stream is too far south, with exaggerated diffluence to the
north, and over the east coast of Russia, where a deep trough and




downstream ridge are positioned too far east. In the summer the sharp
trough at 75°E has no counterpart in the observed flow, and the area of
strongest flow over North America and the Atlantic lies too far south.
Errors of similar magnitude occur in the autumn pattern.

Since they are based on a finite number of cases, the observed
differences may be partially attributable to random forecast errors, rather
than genuine climate drift. Accordingly, Figure 1 also shows maps of the
statistical significance of the differences, determined in each case by
performing a t-test at each grid point on the two samples of twelve
forecast and observed fields. The stippled areas show regions within which
the difference is everywhere significant at the 5% level, assuming 12
combined degrees of freedom. This value is used, rather than 22, because
integrations from the same year for a given season are not totally
independent of one another (Table 1). The choice is made on the basis that
runs started 30 days apart are independent, and those from intervening h
dates provide a small degree of extra information.

Ironically, the results are then liable to underestimate the -
significance for a different reason. The t-test assumes that the two g
samples are selected independently of each other. However, in practice
they are identical at forecast day zero, and can only be taken as totally
independent once all forecast skill has disappeared. In fact, the total
significant area is always well above the chance level of 5% in any case,
averaging 27% over the four seasons. Therefore, although the inherent
spatial correlations make it difficult to assess overall pattern
significance from a field of univariate tests (Livezey, 1985) it appears
reasonable to regard the difference maps as reliable estimates of the model
SE.

Corresponding maps for days 1-15 (not shown) give broadly similar
difference patterns, although the intensity of the features is generally
lower, reflecting the development of the SE between the two periods.

(b) Low frequency variability

Another important aspect of the model's climate is the extent to which
it reproduces the low frequency variability of the atmosphere, since the
prediction of such variations is the crux of the extended-range forecasting
problem. Figures 2a and b show the standard deviation, over the A
integrations, of the 15 day mean forecast H500 field for days 16-30, along
with that of the verifying observed fields, for winter and summer.
Differences occur in the patterns of variability for both seasons. For .
example, in winter the areas of high variability situated near Iceland, and
off the east coast of North America, are not captured by the model.
Point-by-point variance ratio tests, assuming 6 degrees of freedom for each
variance, suggest that the differences are not significant, subject to the
aforementioned caveat. Therefore, although the model underestimates
variability in these experiments over the blocking-prone areas (Blackmon et
al, 1977), it is not certain that this is a genuine feature of the model
climate. Nevertheless, Table 2 shows clearly that the spatially-averaged
variance is underestimated, particularly in summer. The same is true of
spring and autumn.



Even if the atmospheric patterns in Figure 2 are successfully
reproduced, there are other aspects of low frequency behaviour which must
be modelled correctly, such as the occurrence of regime behaviour and
transitions between circulation types (see introduction). Whilst it is not
intended here to discuss such questions in detail, it is worth noting a
simple indicator of the model's ability to produce changes in its
large-scale circulation during a forecast. Figure 3 shows, as a measure of
persistence, the anomaly correlation between the 15 day mean of forecast
days 1-15 and subsequent overlapping 15 day means, averaged over the A
integrations. Anomalies were calculated relative to normals based on the
years 1951-80, with the estimate of the appropriate seasonal model SE,
calculated as in Figure 1 as a function of forecast time, subtracted from
each integration. The mean model persistence exceeds the corresponding
atmospheric persistence, calculated in the same way from the verifying
observations. Thus the model tends to retain the long-wave pattern
generated over the medium-range part of the forecast to an excessive
degree.

No model can predict, with complete certainty, a fundamental shift in
the general circulation which occurs at extended-range. Nevertheless, the
probability distribution of possible outcomes may in principle be correctly
predicted by ensemble methods given, say, a GCM capable of modelling regime
behaviour realistically. Figure 3 suggests that the present model may not
entirely fulfil this requirement. If high frequency variability is crucial
in triggering regime transitions (Reinhold, 1987), the model's deficiency
in this respect (Slingo and Pearson, 1987), may be an important drawback.

y, Assessment of forecast skill

In this section forecast verification results are given for 15 day
mean H500 and mean sea level pressure (PMSL) fields for 30-90°N, using the
anomaly correlation score to measure skill.

(a) Choice of climatology

Ideally, forecast and observed anomalies should be formed relative to
the true atmospheric climate appropriate to the experiment year.
Unfortunately the true climate, at any point in time, is unknown. Its
precise determination would require an infinite ensemble of Earths, each of
whose atmospheres were subject to identical external forcing conditions. In
practice anomalies are calculated relative to a set of atmospheric normals,
constructed by averaging observed data from a number of years prior to the
experiment year. In general these differ from the true climate for two
reasons. Firstly, the true climate may itself vary with time (ie
systematic climate change), and secondly the normals are subject to
sampling error, being formed from a finite body of data. These errors (the
systematic element is so termed for the sake of convenience), appear in
both the forecast and observed anomalies, and thus increase the measured
correlations.

A simple calculation illustrates this point. Let fi and aj represent,
for some experiment, the forecast and corresponding observed anomaly
relative to the true climate, at some grid point i. The model SE is



assumed to have been removed, although the basic argument does not depend
on this. The anomaly correlation coefficient, Ctprue? relative to the true
climate, is given by

1/2
Ctrue ~ aif /(WpWy) s

where denotes an area-weighted spatial average over the domain of

interest, We = fiz and Wy = aiz. However, the correlation that is measured
in practice, Coaas? is

i 2 o
Creas = (aj*ey)(fi+e;)/[(aj+e;)® (fytey) ]
where e. is the total (systematic + random) error incurred in estimating
the true climate using a given set of normals. In general ey will vary
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with position, but its mean size is characterised by w, = e;". The mean
contribution to Cheas from this source is
<e > = w /[(Kw >+, ) (Kwod+w )]1/2
e e a e f e ”
using <> to denote an average over many independent forecasts. > may be
recognised as the mean level of correlation which would be obtaineg

verifying each forecast against observed data chosen at random from the
distribution of states appropriate to the true climate.

If the assumption is made that <wf> = <wa>, it follows easily that

>i=(<e > ¥ Re ) () e <eg>) o... (1)

LCtrye Cheas

In fact this result is not very sensitive to the ratio <wf>/<w duAazFhus,
whilst the (closely-related) variances discussed in section 3 suggest that
<wf>/<wa> varies between about 0.7 and unity for the fields of interest,
depending on season, the error incurred in the estimation of <ctrue> by
assuming a value of unity is entirely negligible.

Equation (1) quantifies the effect of the errors e; in increasing
<c > relative to <c . Also, the change in <c s> arising from the
use o? a different set o% normals may be derived from equation (1), giving

<8¢ meas> = [(1i= <e meas>)/(1 . <0 >)] <Gc Dicuraaked

In Figure 4 the time variation of <cme >, obtained by averaging
results from the 48 A integrations, is given for the H500 and PMSL fields.
Alternative scores are shown corresponding to three different sets of
atmospheric normals, based on the years 1972-81, 1951-70 and 1951-80. The
model SE is removed as described in section 3, which is the case for all
results in this and the following sub-section. Also plotted for each set
of normals are values of <c >, estimated by verifying each forecast against
the observed data corresponding to one of the remaining eleven forecasts
from the same season, initialised on the same day and month in a different
year. It is assumed that the true climate is stationary over the years



containing the forecast initialisation dates. Note that the years of the
experiments are not included in the normals, since to do so would decrease
the measured skill unfairly.

Significant positive values of <ce> are observed, which are above the
level which would occur if the €; were due purely to sampling error.
(Assuming Wpd> = <w,>, the expected value of <c,> would be (1+N)"! for
N-year normals.) Values of <Cmeas> and <ce> are a little higher for H500
than for PMSL. 1951-80 normals give the lowest scores, the values for
1951-70 being slightly higher, and those for 1972-81 a little higher still.
Values of <ec aS> and <ce> for 1977-81 normals (not shown) are typically
0.05 higher than those for 1972-81. The correspondence between the
variations in <cmeas> and <ce> is well represented by equation (2).

Figure 4 also shows the time variation of <c rue>’ derived using
equation (1) from the observed values of <c > and <c_.>. (The derived
values are identical, whichever pair of curves (a), (b), (e) or (d) are
substituted into equation (1).) Even for 1951-80 normals, the difference
between <c > and <ctru > is considerable, so that whilst <cmeas> remains
substantially positive throughout the forecast period, <Ctrue> is small
beyond about two weeks.

Thus the unambiguous definition of forecast skill is problematical.
The point at which the difference between the forecast and observed states
reaches saturation level corresponds to <ec > =0, 0or <c > = <ce>,
since the forecast is then no better than one made from an initial state
selected at random from the true climate distribution. If this is taken as
the absolute limit of predictability, and skill is to be measured relative
to this point, then <c rue> is the score to use. However the true climate
is an abstract concept, and in practice forecasts can only be verified as
anomalies from observed normals. The increased correlation obtained in so
doing is due to the model's ability, quantified by <ce>, to reproduce the
true climate relative to that defined by the normals. (By correcting for
the model SE using dependent data, some degree of 'cheating' has occurred
in this respect (see later), but the principle is unaltered.) If this
ability may be legitimately regarded as part of the forecast skill, then
<cmeas> is the appropriate statistic. This is a moot point, since the
contribution arising from <c_.> could equally well be obtained from, say,
last year's forecast, or indeed last year's observations.

However, <°meas> is clearly the better yardstick of practical forecast
utility from the viewpoint of potential long-range forecast customers,
since it measures skill relative to the perceived climate, upon which
weather-sensitive decisions would be based in the absence of a suitable
prediction method. The choice of normals for this purpose should be those
which minimise <c_>, and hence <c S>, since they are, by this criterion,
the best available estimate of the true climate. The mean scores indicate
that 1951-80 is Zhe appropriate choice, and that the use of normals based
on 10 years or less leads to an overestimation of forecast skill.

In principle, the dependence of <c a > on the choice of normals may
itself vary with season. The difference between the scores for 1951-80 and
1951-70 normals is quite small in all seasons (Figure 5). However, the
difference between 1951-80 and 1972-81 is somewhat greater in autumn and




particularly spring, but is reversed in winter, the scores for 1972-81
normals being a little lower. Nevertheless, the experimental results
presented in the following sections all refer to 1951-80 normals,
regardless of season.

(b) Variability of skill

Figure 6 shows, for PMSL, the seasonal variation in <°true> compared with
the corresponding variation in <c as>. Compared with summer and autumn,
winter and spring show higher values of <°tru > up to days 16-30, the
differences being especially large for days 1-15 and 6-20. For these two
periods values of <°meas> are also higher, although the differences are
smaller due to opposite seasonal variations in <cg>.

The overall variability among the 48 A integrations is shown in
Figure 7, which gives histograms of Creas for 15 day mean PMSL fields of
days 1-15 and 16-30. The top category s 0.6) represents forecasts
showing sufficient skill to be classified as 'useful'. The second
category (0.2 < Cireas £ 0.6) is intended to encapsulate forecasts retaining
a recognisable element of skill, which is insufficient to render them
useful over the entire domain. The remaining cases are considered to have
lost predictability. The criterion of 0.6 is taken from Hollingsworth et
al (1980), who applied it to daily fields. Such a value is perhaps harsh
for time averaged fields, since the same degree of fine detail may not be
required. Hence the definition of useful skill, although valuable as a
means of classifying the forecasts, should not be interpreted too
literally.

For days 1-15 all the forecasts fall into the top two categories, with
just under two thirds achieving the higher level. This includes 21 of the
24 winter and spring cases, whereas only nine of the remaining runs
qualify. In the second half month only one forecast achieves this level,
although the majority (66%) still attain the second category. For these
runs the prospects for extracting useful information probably depend on the
ability to identify which regions of the forecast domain are likely to be
skilful in any particular case.

The time variation of skill for selected individual forecasts,
relative to the appropriate seasonal mean, is given in Figure 8. The
criterion for selection, that the skill should remain either above or below
the seasonal mean over the whole forecast period, was fulfilled in only
nine cases. Thus only occasionally can a forecast be classified
unambiguously as good or bad throughout. However, seven of the nine cases
are in the good category, suggesting that on around 15% of occasions
unusually skilful hemispheric 40-day predictions are possible.

(c) Effect of climate drift

If the model SE is not removed prior to verification, the values of
€Caan’s SCg> and <e > are consistently smaller (Figure 9), since the SE
increases the value of Wes the forecast anomaly intensity, without on
average affecting the covariance between the forecast and observed
anomalies. The extent of the difference, similar for H500 and PMSL, is
substantial throughout the forecast period. It is sufficient to decrease
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the <cmeas> value by over 50% at days 16~30 and beyond in the case of PMSL.
The seasonal breakdown (Figure 10), shows that the difference is greatest
for summer and autumn cases, thus the gap in skill between winter/spring
and summer/autumn is accentuated. The difference in winter is somewhat
smaller than that reported by Miyakoda et al (1986b), whose model did not
include gravity wave drag. Also, the number of forecasts achieving the top
category of skill for days 1-15, and the second category for days 16-30, is
significantly reduced (Figure 11, cf Figure 9), showing the importance of
removing the SE to maximise forecast usefulness.

However the scores for the corrected forecasts may be too optimistic,
since the SE was not calculated from independent data. This was tested by
verifying the 16 independent B integrations, both with and without the SE,
as deduced from the A integrations, removed. Figure 12 compares the scores
for the B and A integrations (copied from Figure 9). The skill of the
uncorrected B integrations is somewhat lower than that of the uncorrected A
integrations. The mean skill of the B integrations is increased by
removing the SE, but the average increase over all time levels, compared
with that obtained using dependent data, is only 40% for PMSL, and 57% for
H500, suggesting that the results for the corrected A integrations are
indeed artificially high. However, in section 3 it was argued that the
estimates of the model SE are statistically reliable, ie relatively
uncontaminated by residual random forecast errors.

A possible means of reconciling these results is to postulate that the
model SE is a function of flow regime. Then the mean SE, whilst accurate
for the set of integrations from which it is deduced, may not be
representative of the climate drift observed in an independent set of
forecasts. It is beyond the scope of this paper to investigate this idea
in detail, but some supporting evidence is given in Figure 13, which shows
the seasonal variation, for the B integrations, of the effect of removing
the SE. In winter the PMSL scores are actually made slightly worse,
whereas in autumn a substantial improvement is observed. If, for example,
the flow regimes occurring in the winter of 1985-86 were not represented in
the winters of the A integrations, with the converse true for autumn 1986,
these results could be understood in the light of the above hypothesis.

Thus the scores for the corrected A integrations may be taken as an
upper skill limit, appropriate if the variation of the model SE with flow
regime is well documented. However, if only the mean model SE is known,
the maximum skill attainable in practice may lie about halfway between the
scores given for corrected and uncorrected A integrations.

5, Skill for UK area

This section compares the model's skill in a localised area centred on
the UK (see Figure 14), to that of the experimental long-range forecasts
for one month ahead, performed every half-month at UKMO, hereafter referred
to as 'the issued forecasts'. The regular inputs to these forecasts
(Folland and Woodcock, 1986), consist of the latest available operational
5- and 10-day forecasts from UKMO and ECMWF respectively (usually day 2 of
these runs corresponds to day 1 of the forecast period), and certain
statistical techniques. The dominant statistical method is a multivariate
forecasting technique (MVA), described by Maryon and Storey (1985). This
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uses linear discriminant equations, determined from historical data, to
predict mean PMSL patterns over the North Atlantic and Europe for the two
half-months of the forecast. The predictors are the strengths of a set of
northern hemisphere covariance eigenvector patterns of recently observed
half-monthly mean PMSL and 1000-500 mb thickness, and regionally-averaged
SST anomalies over a number of ocean areas for the month preceding the
forecast. The predictands are the probabilities of each of a set of six
pre-defined, season-dependent, 'cluster' patterns of PMSL. The patterns of
the most likely clusters can be adjusted in a second, regression stage of
the method.

Once the final forecast PMSL patterns have been determined from the
above inputs, temperature and rainfall predictions for various UK districts
are derived, using objective regression relationships, analogue techniques
and SST information.

Although extended-range dynamical predictions are occasionally
available (Murphy and Palmer, 1986), they have not made a significant
contribution to date, so the issued forecasts represent an appropriate
baseline, relative to which the impact of regular operational
extended-range GCM forecasts may be judged.

The skill of the issued forecasts for temperature, rainfall and PMSL
is reported in detail by Folland et al (1986), hereafter referred to as F.
Here only PMSL is considered, comparing the A integrations to the 96 issued
forecasts produced during the period February 1983-January 1987. The A
integrations are taken from the period April 1982-October 1985.

(a) Comparison of mean skill

Figure 15 shows the average anomaly correlation of the A integrations
and the issued forecasts, measured relative to 1951-80 normals, for the
area shown in Figure 14, calculated from pressure values at the 25 marked
points. Scores are also given for a smaller area framing the UK itself,
based on the six points marked x. The averaging periods of days 1-5, 6-15
and 16-30 represent the three ranges into which the issued forecasts are
normally split, and results are also shown for the first half-month and the
monthly mean. Of the two regions, the 6 point area gives the fairer
comparison, since the prime concern in producing the issued forecasts is to
maximise PMSL forecast skill over the UK itself, as the final temperature
and rainfall forecasts are restricted to this area. However in terms of
the mean anomaly correlation scores for the issued forecasts, there is
actually little difference between the two areas for days 1-5, 6=15 or
16-30 (Figure 15).

The average skill of the uncorrected model forecasts exceeds that of
the issued forecasts for all periods considered, except for the monthly
mean over the 6 point area. Here the equality of the issued forecasts
seems fortuitous, since the model scores are higher in both the constituent
half-months. The superiority of the model is considerably enhanced when
the SE is removed, although the scores for the corrected forecasts may be
somewhat optimistic (section 4). Also, the model and issued forecast
initialisation dates are not identical, which may prejudice the observed
differences. Nevertheless beyond days 1-5, dominated by input from the
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medium-range dynamical forecasts, the mean skill of the issued forecasts is
very low (although F shows that for rainfall the skill is somewhat higher).
The model forecasts apparently offer a clear improvement, particularly
over days 6-15. For this period, over the 25 point area, the mean
difference in skill between the model forecasts (with or without the SE
removed) and the issued forecasts is significant at the 5% level, according
to a t-test performed after transforming the correlations using Fisher's
(1958) z-statistic, which renders their distributions more nearly normal
(Branstator, 1986). The calculation assumes 23 and 47 degrees of freedom
for the model and issued forecasts respectively, on the basis discussed in
section 3. The differences are not significant for days 16-30, due to the
large spread in the scores (see sub-section (b) below). The increased
skill afforded by the model is also apparent from the mean r.m.s. error
scores. For the corrected (uncorrected) model forecasts over the 6 point
area, these are 4.02 (4.27), 6.87 (7.27) and 7.45 (7.81) mb for days 1-5,
6-15 and 16-30. The issued forecast scores are 4.90, and 8.45 and 7.83 mb
respectively.

The production of the issued forecast for days 6=15 often involves the
forecaster in subjective combination of the outlook from the medium-range
dynamical forecasts, and the statistical predictions. Since their skill is
so much greater (Figure 15), the availability of extended-range GCM
forecasts would largely remove the need for such activity at this range.
However, objective combination of ensembles of extended-range model
integrations may lead to further improvements in skill (see introduction).

For days 16-30 the issued forecasts are usually based entirely on the
statistical techniques, although the forecaster's interpretation is still
necessary, for example, to produce a final best-estimate prediction from
the probability forecast output of MVA. Since the model's skill is itself
low at this range, the need for subjective or objective combination of
dynamical and statistical predictions is likely to survive the
introduction of regular monthly dynamical forecasts.

Measuring skill from the correspondence between spatial patterns, as
above, may not be entirely appropriate for the user, who is probably more
interested in the time series of weather at a point, or over a small area.
Figure 16 shows time series of forecast and observed PMSL anomalies,
averaged over the 6 point area for days 1-15 and 16-30, created by
arranging the issued forecasts in chronological order along the abscissa.
The graphs depict the ability of the operational system, based on forecasts
made at half-monthly intervals, to predict the sequence of half-monthly
mean anomalous weather at a range of one and two half-months ahead.

Figure 17 shows analogous graphs for a pseudo time series of the model
experiments, created by grouping them season by season, with the forecasts
in each season in chronological order. Note the model's skill at days 1-15
in predicting large departures from normal, compared with the issued
forecasts. Loss of signal is apparent at days 16-30 for both prediction
systems. Figure 18 gives the correlation between the time series of
forecast and observed anomalies for each of the graphs shown in Figures 16
and 17. Also shown are corresponding correlations for analogous sequences
based on days 1-5, 6-15 and 1-30. The model score exceeds the issued
forecast score for all periods, the difference being greatest for

days 6-15.
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The time series correlation score, for both the corrected model and
issued forecasts, exceeds the corresponding mean spatial anomaly
correlation score for days 1-5, for both the 6 and 25 point areas. For days
6-15 and 16-30 the difference between the two scores is generally small.
However, for the uncorrected model forecasts the time series score is the
larger for all periods. Surprisingly, the difference in skill between the
uncorrected and corrected forecasts, apparent for spatial anomaly
correla-tion, is almost completely eroded. A possible explanation follows
from the fact that large anomaly cases contribute disproportionately to a
time series correlation value. In most cases of large observed anomaly
(Figure 17), the anomaly is negative. Since the mean model SE is also
negative, removing it actually results in worse predictions in such cases,
which may offset the positive effect of removing the SE in the remaining
cases.

Time series correlations may also be calculated for point anomalies,
as for the area-averaged anomalies discussed above. Figure 19 shows maps of
such point correlations for days 1-15 and 16-30 of the corrected model .
forecasts. Some variation over the 25 point area is apparent, particularly
for days 16-30, the area centred west of Ireland showing lower skill than
elsewhere. The pattern of skill variation is not strongly related to the
variation of the r.m.s. forecast or observed anomaly. The mean
point-by-point correlation for the 25 point area exceeds the correlation
for area-averaged anomalies for days 1-15, 16-30 and 1-30, the scores being
0.71 cf 0.68, 0.30 cf 0.19 and 0.56 cf 0.43 respectively. This result,
which reflects the skill in predicting the anomaly pattern over the area,
is encouraging, since the point-by-point score may be more relevant from
the user's viewpoint.

(b) Variability of skill for 25 point area

Returning to the spatial anomaly correlation c g Figure 20 shows
the distribution of values for days 1-15 and 16-30 of the issued forecasts
and the corrected and uncorrected A integrations. A wide spread of scores
is apparent in each case, especially at days 16-30. The incidence of c
> 0.6 is greatest for the corrected model forecasts, with 40% of cases
qualifying even at days 16-30, compared with only 15% for the issued
forecasts. Although use of the 25 point area may penalise the issued
forecasts unfairly (sub-section (a)), any such effect is probably small,
given that the mean correlation for the 6 point area is similar for the
periods considered. The larger area is preferred to make the distributions -
more meaningful in terms of forecast value — see below.

eas

The model results suggest that useful local skill may exist on a 5
substantial minority of occasions at extended-range, even if hemispheric or i
global skill is low. However, the anomaly correlation score is sensitive
to anomaly magnitude and to phase differences (Arpe et al, 1985).

Circumstances can easily be envisaged under which its value for a limited
area is unrepresentative of a forecast's true worth. Indeed, the
percentage of cases with Chea > 0.6 for days 16-30 is almost as large when
each forecast is verified aga?nst unrelated observed data, as described in
section 4. Thus, some of the cases in the top category in Figure 20 may
not be as useful as the score indicates. Equally, some forecasts with low
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anomaly correlation may have greater value than the score suggests. Whilst
the results remain encouraging, a more sophisticated verification scheme is
required to establish accurately the frequency of occurrence of useful
skill over limited areas. A possible candidate, not considered here, is a
score based on the distance between the forecast and observed states in a
probability space defined by the climatological distribution of observed
values (see F, for example).

(e) Prediction of skill

The issued forecasts each carry a confidence level C (highest), D or E
(lowest), for the month as a whole. This is determined subjectively, the
major factor being the degree of consistency between the different forecast
techniques, analogous to the use of ensemble spread in dynamical
predictions. Figure 21 shows that the skill of those forecasts assigned
confidence C (21% of the total), is somewhat higher than average,
especially for the 6 point area, the better yardstick of performance for
the issued forecasts. The largest improvement occurrs at days 6-15.
Therefore, despite the low level of average skill, some degree of skill
prediction is possible for the issued forecasts (see F).

Such an ability increases the utility of the forecasting system,
accordingly an attempt was made to pick out skilful model forecasts. The
criterion used was that the magnitude of the spatially averaged forecast
anomaly, over the 25 point area, should be greater than 4.5 mb for days
1-15. This is a crude way of examining the possibility that cases showing
stable anomalous features over the medium-range period of the forecast are
more predictable. Eleven of the 48 cases qualify, and the average anomaly
correlation is substantially higher in these forecasts at extended-range
(Figure 22), the difference being particularly large for days 16-30. For
days 1-15, ten of the eleven forecasts show Cmea > 0.6, dropping to six
for days 16-30, (ie 55% cf 40% in Figure 20b). Xlso, Figure 23 shows that
the skill of these forecasts compares favourably with that of the C
confidence issued forecasts.

To some extent this result is built in by the dependence of anomaly
correlation on anomaly magnitude. Certainly the average r.m.s. forecast
error for the large anomaly cases is little different from that for all 48
cases. For days 1-15 and 16-30 the scores (large anomaly cases first), are
4.36 cf 4.67 mb, and 7.12 cf 6.98 mb respectively. However, if the
presence of errors of a given size is less detrimental to the forecast
quality in large anomaly cases (Branstator, 1986), then the increased
anomaly correlation may be a reasonable reflection of greater forecast
usefulness. Repetition of this analysis using a skill score based on
probability distances, as suggested above, would prove illuminating in this
regard.

The average score for a persistence forecast, based on the 15 day
period immediately preceding the forecast, is very low in the large anomaly
cases (Figure 22). Relative to this measure of persistence, the increase
in anomaly correlation is therefore even more pronounced. It remains
possible that the extra skill is due to persistence of patterns developed
during the early stages of the forecast itself. However, even relative to
for forecast days 1-15, persistence is generally lower in the large anomaly
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cases, both in the model and the verifying observations, as shown by Figure
24. Thus the extra skill cannot be explained in these terms. Perhaps the
model is better able to predict changes in the circulation at
extended-range when its medium-range forecast is unusually accurate, as in
the large anomaly cases.

Although a definitive statement requires a more detailed analysis,
these results provide some encouragement concerning the prospects for local
skill prediction in a GCM-based extended-range forecasting system. A vital
element of such a system would be the ability to recover predictions of
temperature and rainfall of equal skill to those of the circulation
patterns considered here.

oL Conclusions

A large sample of U40-day integrations of a global 11-level GCM, using v
climatological boundary conditions, has been used to assess the prospects
for dynamically-based extended-range forecasting.

Seasonal estimates of the model's systematic error (SE), each based on
12 integrations, show that significant climate drift occurs in all seasons,
which should be corrected empirically to obtain maximum forecast skill. Low
frequency variability is also underestimated, although there are
insufficient experiments to determine precisely the patterns of model
variability. The degree of persistence apparent in a model forecast,
relative to its first 15 days, is on average greater than in the verifying
observations, suggesting that the model has difficulty in generating regime
transitions, possibly due to its lack of sufficient high frequency
variability.

Atmospheric normals, based on data from past years, differ in general
from the true climate for the years of the experiments. Since the
difference appears in both the forecast and verifying anomaly fields, an
extra positive contribution to the observed forecast anomaly correlation
scores results, the magnitude of which depends on the choice of normals.
The mean score which would be obtained relative to the true (but unknown)
climate can be estimated from the experimental results, and is found to be
small beyond a range of two weeks. However, the mean observed correlation
is 0.3 or greater at days 16-30 and beyond. This residual may be
attributed to the model's capacity to reproduce the true climate relative
to the normals in use.

In practice skill must be measured relative to the best available
climate, namely the set of normals which minimises the mean observed
correlation. For these experiments, normals based on the years 1951-80 give ,
lower scores than a number of alternative choices based on subsets of this 7
period.

Seasonal variation in skill is observed, winter and spring giving the
best results. For days 1-15, 60% of all forecasts exceed the 0.6 level of
anomaly correlation, however for days 16-30 most of the scores lie between
0.2 and 0.6. At this range the identification of locally skilful areas is
a particularly high priority, since only a few forecasts give anomalously
high hemispheric skill throughout the forecast period.
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The above results were all calculated with the model SE removed.

Omission of this correction degrades the scores significantly. Results
from independent cases show smaller differences between the corrected and
uncorrected forecasts, suggesting that the above scores are somewhat
optimistic. However, the reduced differences in the independent cases may
be partially attributable to dependence of the SE on flow regime.

The model's average skill in predicting surface pressure one month
ahead, over a limited area centred on the UK, exceeds that of the
experimental long-range forecasts issued at UKMO, which are based on
medium-range dynamical forecasts and statistical prediction techniques. The
major improvement occurs at days 6-15, and is enhanced considerably by
removal of the model SE (subject to the above remarks). The model's
average skill is low at days 16-30, however its superiority at days 6-15 is
in principle sufficient to render other methods largely obsolete at this
range.

The model's skill also exceeds that of the issued forecasts, in terms
of the ability to reproduce observed sequences of time-averaged anomalies,
obtained by arranging forecasts in chronological order. In this respect
the model's score generally exceeds its corresponding mean spatial anomaly
correlation score, particularly when the time series refer to point
anomalies, rather than area=-averaged values.

Over the limited area, 40% of the (corrected) model forecasts show
anomaly correlations in excess of 0.6 at days 16-30, suggesting that useful
local skill is possible on a relatively high proportion of occasions at
extended-range. Also, the anomaly magnitude is a useful predictor of
forecast anomaly correlation. However, both results are influenced by the
sensitivity of this skill score, which is not ideally suited to limited
area verification. Further investigation involving alternative measures of
skill is required, before firm conclusions can be drawn on these topics.
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Initialisation dates and grouping of model forecasts.

cases were initialised from 12Z ECMWF data,

midnight UKMO analyses.

Table 1

Season
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Table 2 Zonal mean values for winter and summer of 500 mb geopotential
height variance (dam“), over 12 model forecasts and verifying

observations.
Winter Summer

Latitude (°N) Forecast Observed Forecast Observed
variance variance variance variance

80 63.9 il 943 46,2

70 76.0 93.0 13.6 24,2

60 {01 66.7 1l 2 18.9

50 Lo 55160 3 e 20.4

40 32.1 47.2 6.4 10.1

30 132 14.0 2t Je s
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Figure captions

Figure 1a 15-day mean 500 mb geopotential height (dam) for days 16-30,
averaged over 12 winter forecasts, with corresponding observed
pattern and difference map. Point-by-point significance levels
(%) of the difference are shown, as determined from a t-test
assuming 6 degrees of freedom in each sample, with areas
significant at the 5% level stippled.

Figure 1b As Figure l1a for spring forecasts.

Figure 1c As Figure 1a for summer forecasts.

Figure 1d As Figure la for autumn forecasts.

Figure 2a Standard deviation of 15-day mean forecast and observed 500 mb
geopotential height (dam), among 12 winter cases, for days
16-30.

Figure 2b As Figure 2a for summer forecasts.

Figure 3 48 case average persistence of 15-day mean forecast

500 mb geopotential height anomalies for 30-90°N, with respect
to forecast days 1-15 (-+-+<). Model systematic error has been
removed. (*+++) shows the corresponding persistence in the
verifying observations.

Figure la 48 case average forecast anomaly correlation for 15-day mean
500 mb geopotential height, 30-90°N ( ), and score for
‘random' forecast (----), measured relative to normals from:
(a) 1972-81; (b) 1951=70; (ec) 1951-80; with model systematic
error removed. The highest dashed curve corresponds to (a)
and the lowest to (e¢). (e+++) shows derived mean score
relative to the true climate.

Figure 4b As Figure Y4a for mean sea level pressure.

Figure 5a Forecast anomaly correlation for 15-day mean 500 mb
geopotential height, 30-90°N, averaged over 12 winter cases
with model systematic error removed, and measured relative to
normals from: (a) 1972-81; (b) 1951-70; (e) 1951-80.

Figure 5b As Figure 5a for spring forecasts.
Figure 5c As Figure 5a for summer forecasts.
Figure 5d As Figure 5a for autumn forecasts.
Figure 6a 12 case average forecast anomaly correlation for 15-day

average mean sea level pressure, 30-90°N, with model
systematic error removed.
( ) winter; (++++) spring; (---=-) summer; (-+-+) autumn.

25




Figure 6b As Figure 6a for derived mean anomaly correlation relative to
true climate.

Figure 7 Histograms of forecast anomaly correlation for 15-day average
mean sea level pressure, 30-90°N, with model systematic error
removed, for (a) days 1-15, (b) days 16-30, based on 48
forecasts. Each bin covers a correlation range of 0.4,
centred about the value shown.

Figure 8 Forecast anomaly correlation for 15-day average mean sea level
pressure, 30-90°N, with model systematic error removed, for
selected individual forecasts, expressed as the departure from
the relevant seasonal mean score. Forecast initialisation
dates were:

(a) 00Z 5.1.84; (b) 12Z 6.3.83; (c) 00Z 26.6.83;
(d) 12Z 26.3.83; (e) 00Z 16.3.84; (f) 00Z 26.9.85;
(g) 00Z 16.6.84; (h) 00Z 6.7.85; (i) 00Z 5.4.84,

Figure 9a 48 case average forecast anomaly correlation for 15-day mean
500 mb geopotential height, 30-90°N ( ), and score for
‘random' forecast (-==--). (e¢+++) shows derived score relative
to true climate. In each case the upper curve shows the skill
when model systematic error is removed, and the lower curve
the skill of the uncorrected forecasts.

Figure 9b As Figure 9a for mean sea level pressure.

Figure 10a 12 case average increase in forecast anomaly correlation, for
15-day mean 500 mb geopotential height, 30-90°N, achieved when
model systematic error is removed. ( ) winter; (se<*)
spring;

(===-) summer; (-+-+) autumn.

Figure 10b As Figure 10a for mean sea level pressure.
Figure 11 As Figure 7 for uncorrected forecasts.

Figure 12a Forecast anomaly correlation for 15-day mean 500 mb
geopotential height, 30-90°N. Upper and lower curves show
scores with and without model systematic error removed,
averaged over: 48 class A integrations ( ; 16 independent
class B integrations (----). Systematic errors were
calculated from the A integrations.

Figure 12b As Figure 12a for mean sea level pressure.

Figure 13 Average increase in forecast anomaly correlation for mean sea
level pressure, 30-90°N, achieved when model systematic error
is removed, for four independent cases. ( ) winter; (eee*)
spring;

(---=) summer; (=+<=+) autumn.
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Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20a

Figure 20b

Figure 21

Figure 22

Figure 23

Map showing the region, defined by the 25 marked points, used
for limited area verification. Some results are also given
for the inset region based on the six points marked x.

Average forecast anomaly correlation for mean sea level
pressure over 6 and 25 point UK areas. Scores for 48 model
forecasts, with and without systematic error removed, are
compared with those for 96 issued forecasts, for various
time-averaging periods.

Sequences of 15-day mean forecast ( ) and verifying (----)
mean sea level pressure anomaly for the issued forecasts,
created by arranging them in chronological order along the
abscissa. Anomalies are averaged over the 6 point UK area for:
(a) forecast days 1-15; (b) forecast days 16-30.

As Figure 16 for a pseudo time series of the model forecasts
(with systematic error removed), created by grouping them
seasonally in the order winter, spring, summer, autumn, with
forecasts in each season arranged in chronological order.

As Figure 15, except that skill is measured by the correlation
between sequences of spatially-averaged forecast and verifying
anomalies, created by arranging (model) issued forecasts in a

(pseudo) time series, as in Figures 16 and 17.

Maps of point-by-point correlation, over the 25 point UK area,
between time series of model forecast and observed anomalies,
created as in Figure 17, for: (a) forecast days 1-15; (b)
forecast days 16-30.

As Figure 7 for skill over 25 point UK area for forecast days
1=-15, including: (a) 96 issued forecasts; (b) 48 model
forecasts; (c¢c) model forecasts with systematic error removed.

As Figure 20a for forecast days 16-30.

As Figure 15, but comparing average forecast anomaly
correlation for all 96 issued forecasts with that for a subset
of 20 cases assigned a confidence level of C.

Forecast anomaly correlation for 15-day average mean sea level
pressure over 25 point UK area, averaged over 11 'large
anomaly' model forecasts ( ), compared with remaining 37
forecasts (++++). (=----) shows the persistence score for the
15-day period immediately preceding and including the forecast
initialisation date, averaged over the large anomaly cases,
compared with the remaining 37 cases (=+=-+).

As Figure 15, but comparing average forecast anomaly
correlation for 48 model forecasts, with systematic error
removed, with that for the subset of 11 large anomaly cases.
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Figure 24

Persistence of 15-day average mean sea level pressure
anomalies over 25 point UK area with respect to forecast days
1-15. Scores given are for model forecasts (with systematic
error removed) and verifying observations, averaged over: (a)
11 large anomaly cases, ( ) and (=~---); (b) remaining 37
cases, (e**) and (=°-¢).
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