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Abstract 

Daily Central England temperature (CET) since 1881 is analysed to assess the influences of 

regional atmospheric circulation, regional sea surface temperature (SST), urban warming, and 

increasing greenhouse gases and tropospheric aerosols. Although regional atmospheric 

circulation changes have not greatly influenced trends in CET since 1881, they have 

contributed approximately half of the warming in the winter half-year since 1966. We show 

that the CET series is free from a warming bias due to urban development. An atmospheric 

general circulation model, HadAM3, forced with observed SST and natural forcings quite 

skilfully reproduces many of the variations of CET. These notably include multidecadal 

periods of both cooling and warming. The fit to multi-decadal variations of CET is further 

improved if increasing greenhouse gas concentrations are also explicitly included, although 

there is only just sufficient data to show this. Tests show that this is unlikely to be because the 

observed effect of local circulation changes on CET is mistakenly being explained by the 

modelled response to anthropogenic radiative forcing. From this, we infer a probable human 

contribution to climate change in the U.K. 
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1. Introduction 

The evidence for human influence on climate change during the last century is 

mounting steadily (e.g. Houghton et al. 2001). Much of this evidence is based on detection 

and attribution studies that investigate changes in surface temperature on the global scale (e.g. 

Stott et al. 2000; Tett et al. 1999). Recently, studies have broadened the search for an 

anthropogenic signal on climate to large sub-global scales such as hemispheric (e.g. Braganza 

et al. 2003) and continental (e.g. Stott 2003; Zwiers and Zhang 2003). Zwiers and Zhang 

(2003) conclude that this increased effort towards detection of climate change at regional 

scales will prompt policy makers to appreciate that we face a local, not just a global problem. 

Accordingly, there is a desire to understand climate change at a national scale (e.g. Spagnoli 

et al. 2002) and so in this study we assess the underlying causes of temperature changes in the 

UK since 1881. 

However, Stott and Tett (1998) suggest that detection results based on coupled ocean-

atmosphere GCM integrations are only applicable at spatial scales greater than 2000km. To 

overcome this problem, Folland et al. (1998) and Sexton et al. (2001) use atmosphere-only 

GCM integrations with prescribed historical oceanic changes, and natural and anthropogenic 

radiative forcings to simulate climate change from 1871. Due to the inclusion of observed 

changes in SST, climate variability in atmosphere-only GCM integrations is more realistic at 

smaller spatial scales than their coupled ocean-atmosphere counterparts. However, a large part 

of the anthropogenic signal is already contained in the prescribed changes in SST and sea-ice 

extent and so these runs cannot be used to estimate the total anthropogenic contribution to 

climate change. Nevertheless, this experiment can be used to show that the inclusion of 

anthropogenic radiative forcings in addition to prescribing variations at the ocean surface in 

the atmosphere-only GCM is required to simulate recent climate change, thereby indicating 

that human activities have played some role in recent climate change. 

We use a similar approach to Folland et al. (1998), although the experimental design 

has been improved so that the contributions of the radiative forcings can be more easily 

diagnosed (Sexton et al. 2003). We consider the effects on Central England Temperature 

(CET) of possible urban warming, regional SST, increasing greenhouse gases, changing 

tropospheric and stratospheric ozone and tropospheric aerosols. We also consider the effects 

of regional atmospheric circulation variations, as there have been strong variations of climate 

over the North Atlantic over the last century, involving, for example, the North Atlantic 
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Oscillation in winter (Hurrell, 1995) and regional atmospheric circulation in summer (Hurrell 

et al. 2001). One GCM has shown that the recent trend in NAO may be a response to 

increasing greenhouse gases (Shindell et al., 1999). However, the GCM we use in this study, 

HadAM3, shows no such response. Therefore, we use a similar approach to Osborn and Jones 

(2000) to factor out the mean effect of atmospheric circulation on CET. To quantify the 

relationships between atmospheric circulation over the UK and CET, Osborn and Jones 

(2000) used regression with explanatory variables of wind direction, speed and vorticity 

estimated objectively from daily gridded mean sea level pressure fields (Jones et al. 1993). 

We present an alternative, more powerful method for quantifying these relationships. The 

technique, locally weighted regression (sometimes called lowess) allows for the complex non-

linear interactions between these three properties of the atmospheric circulation. Lowess is 

applied to estimate the effects of atmospheric circulation on both modelled and observed data. 

As our methodology for extracting the circulation influence from CET is new, we re-assess 

the CET trend analysis of Osborn and Jones (2000). We also use the atmospheric circulation 

data to assess the freedom of CET from urban bias by comparing trends of CET on nights 

with light winds, when urban influences are strongest (Johnson et al. 1991), with trends on 

windier nights when they are minimal. 

2. Data processing 

a. Treatment of observations 

The daily record of observed maximum, minimum and mean CET is based on three or 

four stations with standard thermometer exposure since 1878 (Parker et al. 1992). These data 

have been converted to anomalies by subtracting the climatological normal for each day. 

Daily twentieth century normals were estimated by smoothing raw daily averages for 1900-

1998 with a low-pass filter having a half-power near 8.5 days (Jones et al. 1999).  

b. Treatment of model simulations 

Initial results were based on three ensembles of simulations by the Hadley Centre 

atmospheric general circulation model (AGCM) HadAM3 which has a horizontal resolution 

of 2.5° latitude x 3.75° longitude (Pope et al. 2000). Each ensemble was forced with historical 

SST and sea-ice concentrations from the Hadley Centre Global sea-Ice and Sea Surface 

Temperature (GISST3.1) data set (updated from Rayner et al. 1996). Ensemble SSTNAT, 

with 6 members, ran from 1880 to 1998 and was also forced with changes in stratospheric 
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aerosol concentrations from volcanic eruptions (Sato et al. 1993) and in solar total irradiances 

(Lean et al. 1995). Ensemble GSOT, with 4 members, ran from 1900 to 1998 and included 

natural forcings and a set of anthropogenic forcings due to well-mixed greenhouse gases, 

tropospheric and stratospheric ozone, and the direct cooling effects of tropospheric sulphate 

aerosols formed from man-made emissions of sulphur dioxide. Ensemble GSOTI, with two 

members until 1949 (owing to computing restraints) and 6 members thereafter, also ran from 

1900 to 1998, and included the same natural and anthropogenic forcings plus the estimated 

indirect cooling effects of tropospheric sulphate aerosols (Johns et al. 2001), which is due to 

enhanced cloud albedo. We did not include the possibly offsetting warming effects of soot 

and other low-albedo particles. Simulated CET was defined as the average 1.5m temperature 

at four model grid points weighted to represent 52.6°N, 1.5°W. Daily maxima and minima 

were calculated as the highest and lowest of the 48 half-hourly simulated values beginning at 

midnight. Daily mean CET was estimated as the average of the daily maximum and minimum 

CET values. Anomalies were generated using smoothed daily 1900-1998 climatological 

averages calculated from one member of SSTNAT. By basing model and observed anomalies 

on their respective daily climatologies, we largely remove model biases. 

3. Estimation of the influence of atmospheric circulation on CET 

Osborn et al. (1999) used geostrophic wind direction, speed, and vorticity to predict the 

mean influence of atmospheric circulation on daily CET anomalies; these three properties of 

the flow were estimated from sea level pressure fields produced by operational analyses using 

the method of Jenkinson and Collison (1977). First, Osborn et al. estimated the individual 

effects of each air flow index, allowing for any non-linear relationships with CET by dividing 

the range of each flow index into 20 intervals and estimating the mean effect for each of those 

intervals. Osborn et al. showed that all three indices were important in determining CET 

throughout most of the year, with wind direction having the largest effect. Osborn et al. also 

produced a bivariate estimate of the combined effect of wind direction and speed on CET by 

dividing these two indices into 10 intervals and estimating the mean effect for each of the 

10x10=100 bins. They found that speed and wind direction interacted non-linearly so that the 

combination of their two univariate analyses produced a poor prediction of the mean 

circulation effect on CET, particularly for easterly flow. Although their bivariate estimate 

accounts for non-additive interactions between two air-flow indices, the observations are 

spread over 100 bins rather than the 20 used in the univariate analysis, so that the estimated 
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mean effects are less robust. The problem would be exacerbated if all three indices were used 

and predictions based on such an analysis would be useless. Therefore, Osborn et al. predicted 

the mean effect from all three indices by assuming that the overall effect was a linear 

combination of the individual effects, an assumption that was not validated. 

We use locally weighted regression or lowess to fit a smooth regression surface to the 

data. Lowess takes into account the effect of all three air-flow indices, allowing for the non-

linear interactions between the three effects. This is an improvement over estimating the mean 

effect in each interval, in a similar way that low-pass filtering of annual data is better than the 

corresponding decadal mean time series. Section a of the Appendix briefly explains the 

essential properties of the lowess technique, but a more detailed account is given by 

Cleveland and Devlin (1988). This method has three advantages over the techniques used in 

Osborn et al. (1999): 

1. The effects of all three flow indices can be fitted simultaneously, and there is no 

need to assume that the combined response has some linear relationship to the 

individual effects. 

2. By fitting a surface to the data, lowess effectively uses fewer degrees of freedom to 

describe the variations in the data and therefore provides a more precise predicted 

effect. The effective number of parameters, , is determined by the lowess 

algorithm. It is essentially a measure of how smooth the response is as a function of 

the three flow indices; A smoother response can be fitted using fewer degrees of 

freedom. 

pN

3. Two different lowess models can be compared to see which model best explains the 

variations in the data. Therefore, we can objectively determine the fraction of the 

data that defines ‘local’ and/or the optimum number and degree of indices to use in 

the analysis. In contrast, the choice of the number of intervals used in the analysis of 

Osborn et al. (1999) is purely subjective. 

Lowess estimates the combined effect of the three flow indices for each datum by fitting 

a multivariate polynomial regression to a fraction (the ‘span’) of the data that is ‘local’ to that 

datum. We applied lowess month by month rather than season by season (Osborn et al. 1999). 

The polynomial regression may be either linear (degree 1) or quadratic (degree 2) and the 

degree can be different for each variable. For this analysis, we chose a locally linear fit for 

speed and vorticity but a locally quadratic effect for direction and its interactions with speed 
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and vorticity. This choice was made because quadratic fits are very sensitive to outliers and 

we wanted to avoid any such behaviour for large values of speed and vorticity. For wind 

direction, we used an objective test to show that the locally quadratic fit explained a 

significantly larger amount of variation in the data than the locally linear fit. Normally, lowess 

does not deal with cyclic variables and so does not treat wind directions close to 0o and 360o 

as being ‘local’. Therefore, we adapted the lowess routine to approximately account for the 

cyclic nature of wind direction (see section a in the Appendix), to improve the fitting near 0o 

and 360o. 

The lowess estimate is not unique as the span can be varied. Mallow’s  statistic 

(Cleveland and Devlin 1988) was used to guide the choice of span and to determine the 

combination of variables to use. We found that vorticity was required to predict the effect of 

circulation on the CET anomalies in the model for all months, but only in December for the 

observations. However, as we wanted to use the same span and variables for the analysis of 

both modelled and observed data, we included vorticity in the observational analysis. We 

used a span of 20% for all months, despite results from Mallow’s  test which showed that 

30-40% was adequate for most months. Comparisons of the lowess regression surfaces with 

spans of 20% (see Fig. 1), 30% and 40% (not shown) showed that the larger spans smoothed 

the lowess fits too much; thus certain known sharply varying effects of relatively small 

variations in wind direction on CET (e.g. near southerly in winter) were missed. The 

assumptions of lowess are that the residual variations are Gaussian with constant variance. 

Inspection of the residuals revealed this to be largely true, although the residuals had an 

extended negative tail for January and a positive tail for July and August. In winter, this 

mainly occurs in anticyclonic situations when the source of the air mass has not been 

adequately accounted for by wind direction. In summer, large positive residuals can occur 

when a change of air mass at the end of a heat wave is associated with warm, cloudy nights. 

The variance was constant for the majority of residuals although spread of the residuals could 

change for a very few extreme speeds and vorticities. Local regression fits are unlikely to be 

affected by serial correlation in time because each local fit in the lowess procedure is likely to 

be based on a fraction of the data that are spread out over the period 1900-1998 and so are 

mostly separated in time. 

pC

pC
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Figure 1. Mean effect of wind direction and speed on observed daily mean CET (oC) for three 

values of vorticity and for January, April, July and October. The smooth regression surface 

estimated by lowess was sampled for 1ms-1 intervals of speed and 40 equally-spaced values 

for wind direction. 

In situations with neutral vorticity, there are clear non-linear interactions between wind 

direction and speed (see Fig. 1). For instance, in January strong easterlies are only slightly 

warmer than light easterlies whilst strong westerlies are several degrees warmer than light 

westerlies. This is an example of when a simple linear combination of the effects of two air-

flow indices would not be appropriate. Fig. 1 shows that the combined effect of wind 

direction and speed on daily CET is altered by the vorticity of the air flow, particularly in 
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winter and spring. This mainly occurs in very windy conditions, which are not frequent 

enough to produce a strong effect from vorticity on observed CET.  

Fig. 2a shows that the mean effect of circulation is greatest in February, explaining 33% 

of the variance in daily mean CET anomalies, whilst it is lowest in October. This is mainly 

due to the regional circulation effect on daily maximum CET, which is much larger than that 

on daily minimum CET. The number of effective parameters (see Fig. 2b) used in the lowess 

fit for each month is roughly constant as the same span of 20% is used throughout the annual 

cycle.  
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Figure 2. Fraction of variance of observed daily maximum, minimum and mean CET 

explained by circulation (left panel) and the number of effective parameters used (right panel) 

as a function of calendar month, which is the same for the three variables. 

4. Observed CET trends 

a. The effect of regional atmospheric circulation on observed CET trends 

CET anomalies and residuals were averaged over each year, season (December to 

February etc.), each winter half-year (October to March), each summer half year (April to 

September) and each high summer (July and August). High summer CET was analysed owing 

to strong recent warming in CET in that season. 

Table 1 shows that regional atmospheric circulation changes have accounted for 

approximately half of the warming in the winter half-year since 1966. The warming trends of 
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the minimum CET residuals are about 55% smaller than those of the anomalies (see Table 1) 

and circulation effects account for 45% of the maximum CET trends. In the summer half year, 

regional circulation changes have not contributed to the statistically significant warming since 

1966, although a fifth of the CET trend in high summer can be attributed to changes in 

circulation since that date. This approximately corresponds to an onset of increasingly 

anticyclonic conditions (Hurrell et al. 2001), also shown for July to September by Rodwell 

and Folland (2003).  

Table 1. Observed trends (oC/decade) for the period 1966-2001 estimated by least squares 

regression allowing for 1st order autocorrelation. Bold values are significant at the 5% level. 

Minimum CET Maximum CET  

Anomaly Residual Anomaly Residual 

Annual .14 .08 .34 .26 

Winter half .18 .08 .34 .18 

Summer half .11 .11 .36 .37 

High Summer .14 .11 .56 .46 

MAM .31 .28 .53 .48 

JJA .08 .08 .34 .33 

SON .10 .10 .20 .22 

DJF .12 -.08 .33 .06 

 

Since 1881, regional atmospheric circulation changes have, overall, had little effect on 

trends of CET. For example, trends of anomalies and residuals of daily mean CET for the year 

as a whole for 1881-2001 were both 0.071°C/decade. Fig. 3 shows that the largest effect of 

circulation on multi-decadal fluctuations of CET over the period 1881-2001 has been during 

the winter half year. In particular, there was a large warming due to circulation during the late 

1980s and early 1990s due to enhanced winter westerly circulation. In the 1960s winter 

temperatures were lowered by increased blocking and cold easterly winds from the Eurasian 

continent (Folland 1983). As shown by Table 1, multi-decadal changes in daily maximum 

CET dominate changes in the daily mean CET on those time scales. 
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Figure 3. Observed low-pass filtered (half power about 10 years) anomalies (heavy) and 

residuals (light) of daily mean CET (°C). 

b. Trends in day versus night CET 

For 1950-1993, Easterling et al. (1997) used a set of non-urban station temperatures to 

estimate warming trends for the Northern Hemisphere of 0.077 °C/decade for day maximum 

temperatures and 0.17°C/decade for night minimum temperatures The maps in Easterling et 

al. (1997) show relative daytime warming over the UK, in opposition to the relative night-

time warming trends over most continental regions. Over the same period annual-average 

maximum and minimum CET had trends of 0.089 and 0.036°C/decade respectively, both of 

which were not statistically significant. 

c. Trends in CET residuals on windy and light-wind days 

To seek for an urban warming signal, we estimated the trend in CET residuals on light-

wind days and nights (geostrophic wind speed in lowest tercile) relative to windy days and 

nights (geostrophic wind speed in highest tercile). CET already includes some recent calendar 

monthly urban warming adjustments of up to 0.2oC (Parker et al. 1992) but these will not 

affect trends on windy relative to calm days or nights. This is because the adjustments are to 

monthly means and thus do not distinguish between these conditions. If urban warming were 

significantly biasing the unadjusted CET, there would be stronger warming on calm nights 

than on windier nights (Johnson et al. 1991). However, minimum CET residuals on light-wind 
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nights since 1881 have not warmed relative to those on windy nights (Figure 4). So we 

conclude that the CET record overall since 1881 is unbiased by urban warming.  A 

requirement for small adjustments of up to –0.2oC since 1980 (Parker et al. 1992) is not 

evident from these results, probably because of the substantial natural, interannual variation of 

(calm minus windy) CET residuals (not shown). There is a significant warming trend in 

maximum CET anomalies on calm days relative to windy days, but this is not a recognised 

symptom of urban warming. There are also no significant trends in the seasonal temperatures 

on calm days relative to windy days (Figure 4). 
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Figure 4. Trends (°C/decade) in observed CET residuals, light-wind minus windier 

conditions, 1881-2001. Asterisk: significance at 5% level. 

5. Initial comparison of observed and simulated trends of CET    

First we show how well the model simulates the characteristics of atmospheric 

circulation over the UK. For brevity, we restrict the analysis to daily mean CET. The lowess 

predictions for the model were based on CET anomalies and atmospheric circulation indices 

from the second member of SSTNAT over the period 1900-1998; the flow indices were 

calculated in the same way as the observations using mean sea level pressure data interpolated 

onto the observational grid. Fig. 5 shows that the climate model generally has stronger winds 

on average than observed and that the fastest winds are greater than those observed by about 
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3ms-1 in summer and 5ms-1 in winter. The distributions of wind direction and vorticity (not 

shown) are reasonably well simulated. However, from April-July there are too many winds 

from the north and the east in the climate model (see July in Fig. 5). 
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Figure 5. Probability density function (in %) for combinations of wind direction and speed 

for the second member of the SSTNAT integrations of the HadAM3 model. 

For the modelled data, the best-fit regression surface of CET against circulation from 

the second member of SSTNAT was used to estimate residuals for the other model 

integrations. Table 2 shows that warming trends in CET residuals were clearly underestimated 

by SSTNAT. The observed warming of 0.056°C/decade since 1900 in annual mean CET 

residuals is above the range of the six individual simulations contributing to SSTNAT (not 

shown), and the difference in trends (0.018°C/decade) is statistically significant at the 5% 

level. The annual mean trends from GSOT and GSOTI are closer to the observed value, 
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suggesting that the direct influence of anthropogenic forcings (Sexton et al. 2001) is required 

to explain the recent rise in CET. In particular, GSOT and GSOTI simulated the recent high-

summer warming well.  

Table 2. Comparison of observed and modelled trends ( P

o
PC/decade) in CET residuals for the 

period 1900-1998. Bold trend values are significant at the 5% level. 

 Observed CET SSTNAT GSOT GSOTI 

Annual .056 .038 .059 .062 

Winter half .053 .032 .043 .055 

Summer half .060 .042 .077 .072 

High summer .086 .044 .084 .084 

 

Fig. 6 shows the lowess estimate of the best-fit surface from the second member of 

SSTNAT. Fig. 6 shows that the model is capturing the combined effect of speed and wind 

direction on CET reasonably well (compare with Fig. 1) but that the effect of vorticity in the 

model is too large. In particular, there is too much cooling in anticyclonic conditions. 

Cyclonic situations in January are generally too warm in the model. In January, the modelled 

westerlies are too cool whilst in July and October the simulated northerlies and easterlies for 

neutral and cyclonic vorticity are generally too warm. In December, the northerlies are too 

cold. Because we use anomalies about the model climatology, these results represent relative 

errors, not absolute errors in CET. 

Figs. 7 and 8 compare modelled and observed time series of anomalies and residuals 

respectively. The grey shading centred on the observed time series is 11 6+ x 1.96 x the 

intra-ensemble standard deviation of SSTNAT. This effectively represents the combined 95% 

confidence level of the observed time series and a six-member ensemble mean. Therefore, if 

the model time series are outside the grey area, then the observations and model time series 

are locally significantly different at the 5% level. The confidence intervals are narrower for 

the residuals than the anomalies, particularly in winter. There is less difference between the 

anomaly and residual time series in Figs. 7 and 8 than those previously shown by Osborn and 

Jones (2000). For mean CET anomalies, SSTNAT significantly underestimates the observed 

warming in the 1990’s, especially in the winter half of the year and high summer, whilst both 



   

  

GSOT and GSOTI simulate CET changes better in this period. The recent discrepancy 

between SSTNAT and the observations has been slightly reduced by removing the mean 

circulation effects on CET (Fig. 8). In the 1970’s, the three ensemble means underestimate the 

annual mean CET changes in both the anomaly and residual time series, suggesting that 

factors other than local circulation are important here. 
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Figure 6. Mean effect of wind direction and speed on CET (oC) for three values of vorticity 

and for January, April, July and October using the second member of SSTNAT. The smooth 

regression surface estimated by lowess was sampled for 1ms-1 intervals of speed and 40 

equally spaced values for wind direction. 
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Figure 7. Comparison of low-pass filtered (half power of ~10 years) observed and modelled 

CET anomalies (oC) from a reference period 1900-1998. Shaded regions are centred on the 

observed curve and represent the combined 95% confidence level of the observed time series 

and a six-member ensemble mean. 
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Figure 8. As figure 7 but for CET residuals. 
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Many models suggest enhanced continental warming under greenhouse forcing (IPCC, 

2001). However, this does not occur in the observed CET since 1966 which shows a warming 

trend on maritime days (wind direction from 180o through North to 45o) of 0.16oC/decade 

relative to other days. This may reflect relative warming of maritime air masses owing to the 

very rapid warming of SST (Figure 9) in the extratropical North Atlantic since 1985. This 

oceanic warming is likely to exceed warming from anthropogenic influences alone and seems 

to be related in part to natural multidecadal fluctuations (Mann and Park 1996), possibly in 

the thermohaline circulation (Delworth and Mann 2000). Similarly, in the model there was no 

significant warming during 1966-1998 on continental days relative to maritime days. For 

1900-1998, neither model ensembles nor observations showed any significant overall trend of 

temperatures on continental relative to maritime days. 
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Figure 9. Annual SST, relative to 1961-1990, in the east mid-latitude North Atlantic (~35°-

65°N, 0°-35°W) and North Atlantic north of 35°N, 1861-2001. Near decadal smoothing uses 

21-term binomial filter.  

6. Objective comparison of observed and modelled time series of residual CET 

We estimate the effects of SST, natural and anthropogenic forcings on CET anomalies 

in HadAM3 using the General Linear Model (GLM) technique of Sexton et al (2003). These 

results are now based on an extended suite of 48 simulations for all or part of 1900-1998 with 
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different combinations of the five forcings discussed above. The GLM assumes that simulated 

changes are a linear combination of "direct" anthropogenic signals (Sexton et al. 2001) and 

their possible interactions in pairs, superimposed on natural signals and an SST effect that 

implicitly includes anthropogenic influences on SST. A stepwise selection algorithm is used 

to eliminate statistically insignificant forcings. The end product from the GLM analysis is an 

estimate of a set of parameters and their standard errors; there is a different parameter for the 

SSTNAT (combined SST and natural forcings) effect in each year, and a single parameter for 

each significant anthropogenic effect and for each significant interaction. The time profile of 

the response to each anthropogenic effect is its annual global-average radiative forcing scaled 

by its parameter estimate. Likewise the evolution of the interaction between two 

anthropogenic effects is the product of the two global radiative forcings multiplied by the 

corresponding parameter estimate. Modelled annual CET anomalies (see Fig. 10) were best 

fitted by a combination of SST and natural forcings (SSTNAT), greenhouse gases (G), the 

indirect effects of tropospheric aerosols (I), and the interaction between G and I (called GI in 

Fig. 10). The direct aerosol effect (S) also made a small but statistically significant 

contribution (not shown). No significant effects due to changing stratospheric and 

tropospheric ozone (O, T) were detected.  

Effect of forcings on annual mean CET
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Figure 10. Effect of changing SST + volcanic aerosol + solar output (SST+vol+sol), 

increasing greenhouse gases (G), indirect aerosol effect (I) and the interaction between G 

and I (GI) on annual mean CET anomalies (oC) estimated by a General Linear Model. 

 18



   

  

 19

To objectively assess which combination of forcing factors best describes the observed 

changes in CET, we first used a technique that is similar to optimal fingerprint detection 

(Allen and Tett 1999) but adapted for single time series. We regressed various combinations 

of the four response curves in Fig. 10 onto the observed CET anomalies to determine the 

linear combination of forcing factors that best describes the observed CET anomalies. The 

error terms were modelled as a 1P

st
P order autoregressive model to account for red noise in 

CET. Annual mean CET residuals were best described by (1.003�0.27)×SSTNAT + 

(1.195�1.15) ×G, where the ranges indicate the 90% confidence intervals of both amplitude 

estimates. As these 90% confidence intervals overlap with unity but not with zero, the 

combined simulated effect of SSTNAT and G are consistent with the observations. Out of the 

other possible combinations of forcing factors, only SSTNAT alone provided a consistent 

explanation of changes in annual mean CET anomalies. For MAM, AMJJAS, and SON, 

SSTNAT was the only consistent explanation of the observed CET anomalies. DJF was best 

described as red noise. For JJA and JA, the amplitudes of the SSTNAT signal were 

statistically significantly greater than 1. An SSTNAT effect was detected in ONDJFM but the 

modelled signal was too large (amplitude less than 1).  

For the annual means, it is possible that the anthropogenic effects are fitted to variations 

in CET anomalies that were actually due to variations in local circulation. To test this, the 

previous analysis was repeated with modelled and observed CET residuals. Both SSTNAT 

and SSTNAT+G were consistent with the observed annual CET residuals, suggesting that 

increasing greenhouse gas levels were playing an important role. This was also the case for 

SON. In contrast with the anomaly analysis, SSTNAT was consistent with the observations 

for JJA and high summer (JA). This indicates that circulation changes, which have not been 

reproduced by the climate model, have had an important effect on the observed CET changes 

in these two seasons. For MAM, the amplitude of the SSTNAT signal estimated to best fit the 

observed curve was too large so that the 99% confidence interval was neede to overlap with 1. 

A problem for this fingerprint approach is that the time series of the modelled response 

to the various forcing factors (see Fig. 10) that are fitted to the observations are highly 

correlated with each other. This makes it difficult for the regression to distinguish between the 

different forcing factors, especially when 3 or more forcing factors are being fitted to the 

observations. This problem is exacerbated here as we are only considering single time series, 

whereas other studies e.g. Stott et al., (2000) can use seasonal spatial patterns to reduce the 

correlation between forcings. 
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Figure 11. Distributions of log-likelihood ratio test statistic comparing a) 

0H :obs=SSTNAT and 1H :obs=SSTNAT+G, and b) 0H :obs=SSTNAT+G and 

1H :obs=SSTNAT+G+S+I+GI, for annual mean CET anomalies. The ‘∨’ symbol on the x-

axis indicates the log-likelihood ratio of the observed annual mean CET anomalies. The 

dashed vertical line in the distribution of 0Prob( ¦ )Hx  indicates the threshold for a 

significance level of 5%. 

An alternative to the fingerprint approach is the method of hypothesis testing. Kheshgi 

and White (2001) describe a Monte Carlo approach to test which of two alternate hypotheses, 

for which the probability functions have been fully specified, best describes the observed data 

(see section b in the Appendix). Here, we use the hypothesis tests to determine which 

combinations of forcings best represent the observed changes in CET. The assumption is that 

the modelled response of CET to each of the various forcings is realistic; this is a large 

assumption to make but it overcomes the problem of distinguishing between forcing factors 

whose effects are highly correlated in time. To test these hypotheses, we use the estimates of 

parameters and their standard errors produced by the GLM analysis, to fully define the 

probability distribution of data for each combination of forcings. These distributions are then 

used in the Monte Carlo approach to synthetically produce time series consistent with a given 

set of forcings. Section b in the Appendix describes the methodology in more detail. 

Fig. 11 shows the results for annual mean CET anomalies produced by the Monte Carlo 

approach. The thin (thick) curve shows the PDF of the likelihood ratio of data coming from 
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1H  rather than 0H  given that the data have been generated by 0H ( 1H ). The ‘∨’ symbol 

shows the likelihood ratio of the observations. In Fig. 11a, ‘∨’ lies within the PDF for 

1Prob( ¦ )Hx  and just beyond the 5% significance level (the vertical dashed line) of the PDF 

of 0Prob( ¦ )Hx . This indicates that the observed annual mean CET is significantly more 

consistent with SSTNAT+G than with SSTNAT or, SSTNAT+G+S+I+GI (Fig. 11b), andor a 

red noise process (not shown). Therefore SSTNAT+G is the best simulation of the observed 

annual mean CET, a result that could not be established by the fingerprint analysis above. For 

MAM, JJA, and SON, SSTNAT and SSTNAT+G could not be distinguished and were 

equally good explanations of the observed time series. In DJF the changes in CET were best 

described as red noise, using the serial correlation estimated in the GLM analysis. The 

hypothesis test was not applied to the CET residuals because the Monte Carlo procedure is 

more complicated as we would also be required to replicate the lowess estimation of the local 

circulation effects on CET and their subsequent removal from the anomalies to generate 

residuals. Another way of thinking about this is that the circulation effects themselves have 

uncertainties and that these uncertainties are  present in the residuals. Therefore any detection 

strategy based on residuals must account for this hidden uncertainty or risk erroneously 

obtaining too many significant results. 

7. Conclusions 

Our analysis of CET since the late 19P

th
P century shows that its long-term warming cannot 

be fully explained by atmospheric circulation changes, natural forcings and rising SST alone, 

though the non-linear behaviour of SST in the North Atlantic since 1880, including its most 

recent warming, is clearly influential. The lack of warming of CET on light-wind nights 

relative to other nights indicates that CET is unlikely to be significantly affected by 

urbanization. 

The regression analysis suggests a significant human influence from increasing 

greenhouse gases on CET in the observations. We also used hypothesis tests, which can cope 

with several highly correlated anthropogenic effects, but do so at the expense of assuming the 

simulated response to each forcing factor is realistic. These hypothesis tests confirmed that a 

combination of SST, natural forcings and increasing greenhouse gases best describes the 

annual mean observed changes in CET from 1881-1998. This reduces the possibility that the 

result from the regression analysis was due to limitations in the technique for distinguishing 
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between highly correlated anthropogenic effects. However, the conclusions are tentative ones 

because the results are only significant for the full period. As the prescribed SST forcing 

already contains some human influence, we cannot rule out effects from anthropogenic 

forcings other than increasing greenhouse gases. 

Appendix 

a. Locally weighted regression 

Local weighted regression, or lowess, is a multivariate procedure for fitting a non-

parametric regression surface to a set of data allowing for a wide variety of linear or non-

linear responses (Cleveland and Devlin 1988). The method is very flexible allowing for a 

wide range of possible surfaces to be fitted to the data. 

In the univariate case, where we have N dependent data, iy , and an explanatory 

variable, ix , for i=1,…,N, we model the data as consisting of some unknown function of the 

explanatory data, ( )ig x  plus some unexplained variation, ie . Locally weighted regression 

estimates ( )ig x  are made as follows. For each value of ix , say X, we form a subset of the 

ix ’s which are closest in value to X, such that the subset covers a specified fraction of ix , 

called the span. To estimate ( )g X , we regress this subset of ix  against the corresponding 

values of iy  using a weighted linear or quadratic regression. The weights, iw , are calculated 

using a tri-cube function (Eqn. 1) of the distance between the ix ’s and X divided by the 

maximum distance between the ix ’s and X in the subset. The tri-cube function is used as it 

has a very smooth contact with 0 and 1, which ensure that the locally weighted regression 

behaves well. 
33

1
max

i
i

i

x X
w

x X

⎡ ⎤⎛ ⎞−
⎢ ⎥= − ⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

        Eqn 1 

The procedure ensures that the best fit, ˆ ( )ig x , is a linear combination of the data, iy . To 

enable standard errors for the predicted values to be estimated, we assume that the error terms, 

ie , are Gaussian and have constant variance.  
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A number of key statistics are produced by lowess, which are described in detail in 

Cleveland and Devlin (1988). The variance of the residuals, ˆ ˆ ( )i i ie y g x= − , measures the 

precision of the fit. The number of equivalent parameters, pN , effectively measures the 

smoothness of the fit. For prediction, it is desirable to keep pN to a minimum otherwise the 

standard errors of the predicted values become large rendering the prediction useless. 

However, a downside of over-smoothing is that bias, which is the difference between the best 

fit, ˆ ( )ig x , and the true response, ( )ig x , is increased, unless the true response is a simple 

polynomial relationship of degree no more than that used in the lowess fit. The smoothness of 

the best fit is partly a property of the data but also depends on the span and degree of the local 

fit chosen by the analyst. As the span is increased or the degree reduced, pN  decreases and 

the bias increases. 

Cleveland and Devlin (1988) provide a method, which is implemented in S-Plus, to 

guide the choice of the span and degree so that there is a balance between pN  and the bias. 

This approach uses Mallow’s pC  statistic to measure the combined amount of smoothness 

and bias. Despite the objectivity of this approach, Cleveland and Devlin advise that the final 

choice of span depends on the application. For instance, if a simple relationship between ix  

and iy  is sought, then over-smoothing is desirable and a large bias can be tolerated. This 

approach can also be used to determine whether some explanatory variables are redundant. 

Cleveland and Devlin (1988) also generalise the univariate technique to cope with p>1 

explanatory variables. For the case with two explanatory variables, ix  and iz , and where the 

degree of the lowess estimate is 2, the local polynomial regression is of the form 
2 2( ) ( ) ( ) ( ) ( )( )i i i i i i i iy x x z z x x z z x x z z eα β γ δ η= − + − + − + − + − − + .  Eqn 2 

The inclusion of the term ( )( )i ix x z zη − −  enables lowess to cope with non-linear 

interactions between the two explanatory variables. The weighting function depends on the 

distance between the p-element vectors ix  and X  in p-dimensional space. The major practical 

consideration is that the p explanatory variables may have different scales. To prevent any 

single explanatory variable dominating the calculation of distance, the explanatory variables 

are normalised by a measure of their scale; we used the inter-quartile range rather than the 

standard deviation as it is more robust. Was the original or the extended wind direction 
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datasetyou describe below used to calculate the “inter-quartile range” of wind direction? If the 

latter, which parts of it? 

A weakness of the standard lowess technique is that it does not allow for cyclic 

explanatory variables such as wind direction. Thus values of wind direction such as 1P

o
P and 

359 P

o
P are not treated as local. As the standard software does not deal with cyclic variables, we 

used the following procedure to approximately allow for the periodicity of wind direction. 

First, we determined the scale for each of the explanatory variables. We then formed a new 

set of data by subtracting 360 from the original wind directions; wind directions in this set 

could not exceed 0P

o
P. Likewise, we formed another set by adding 360 to the wind directions. 

These two sets were joined with the original data set, and each explanatory variable was 

normalised by its appropriate scale to form a combined set that was used for the lowess 

estimation. This larger data set ensured that data with wind directions either side of 0P

o
P were 

treated as ‘local’ in lowess. Only the regression surface for wind directions between 0P

o
P and 

360 P

o
P was used for subsequent prediction. 

b. Hypothesis testing 

Hypothesis tests can be used to determine which of two hypotheses, called the null 

( 0H ) and the alternative ( 1H ), best describes some data, y . Both hypotheses must have fully 

defined probability distributions, 0 ( )P y  and 1( )P y  respectively. Two types of error are 

possible in hypothesis testing. So-called Type I errors occur when 0H  is falsely rejected when 

it is true. Type II errors are when 1H  is wrongly accepted when it is false. The probability of a 

type I error occurring, which is called the significance level, α , can be specified prior to the 

hypothesis test. The probability of a type II error not occurring, 1 β− , is called the power of 

the test and it is desirable to maximise this. 

Neyman and Pearson defined the test statistic for which the power is maximised given a 

specified significance level (e.g. Kendall and Stuart 1977). This test statistic, which provides 

the optimal test to decide between the two hypotheses, is the likelihood ratio statistic,  

1 0 1 0( ) ( ) / ( ) ( ¦ ) / ( ¦ )L P P P H P H≡ ≡y y y y y .      Eqn 3 

The most powerful test of whether 1H  best describes the data is if  

( )L θ>y ,          Eqn 4 

where θ  is some ‘threshold’ value of likelihood-ratio statistic to be determined. 
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The hypothesis test is then a three-step process, which is outlined here but is presented 

in more detail in Kheshgi and White (2001): 

1. Derive two likelihood ratio functions based on the statistical models for 0H  and 1H . 

These two likelihood functions can be written as 0( ¦ )P L H  and 1( ¦ )P L H . 

2. Specify the significance level, α , and determine the threshold, θ , by the 

relationship, 

0( ¦ )P L Hα θ= >        Eqn 5 

    The relationship between θ  and the power, 1 β− , is  

  11 ( ¦ )P L Hβ θ− = ≤ .       Eqn 6 

3. Apply the test to the data to determine ( )L y and test Eqn. 4. Four outcomes are 

possible: 0H  or 1H  is accepted in favour of the other hypothesis, or both hypotheses 

are rejected, or neither hypothesis is accepted in favour of the others. 

Step one is the most complicated part of the algorithm. Kheshgi and White (2001) 

describe a Monte Carlo approach to estimate 0( ¦ )P L H  and 1( ¦ )P L H . Here, we describe the 

Monte Carlo approach used in this study. 

The two hypotheses we test are whether the observed time series is best represented by 

the climate model forced by two different combinations of forcing factors. A General Linear 

Model (GLM) (Sexton 2001) (Eqn 7) has been used to estimate the effects of the various 

forcing factors in the climate model, and it can be used to describe the probability function of 

data coming from any combination of these forcings (see Eqn 8). 
2, where ~ ( , ( ))   N rσ= +y Xβ ε ε 0 V ,      Eqn 7 

where y is the CET data from all integrations joined together, ε is the noise component with 

variance, 2σ , and a correlation matrix, V , specified by a AR(1) process with lag-1 

correlation, r . β  is the vector of parameters which represent the SSTNAT and anthropogenic 

effects. For SSTNAT, there is a parameter in P

o
PC for each time point in the modelled 

temperature data. There is a single parameter for each anthropogenic effect, and this is 

multiplied by the global radiative forcing (see below) to produce an estimate of the 

temperature response to that forcing. Each element of β has its own Gaussian distribution 

based on the estimate and standard error from the GLM analysis, and this can be used to 
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randomly generate vectors like β , called randβ . X is a matrix of coefficients that describe how 

each element of y  is related to each parameter of β . For SSTNAT parameters, the 

corresponding columns of X  consist of 0’s and 1’s. For an anthropogenic parameter the 

corresponding column of X  consists of values of global radiative forcing if the corresponding 

elements of y  come from integrations that include this forcing, or otherwise 0. Therefore, X  

depends on the design of the experiment. 

The probability of any data arising from the GLM is defined by 

1/ 2/ 2 11( ) (2 ) exp ( ) ( ) ( )
2

n T
GLMP rπ −− −⎧ ⎫= − − −⎨ ⎬

⎩ ⎭
y V y Xβ V y Xβ ,   Eqn 8 

where n is the number of points in y . 

To estimate 0( ¦ )P L H  with a Monte Carlo approach, we use Eqn 9 to produce a 

randomly generated time series, randy , based on the GLM estimates for the combination of 

forcings in 0H . First, randβ  was randomly generated and all elements corresponding to 

forcings not included in the combination of forcings in 0H  were set to zero. Then 0X  is 

created in the same way as X  but as if it were for a single integration with the forcings in 

0H . In effect, the parameters of randβ  that correspond to SSTNAT effects produce a randomly 

generated time series of the model response to SSTNAT forcing. Also, a randomly generated 

time series of the model response to a particular anthropogenic forcing is made by multiplying 

the time profile of its global radiative forcing by the appropriate parameter in randβ . Randomly 

generated curves are produced for each anthropogenic forcing and interaction in 0H  and 

added together to the random SSTNAT series. The stochastic component, randε , was generated 

as a random Markov process with noise variance, 2σ , and lag-1 correlation, r . Then 

rand rand rand= +0y X β ε .         Eqn 9 

Eqn. 8 defines the probability of randy  occurring under the GLM for each of the two 

hypotheses, 0 ( )P randy  and 1( )P randy . Eqn. 3 is used to estimate ( )L randy . To estimate 

0( ¦ )P L H , this procedure was repeated 1000 times to provide 1000 estimates of ( )L randy . 

Step one is completed by estimating 1( ¦ )P L H  in a similar way using synthetic time series 

based on the GLM estimates of the combination of forcings in 1H . 



   

  

Acknowledgments 

The UK Dept. of the Environment, Food, and Rural Affairs (Contract PECD/7/12/37) 

and the UK Government Meteorological Research Program funded this work. This paper is 

British Crown Copyright. The earlier work on CET residuals that inspired this analysis was 

done by Peter Wright under contract Met 16/2068. Briony Horton, Ian Macadam and Mark 

Rodwell made supporting computations. Thanks to Peter Stott and Michael Mann for 

comments on this paper. Thanks to William Cleveland, Eric Grosse, and Ming-Jen Shyu for 

making the locally weighted regression software freely available on the web at http://cm.bell-

labs.com/cm/ms/departments/sia/wsc/smoothsoft.html.  

References 

Allen, M. R. and S. F. B. Tett, 1999: Checking for model consistency in optimal finger 

printing. Clim. Dyn., 15, 419-434. 

Braganza, K., D. J. Karoly, A. C. Hirst, M. E. Mann, P. Stott, R. J. Stouffer, and S. F. B. Tett, 

2003: Simple indices of global climate variability and change: Part I - variability and 

correlation structure. Clim. Dyn., 20, 491-502. 

Cleveland, W. S. and S. J. Devlin, 1988: Locally weighted regression: an approach to 

regression analysis by local fitting.  J. Amer. Stat. Assoc., 83 (403), 596-610. 

Delworth, T. L. and T. R. Knutson, 2000: Simulation of early 20th century global warming. 

Science, 287, 2246-2250. 

Delworth, T. L. and M. E. Mann, 2000: Observed and simulated multidecadal variability in 

the Northern Hemisphere. Clim. Dyn., 16 (9), 661-676. 

Diggle, P. J., K.-Y. Liang, and S. L. Zeger, 1999:  Analysis of longitudinal data, Clarendon 

Press, Oxford, 253pp. 

Easterling, D.R., E. B. Horton, P. D. Jones, T. C. Peterson, T. R. Karl, D. E. Parker, M. J. 

Salinger, V. N. Razuvayev, N. Plummer, P. Jamason, and C. K. Folland, 1997: 

Maximum and minimum temperature trends for the globe. Science, 277, 364-367. 

Folland, C. K., 1983: Regional-scale interannual variability of climate - a north-west 

European perspective. Met. Mag., 112, 163-183. 

 27



   

  

Folland, C. K., D. M. H. Sexton, D. J. Karoly, C. E. Johnson, D. P. Rowell, and D. E. Parker, 

1998: Influences of anthropogenic and oceanic forcing on recent climate change. 

Geophys. Res. Lett., 25,  353-356. 

Gillett, N. P., G. C. Hegerl, M. R. Allen and P. A. Stott, 2000: Implications of changes in the 

Northern Hemisphere circulation for the detection of anthropogenic climate change. 

Geophys. Res. Lett., 27, 993-996. 

Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: regional temperatures 

and precipitation. Science, 269, 676-679. 

Hurrell, J. W., M. P. Hoerling, and C. K. Folland, 2001: Climate variability over the North 

Atlantic, Meteorology at the Millennium, ed: R. Pearce, Academic Press, London, 

143-151. 

Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell and 

C. I. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis, Contribution of 

Working Group I to the Third Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge Univ. Press, 881 pp. 

Jenkinson, A. F., and P. Collison, 1977. An initial climatology of gales over the North Sea. 

Synoptic Climatology Branch Memorandum, 62. Met Office, UK, 18 pp. 

Johns, T. C., J. M. Gregory, W. J. Ingram, C. E. Johnson, A. Jones, J. F. B. Mitchell, D. L. 

Roberts, D. M. H. Sexton, D. S. Stevenson, S. F. B. Tett, and M. J. Woodage, 2001. 

Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model 

under updated emissions scenarios. Hadley Centre Technical Note 22, Met Office. 

Johnson, G. T., T. R. Oke, T. J. Lyons, D. G. Steyn, I. D. Watson and J. A. Voogt, 1991: 

Simulation of surface urban heat islands under 'ideal' conditions at night., Part I: 

Theory and tests against field data. Bound. Lay. Meteorol., 56, 275-294. 

Jones, P. D., E. B. Horton, C. K. Folland, M. Hulme, D. E.  Parker and T. A. Basnett, 1999: 

The use of indices to identify changes in climatic extremes. Clim. Change, 42, 131-

149.  

Jones, P. D., M. Hulme and K. R. Briffa, 1993: A comparison of Lamb circulation types with 

an objective classification scheme. Int. J. Climatol., 13, 655-663. 

 28



   

  

Kendall, M. G., and Stuart, A., 1977: The advanced theory of statistics. Volume 2. Inference 

and relationship. Charles Griffin and Company, 748pp. 

Khesghi, H. S. and B. S. White, 2001: Testing distributed parameter hypotheses for the 

detection of climate change. J. Climate, 14, 3464-3481. 

Lean, J., J. Beer and R. Bradley, 1995: Reconstruction of solar irradiance since 1610: 

Implications for climate change. Geophys. Res. Lett., 22, 3195-3198. 

Mann, M. E. and J. Park, 1996: Joint spatiotemporal modes of surface temperature and sea 

level pressure variability in the Northern Hemisphere during the last century. J. Clim., 

9, 2137-2162. 

Osborn, T. J., D. Conway, M. Hulme, J. M. Gregory, and P. D. Jones, 1999: Air flow 

influence on local climate: observed and simulated mean relationships for the United 

Kingdom. Climate Research, 13, 173-191. 

Osborn, T. J., and P. D. Jones, 2000: Air flow influences on local climate: observed United 

Kingdom climate variations. Atmospheric Science Letters, 1, 62-74. 

Parker, D. E., T. P. Legg and C. K. Folland, 1992: A new daily Central England Temperature 

series, 1772-1991. Int. J. Climatol., 12, 317-342. 

Pope, V. D., M. L. Gallani, P. R. Rowntree and R. A. Stratton, 2000: The impact of new 

physical parametrizations in the Hadley Centre climate model HadAM3, Clim. Dyn., 

16, 123-146. 

Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland and R. B. Hackett, 1996: Version 2.2 

of the Global sea-Ice and SST data set, 1903-1994. Hadley Centre Technical Note no. 

74, Met Office. 

Rodwell, M.J. and C.K. Folland, 2003: Atlantic air-sea interaction and model validation.   

Annals of  Geophysics,  46, 47-56.  

Sato, M., J. E. Hansen, M. P. McCormick and J. B. Pollack, 1993: Stratospheric aerosol 

optical depths 1850-1990. J. Geophys. Res., 98, 22,987-22,994. 

Sexton, D. M. H., H. Grubb, K. P. Shine, and C. K. Folland, 2003: Design and analysis of 

climate model experiments for the efficient estimation of anthropogenic signals, J. 

Climate, 16, 1320-1336. 

 29



   

  

Sexton, D. M. H., D. P. Rowell, C. K. Folland, and D.J. Karoly, 2001: Detection of 

anthropogenic climate change using an atmospheric GCM. Clim. Dyn., 17(9), 669-

685. 

Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent 

northern winter climate trends by greenhouse-gas forcing. Nature 399, 452-455. 

Spagnoli, B., S. Planton, M. Déqué, O. Mestre, and J.-M. Moisselin, 2002: Detecting climate 

change at a regional scale: The case of France, Geophys. Res. Lett., 29, art. no. 1450. 

Stott, P. A. and S. F. B. Tett, 1998: Scale-dependent detection of climate change, J. Climate, 

11, 3282-3294. 

Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell and G. J. Jenkins, 2000: 

External control of twentieth century temperature variations by natural and 

anthropogenic forcings, Science, 290, 2133-2137. 

Stott, P. A., 2003: Attribution of regional-scale temperature changes to anthropogenic and 

natural causes, Geophys. Res. Lett., 30, art. No. 1728. 

Tett, S. F. B., P. A. Stott, M. R. Allen, W. J. Ingram and J. F. B. Mitchell, 1999: Causes of 

twentieth-century temperature change near the Earth's surface. Nature, 399, 569-572. 

Zwiers, F. W., and X. Zhang, 2003: Toward regional-scale climate change detection, J. 

Climate, 16, 793-797. 

__________________ 

D.M.H. Sexton, D.E. Parker, C.K. Folland, Hadley Centre for Climate Prediction and 

Research, Met Office, Fitzroy Road, Exeter, Devon, EX1 3PB, UK. 

(david.sexton@metoffice.com) 

 

 

 

  

 30

mailto:deparker@meto.gov.uk

	Abstract
	Introduction
	Data processing
	Treatment of observations
	Treatment of model simulations

	Estimation of the influence of atmospheric circulation on CE
	Observed CET trends
	The effect of regional atmospheric circulation on observed C
	Trends in day versus night CET
	Trends in CET residuals on windy and light-wind days

	Initial comparison of observed and simulated trends of CET
	Objective comparison of observed and modelled time series of
	Conclusions
	Appendix
	Locally weighted regression
	Hypothesis testing
	Acknowledgments
	References






