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Lagrangian Plume Development with Imposed Mean Vertical Motion

140 Introduction

Most of the extensive theory on the transport and dispersion of
pollutants in the atmospheric boundary layer is specific to uniform
conditions over level terrain. A glance at any Ordnance Survey map reveals
that there are extensive areas in the UK in which the effects of the relief
upon the mean air flow and turbulence cannot realistically be ignored, and
surprisingly few areas of even a few square miles in which topographic
irregularities may not have distinct, if sometimes subtle, effects upon
atmospheric dispersion.

This paper is a companion to Maryon, Whitlock and Jenkins (1984,
referred to henceforth as MWJ) which described short-range dispersion
experiments carried out on the hill Blashaval, North Uist in 1982. It
deals with the initial stages of plume dispersion in the vertical for
elevated releases, in neutral conditions, into the surface stress layer. In
particular it is concerned with the displacement of the centroid of a puff
according to Lagrangian similarity theory, an attempt being made to adapt
formulae developed for conditions of level, uniform terrain to the
situation where the plume is embedded in a profilé of mean vertical
velocity, as occurred in many of the experiments carried out on the upwind
slope at Blashaval. Throughout this paper the mean vertical velocity ‘;;£(2)5
refers to the motion imposed, via mass continuity, by distortion of the
mean flow due to the presence of the hill, and is always regarded as

perpendicular to the local surface.



The work may, however, also prove to be of wider interest, in that
vertical motions which are broad-scale in relation to surface layer
turbul ence may occur widely in convective situations; as yet little theory
has been applied specifically to the detail of plume development in such
conditions. >

s Lagrangian similarity theory

Although the standard deviation of particle displacements G; is
necessarily used to represent horizontal spread, due to the presence of a
solid boundary CT; is a less satisfactory measure of vertical dispersion
from an elevated source in the surface layer, except in the immediate
vicinity of the point of release. Similarity theory can be usefully
applied to the rate of displacement of the mean height of an ensemble of

particles , and in particular for surface releases. ii is the

dt
height above the surface of the centroid of an instantaneous puff released
at a height Zg.

In neutral conditions, and subject to a vertical forcing as a result

-

of topographically induced divergence, in the near field depends

dc
upon the time since release, t , the turbulent momentum flux represented

by the friction velocity “Ll* , the height of release, and upon the — -

V)
gradient of induced vertical velocity Ei—‘ , which is presumed steady.

dz

With a slight, acceptable loss of accuracy the profile of vertical velocity
may be assumed linear, ie é:fi = constant, so that dimensional
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considerations yield

dz
dt



where the second argument of }: is a dimensionless vertical velocity or

profile. Turbulence measurements made over level terrain have established

that there is little dependence upon height in the surface stress layer,

Zs dz
£ / et , z, .
and for .> by there is little dependence of o upon f ‘t in

conditions of zero mean vertical velocity. Writing )Vug - ) aan (1) we
T
immediately obtain the standard formulation

az o Ry

al (2)
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where ‘( is a constant now generally taken as von Karman's constant.
Batchelor's similarity theory assumes that (2) may be applied to an
elevated release provided that sufficient time has passed for the particles

to 'forget' their origin. Integrating (2) with respect to time,

Z = ku,‘(t*- £ (3)

{ Z

where t o %4’ is the time required for a notional surface release to
produce a plume displacement coincident with that from an elevated release:
it follows (Fig 1) that the centroid of the notional plume would pass a
little below £ S The figure is also used to illustrate
(diagrammatically) the contrast in Eulerian and Lagrangian plume
displacement. In the early stages of plume development, although the mean
displacement of a discrete puff rises, as (2) implies (pecked line), the
Eulerian displacement is at first slight (F approximates the centroid of a
profile at a fixed downwind distance). This can be seen from Hunt's (1985)
analysis of éz

. Ax

difference is due to the relative effects of the profiles of eddy

and indeed from random walk simulations. The



diffusivity and wind strength in the Eulerian and Lagrangian situations.
The line of maximum concentration descends (Smith, 1957; Fig. 1, dotted
line). It should be mentioned at this point that none of the formulations
in this paper include the relatively slight effects of the interactions
involving horizontal turbulence upon the vertical displacement.

37 Raupach's formula and its extension

Raupach (1983) addressed the question of the Lagrangian mean
displacement following release at ZS . Starting with the standard
Langevin equation which forms the basis of the conventional random walk

dispersion models he derived the linear ordinary differential equation
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where W is the ensemble mean vertical velocity of the particles and Ts

.o W () j‘::_ ( -7, ) (1)

the Lagrangian time scale at Z' = 23 . To obtain (4) Raupach assumed
an exponential autocorrelation function for W (\:) after expanding the
dimensionless displacement of the plume binomially under an assumption of

small € and hence small displacement, and truncating to one term. Using

:'v_‘é ol \.(u‘,, (from standard diffusivity theory) the solution to (4) is
S - _."713 t/ )
cl_z.: L(u‘. \“Q (l+ Tb (5)
at

and hence “t/T
: l+kc(t/_‘,b_1)+(t/-\si-7.)e ;

Zz

Zg (6)
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In (6) (¢ 1is a constant used in relating the Lagrangian time scale to the

height:
A e A C Zs
' ( Z) e g o\ TS = e
L Ux * (7)

which Raupach estimates at 0.26, corresponding to O'W = 1,24 U\*
Expression (5) tends to zero as t > O and, despite the assumptions,
tends to ku* as £=»> o | Raupach compared (5) and (6) with random walk
simulations for t/‘rs up to 10 and found the formulae largely validated.
So far only displacements in conditions of zero mean vertical motion
have been reviewed. We now consider the introduction of a uniform Eulerian
gradient of vertical velocity, é_w_z-f-‘ . The basic random walk in neutral

conditions may be written

o (\ J) /Zl(th\ O-W/A‘\H(a)

where WL : Wm are instantaneous vertical velocities of a particle

at timesteps L : ~\‘H separated by a time interval L\t 5 /h a N (Ol‘)
~mandom variable, TL (Z) the Lagrangian timescale at height Z estimated
from ku*z/o}w , and O'w approximated by ?.2‘4 U, (see Ley, 1982,
Thomson, 1984). The most straightforward adaptation of (8) for conditions
of non—zero mean vertical velocity is obtained by substituting W"' "\;i. (7-L\

for W. (ete): 2 é'“ C JANS
2ab o, Mg, t At w9 +w (2
(|-__(2\W+ Tz L+ kAz \TL Z7)

(9)



where W& (2.) is the Eulerian mean vertical wind velocity at height

=

Following Raupach's approach, (9) may be expressed, at small times,
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Substituting for Tl. (.2-) the last term becomes e AZ. which is
assumed constant in the surface stress layer. (10) may then be solved to
. W
give o t e
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dw, \ .
provided T % ( A simpler solution exists for that particular %
but unimportant situation. In (11), T éy} is in direct
: w, (2) _ e :
proportion to , the ratio of the Eulerian and turbulence vertical
U
velocity components at source height, and in effect represents the
corresponding term in (1) The other term in (1), Z% t A8
present in t/‘['.S (via (7))
Integrating with respect to time, Jw
= \ JW W Iz
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Unfortunately, although these formulae hold for small l; they are not
applicable as t,-%» OO as an expression involving "T; or ZLS

remains in the limit. In fact, in (11), as t -> ©

dWw
W R Mg ks (13)
QW ;
|~ T 2=e

gk :
when it should tend to zero provided -:Eii <L o . As a result, (12)
accurately reproduces the mean displacement of the random walk (9) only for
SR e . . Sy/ 2
a brief initial period and often starts to diverge at about 1;:: « The
random walk and computed displacement curves are shown in Figs 2=4, These
figures correspond to the Blashaval tracer dispersion experiments 3, 4 and
8 (ie one for each of the three release sites on the upwind slope of the
hELL ). Ll* and é!gi were estimated using the observed wind velocity and
2Z

computed divergence as described in MWJ. Each random walk computation used

3000 particle trajectories.

Figs 2~=4 show that as tV/{%; increases, the downward displacement
according to (12) comes to exceed greatly that of the random walk 0
simulations. Expression (13) draws attention to the presence of ;;s :;;? 3
the mean vertical velocity at source height, in that part of (12) modelling
the descending motions, even in the limit as E.‘f’ © , (Clearly, as a
puff is depressed more and more particles collect near the surface in a
region of small .Cat , 80 that the mean displacement should gradually

approach a position where its turbulence and mean flow 'components' are in

approximate equilibrium (if conditions are uniform). The situation is that



of case (a) in Fig. 5, which illustrates possible puff centroid
trajectories for different relative magnitudes of ku, and the gradient of
mean vertical velocity.

Ideally, then, the numerator of (13) should tend to zero for downward
mean displacements and this can, in effect, be achieved by replacing 25 by
s bZd in (11), where Zol is the mean displacement 2‘25 and b a
coefficient. Unfortunately the resultant integral corresponding to (12)
would be very complicated. A time-stepping technique to obtain i can be

used, but for practical purposes it is more straightforward to consider a

simple empirical adjustment to (12). If (12) is summarized

z; - Alkjz, £ Bte)

where A(t) Z_s : B(‘:) , are respectively the mean flow and turbulence
terms in the mean displacement, substituting 25 - 3 L’za for Zs ,
where \D is a coefficient < ‘ should have the effect of linking the
downward motion to the mean level of the cloud of particles in a reasonably
consistent way. This adjustment gives the empirical formula

A(t)zs Ba 3 B(\Z)

= =
a T A (14)

An arbitrary choice of 0.5 for b yielded the curves plotted in Figs 2-4,
which compare well with the random walk simulations up to £ \OTS - Tor
all three sites, although for the weaker %—2‘- Expt. 4, b Qe 0.3

would give a better fit. The results seem encouraging for prospects of

modelling mean puff displacements over those distances likely to be of

practical interest, in these conditions.
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In the following sections some alternative approaches to the

computation of puff displacement are discussed; standard Lagrangian
formulae relating the horizontal mean puff displacements to the vertical
are extended to elevated releases and much simplified conditions of mean
vertical motion in an Appendix.

y, An alternative approach to puff displacement

Expression (11) draws attention to the relation and interactions
IWe

between ZS K‘z and ku,, the background and turbulent components of

vertical plume motion. Returning to the similarity formulae for a surface
z

release, if the assumption is made that E&. is linearly dependent

upon the superimposed vertical velocity, in the near field, it follows from

(1) and (2) that

gz . { (kuy, W) = kuy ¥ 2, 3
K

where ‘T is a coefficient. This formula has obvious shortcomings,
and the work of the previous section suggests that a more flexible formula
might be expressed.

4z | R+ (z+n20) 3
dt (15)

where il(tﬁ is Raupach's solution (5). The simple superimposition

(15) with ‘3_ taken as 1, might be expected to give a reasonable
estimate of the net vertical displacement close to the source, where a
narrow plume is embedded in an Eulerian vertical motion. As t increases,
however, the particles will be spread over greater vertical depths, and the

assumption of linearity may become less valid.

10



The solution of (15) is

dw
o d TS .25 ( \2_ t e \>
7= T e ¥ N

dwg

i b ‘s “ ke ) o g l__\-
k QL - | (2' léZT ) + L (‘_z. * /(5
¥ U T 3
W i
3 Az£ Xs (“ + /TSB ;
o9 &)W&t (\ )
3z
which is still rather complicated. In the first term 115 < is from

the motion of a puff along a streamline of the mean flow; the second term
incorporates the turbulence component of the displacement. If T}_E l the

somewhat simplified solution corresponds to the equation

dz R(E) + Z W

k. az— (T7)

a super—position of simple components. Reasonable fits to the random walk
simulation out to £ \CYWFS can be obtained, but the optimal magnitude
" of ‘7L is near unity for the depressed flows of Exp. 3 and 8, and about
0.7 for the near—-equilibrium case 4. Results with an accuracy comparable to
(14) cannot be obtained using a single choice of 'Ti < ‘Figs2-1
illustrate the curves for which f,_:- Oﬂ, the solutions (17) are
close to those illustrated, except in the case of Exp. 3, from which they
diverge towards t_:_%-T;. The weaker consistency (on the whole) of (16) in
comparison with (14) may be due to the physics of the dispersion process in
a descending mean flow being less well represented, the mutual interaction

of the turbulence and the mean vertical velocity being absent.

P
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5. A simplified approach

It would be helpful if a simpler formula of useful range could be
derived from (17). Various empirical ways of combining the mean vertical
flow and turbulent components of the centroid displacement were considered:
Raupach's formula (6) expresses Z as the sum of the source height Zg
and the displacement due to turbulent spread. One suggestion is to replace Z¢
with the height the centroid of a puff would assume if it travelled along a

streamline resulting from the mean horizontal and vertical wind profiles:
W P 7
€33 % -2) (% «2)e ™
i - +] )e
Z = Z. e L % \(Q( 52)t 'Z‘; Z)e

& = - (18)
Here, a—:‘—‘( () , and E is the sum of the height of the streamline above
the surface plus a displacement term. This formula gives no consistent
improvement over (12): the second term is too small as insufficient
account is taken of the synchronous vertical spread of the material, and 2
is eventually depressed far too strongly in comparison with random walk

solutions. The obvious adjustment
o L&t3
C 3z i & & ) S
- <

(19)

suffers from the opposite effect =~ the turbulence term is now too large (as
no account is taken of the synchronous depression of the plume) and z I8
not depressed sufficiently. Replacing 25 in the second term with the

—

intermediate level Z yields |

7 t_/ Ts

(20)

12



This implicit formula is superior to (18) and (19) near the source giving
an acceptable solution to t=5—l—s or more (Figs 2-4). It is prone to
instability in the far field, however, as there are no constraints on the
magnitude of 2 , With its contribution to the turbulence term.

One way forward lies in the application of an empirical weighting
coefficient T(t) to the turbulence term (for any of these formulae),
taking a value of unity for £=0 and approaching some appropriate
asymptotic value at large £+ for example a hyperbolic curve as described
in section 5. The random walk simulations have been reproduced fairly
successfully in this way, but it introduces additional complexity, and
again there is some difficulty in the optimization of the free parameters,
which tend to vary with situation.

5. Time-stepping techniques

Although not so simple to use, time-stepping methods can be applied to
formulae which are not integrable analytically, and have the advantage of
greater potential flexibility. A programmable calculator would be quite
adequate for their application.

It was noted in section 3 that (11) can be improved by substituting

< 4 +LZ for Z , wWhere b is a weighting coefficient; ie
s d s

O_E- « {zv bzo\\& E 1) + ku, Fb)
de 3Z (21)

where E (b) 3 Ftb) are the complicated terms representing the
mean flow and turbulence interaction. Reference to the relatively simple
equations (11) and (15) suggests that any analytical solution would be very
complicated. A forward time-stepping solution was made, which showed that

for B= | , ie Zg ‘\'blo[ = Z , the divergence of (21) from the

13



£ o W

random walk simulation is in the opposite sense to (11) = the downward
displacement is insufficient. Evidently an empirical weighting is needed
which can be applied to the vertical velocity to give greater depression in
the far field. The best results were obtained by using a hyperbolic
function b(t) ranging from 1 at =20 toan arbitrary value < 1 for
large B s the parameter defining the asymptotic value of b(.b) as E—=> 0
was taken as proportional to the relative magnitudes of the mean flow and
turbulence components of the vertical motion,—l; %—tg o khl s ratio
constituted the only variation in an otherwise fixed hyperbolic formulation
of ‘)(t) . The forward stepping solutions compared very well with all
the random walk simulations: the fits were as good as, and occasionally
much improved upon, (14).

This interesting result is presented as encouraging for prospects of
developing formulae of wider practical application; no general validity is
claimed, of course, for this specific formulation. It is possible that
empirical time-stepping formulae such as those discussed here may be
adapted to more realistic slope conditions if changes in parameters such as
gggf can be sufficiently well estimated, and incremented in the course of

the integration. %

6. Upward mean vertical motion

For elevated releases with ascending mean motion surface layer
analysis is of less importance. Lateral convergence and upward motion may
occur on the flanks of a hill, viewed from upwind, as apparently happened
in the Blashaval exp. 9 (see MWJ). The Section 3 displacement formulae

(11) and (15) both tend to‘ﬂA‘as t increases, for very small vertical

14



velocity gradients so that (12), (16) and (21) all yield fairly accurate
results when compared with the random walk. The optimal weighting Y3 for
(16) was about 0.2.

Of the Section Y4 formulae (not illustrated) the best result is given
by (19) in which the turbulence term is of appropriate magnitude for an
ascending puff, and the displacement is virtually identical to the random
walk. Both (18) and (20) exaggerate the displacement, as is inherent in

the formulae. (20) in particular, becomes unstable.

—

QW

In conclusion, for a small positive TSE? , either (19) or the basic
analytical formula (12) is adequate. Curves (12) and (16) are shown in
Fig. 6:

7. Discussion

The presence of a conical hill has a profound influence on the mean
air flow and turbulence and accordingly upon plume evolution (MWJ).
Briefly, the main speed-up occurs close to the surface, and in this zone
the turbulence adjusts rapidly to the increased shear (Jackson and Hunt,
1975). At higher levels the turbulence time scales are comparable to the
time of transit over the hill, and the eddies respond to streamline
convergence in approximate accordance with rapid distortion theory (Britter
et al, 1981). 1In this region, the theory suggests, for a conical

Cw
hill,éis increased, G, decreased. Recent work described in MK85 and

L (&
Mason 1985 suggests that a transitional zone exists, which lies between
about 3 m and 20 m above the surface at Blashaval. Little is known about
the effects of the mean flow distortion and changes in the character of the

———

turbulence upon the magnitudes of the concentration flux w'c! S
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Returning to particle motions in slope conditions, it is not difficult

to obtain an expression representing the influence of the gradient of mean
vertical wind velocity in which a plume disperses. The vertical component P\“,
of the acceleration of a particle with respect to the ambient mean flow (a
non-inertial frame) may be expressed as the difference between the mean
vertical acceleration of the particle with respect to Eulerian space and

the incremental change in vertical velocity of the non-=inertial frame along

the path of the particle. If the particle is displaced from a level z with

a perturbation velocity w' (perpendicular to the surface) then, in the

simple case of the particle maintaining a uniform Eulerian-space vertical

velocity, and allowing the time increment to tend to zero,
SWe dw, 3z
P = B% = Jz. e

éwiLW (Z\*w\] (22)

Elementary kinematic formulae such as (22) and the corresponding
version for horizontal accelerations yield the correct sign for the changes
in C);. and (3';J when streamlines are compressed over a hill summit,

that is, in accordance with rapid distortion indications. This reflects

the importance of the production terms such as -JU‘.S:k in second order
y

closure and pressure-strain modelling - Deardorff (1973) contains a
discussion.

The random walk (9) can be re-=arranged

Ak ‘L.
C Ko
A B )

16



Terms A and B correspond to the right hand side of the standard random walk
(8) while C and D are identical to (22). The sign is changed: (22)
reflects the acceleration of an unimpeded particle with respect to the
Eulerian-time reference frame, (23) the influence of the background
acceleration on the particle - the random walk is embedded in the profile

of mean vertical velocity.

é!!£4((>

Ig for 3z » (17) is regarded as giving a reasonable approximation
to the near-source mean displacement (where the plume is narrow and the
turbulence/mean vertical velocity interaction less complicated) then the
positive accelerations experienced by descending particles by virtue of the

last two terms of (23) may account for the slightly slower initial descent
We

of the random walk for significant (Figs 2, 4, where solution

(16) is close to (17) initially). 1In the simulation, as time passes, many
particles collect near the solid surface, where ;Gg is small, while some
attain considerable height, where —cag may be large. In the former case
term D is very small and a sign inspectiqg shows that both ascending and
descending motions are retarded by VJ; :;2? in (23). The descending
particles are in any event constrained by the surface, so that the
important influence is upon the ascending particles - the plume is
depressed. For the elevated particles, when terms C and D are both
significant the positive acceleration will have a stronger effect although
the number affected is relatively small (unless the vertical motion, and
hence acceleration, is small). The net result, it is suggested, is that
the random walk simulations, after a somewhat slow initial descent, are

eventually depressed below the level indicated by (17) ssmes -,

17
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In reality there is a turbulence/mean flow interaction provided the
dynamically-induced distortion is significant, which may have consequences
for plume development. A 3-dimensional equilibrium must be attained
between the horizontal divergence due to orographic deflection of the mean
wind, and the turbulent motions, leading to a site—deéggggnt profile of

W

mean vertical velocity. For descending mean motion jgi‘ increases

downwards as far as the top of the equilibrium zone. See Fig 7 for
D :
instance, which shows a profile of -752? computed using a 3-dimensional

Jackson and Hunt (1975) type analytical model of the airflow over Blashaval.
It will be noted that the source release height at Blashaval (8m) and
the level to which the plume centroid sinks lie in the region where a
transition from equilibrium to rapid distortion is taking place. The
effect of a vertical velocity profile of Fig. 7 type is thus to force the
particles down towards the zone of strong surface stress a little more
strongly than would be expected from a constant gradient. With weaker
profiles many particles will attain higher levels, perhaps to be spread
more effectively by the high CX; associated with rapid distortion
conditions - at Blashaval the recorded at 14 m was well in excess of the

values measured at lower heights (MK85) - always assuming that a high CS;u

—

\
is associated with an increased W'C' , These effects may explain the results
Jw
of the small :;z? dispersion experiments, 2 and 3, at Blashaval (MWJ)

where a rapid vertical spread was combined with maximum concentrations
close to the surface. In the random walk simulations C{u is estimated from
prescribed values of L\; and accordingly will only roughly approximate

conditions over a hill slope and summit where the CZ;, profile is complex.

—

W,
In addition, prescribed ot can only approximate the equilibrium

Az

Eulerian-space profile of a real situation.

18



9. Summary and Conclusions

This paper approaches the problem of the short-range dispersion of a
pollutant released from an elevated source in the atmospheric surface layer
over complex terrain by studying the effect of a non-zero mean vertical
velocity (vertical in the sense perpendicular to the local terrain) imposed
in the simple case of mean flow distortion around a roughly conical hill of
moderate slope. Analytical formulae for mean plume displacement (see
Sections 3, 4 and the Appendix) rapidly increase in complexity in these
circumstances, and are applicable only in steady, uniform conditions.
Although the region of applicability may be increased by introducing
time“stepping methods of solution (section 5) the most hopeful prospects,
encompassing the whole concentration field, must lie in random walk
techniques.

In conclusion,

() Of the various mean displacement formulae derived from the basic
random walk equation the analytical solutions (11) and (12) following the
method of Raupach are applicable only to about t= Q:T; as a result of the
simplifying assumptions. The justifiable empirical adjustment (14)
provides a very good fit to the random walk simulation over the whole range
to ks IOTS, a weighting b =O~5 serving for all the situations tested.
This is perhaps the most useful of the formulae, and although at first
sight rather complicated, it is easily programmable.

(ii) Integrating the elementary super-position (15) yields reasonable
comparisons with the random walk out to t-= L:rs for T}_E.' (i.e.
formula (17)), and further improvements can be obtained by<varying ‘T} 2
No single value of 'Ti was appropriate for all the experiments, however,

rendering the refinement difficult to apply a priori. This may be

19
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connected with the poor representation of the physics in the formula. The

simplified formulae of section 5 suffer from the same disadvantage, if
weighting functions are used, although (20) as it stands gave acceptable
results to about t=5_|—5, at least, before tending to become unstable.
(iii) Simple time-stepping techniques allowed the integration of basgic
formulae such as (21), and are potentially of greater flexibility. Very
close fits to the random walks out to t=lCﬁ; were obtained from the
numerical integration of (21), but again only through the introduction of a
time-dependent coefficient \>(t) , whose asymptotic magnitude at large
times depends upon the ratio of the mean and turbulent components of
vertical puff displacement. This hyperbolic form contained two free
parameters, for which a single choice of values sufficed for all the cases
investigated. These results are interpreted as offering some prospect of
progress in modelling puff g}splacements in realistic (non—uniform) flows.
(iv) Changes in positive %;E_ may be small, in reality, for a plume
ascending from an elevated source, so that the presence<ﬁ‘]15 away from
the near field in (11) and (19) is acceptable. For the one case with
(weak) ascending mean motion which was modelled both formulae gave good
results, (19) in fact being almost identical to the random walk mean
displacement.

(v) The random walk described is embedded in a prescribed gradient of
mean vertical motion which it is difficult to estimate from field
observations. Numerical models may (in principle) provide reasonable
approximations for situations which can be simulated with sufficient
accuracy. The parameter Uy must also be prescribed. The disadvantages RIS

of the simple formulation are not felt to be too serious, but for

20



estimating mean displacements the random walk appears to offer few
advantages over the basic offset (17) close to the source. In section 8
the respective behaviour of the two curves is discussed.

Acknowledgement is due to Mr D J Thomson who provided and adapted his

random walk model of dispersion and made some helpful suggestions, to
Miss M L Macari for graphical assistance, and to other members of the

Boundary Layer Branch for discussion.

21

!i'p»fs



“

| 5

* o

References

Batchelor G K

Britter R E,
Hunt J C R, and
Richards K J

Chatwin P C

Deardorff J W

Hunt J C R

Jackson P S and
Hunt J C R

Ley A J

Maryon R H
Whitlock J B G
and Jenkins G J

Mason P J

1964

1981

1968

1973

1985

1975

1982

1985

1985

Diffusion from sources in a turbulent boundary
layer. Arch. Mech. Stosowanes 3, 16, p661.

Air flow over a two-=dimensional hill: studies
of velocity speed-up, roughness effects and
turbulence. Quart. J.R. Met. Soc. 107, p.91.
The dispersion of a puff of passive contaminant
in the constant stress region. Quart. J. R.
Met. Soc. 94 p350.

Threesdimensional numerical modelling of the
planetary boundary layer. Workshop on
Micrometeorology. American Met. Soc. Boston,
Mass. 271-311.

Turbulent diffusion from sources in complex
flows. Ann. Rev. Fluid Mech. 17, 4u47-485.
Turbulent wind flow over a low hill.

Quart. J.R. Met. Soc. 101 p.929.

A random walk simulation of two dimensional
diffusion in the neutral surface layer. Atmos.
Environment 16, p.2799.

Dispersion experiments on the windward slope

of an isolated hill. In preparation.

Flow over the summit of an isolated hill. (In

preparation).

22



» -
Mason P J and 1985 Measurements and predictions of flow and
King J C turbulence over an isolated hill of
moderate slope. Quart. J.R. met. Soc. 111,
617-640. i
Pasquill F and 1983 Atmospheric Diffusion, 3rd Edition. 4
Smith F B Ellis Horwood Ltd, Chichester.
Raupach M R 1983 Near-field dispersion from instantaneous o
sources in the surface layer.
Boundary Layer Met. 27, p105.
Smith F B 195F The diffusion of smoke from a continuous
elevated point=source into a turbulent
atmosphere. J. Fluid Mech., 2, 49-76.
Thomson D J 1984 Random walk modelling of diffusion in
inhomogeneous turbulence. Quart. J.R. Met.
soc s 1105 pAAN0T. ¢
: . S
1)
¢
=
B

23




Appendix

Horizontal displacement in the surface stress layer

Using Batchelor's expression for displacement in the x direction
AxX —
R ol
15 (B1)
where ( 1is a constant subsequently assumed to be Euler's constant
(Chatwin 1968) and Zd is mean displacement in the vertical, Pasquill and

—

Smith (1983) relate X and Z4 for a surface release by assuming a

—

logarithmic profile for WU , Substituting in (2) and integrating. They

obtain ZA C.Z.d

= Ze 1
i S Zx(‘-ic&‘}),l (B2)

For an elevated release the horizontal translation may plausibly be

estimated é_‘g 3 C\(ZS* CZ‘,\\
dc (B3)

to give a solution for E > \g

Vit Tk 2y Ze ¥ CZa _.f_::( Eé-\) (BY)
X =15 < (10& s = _)> C Q‘ﬁezo

It would be useful to incorporate a profile of mean vertical velocity
but unfortunately the adoption of even a linear profile leads to integrals
which have no simple analytical solution. The simplifying assumption that
'\Da is constant yields quite straightforward formulae, but is
inappropriate for most real situations. One case where it might apply is
where Gf. > -—ku* as, for an ascending plume, particularly from an
elevated release, it may be assumed that Dg is approximately constant
without too great an error. Substitution using 3—% =\<b\' =+ mg )

e

W,,_ constant leads to
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el We CZy Zy
o K LSS AU )
and
| Es 2,+<;zd(103 Zs + CZg ) (,Q % (>
s N T L&
L(L ku* Ly & & ZC 3é Zc (Bb)

corresponding to (B2) and (BY4) respectively. the term Wg(ku‘ *—wb)
Wty |

reflecting the approach of X to zero for large Wi

is a hyperbola asymptotic to the lines 1 and \Idz

and to infinity

should turbulent and negative mean velocity components near balance.

An obvious shortcoming of formulae (B4) and (B6) is that they assume a

or Tl:l : kuﬁ‘_-mi

plume displacement of the similarity form W = \‘(ug

for elevated releases. Raupach, by comparing the far=field solution of (6)

with (3) concluded that a hypothetical plume released from ground level at

time — € would have a trajectory passing under the real elevated source

at height - S'Z-S (see Fig. 1). This height remains unchanged if ku‘

is replaced with kk‘_*'wg so that the simple expedient of substituting
Zg in both (BY4) and (B6) may give reasonable solutions away

"ist for

from the near vicinity of the source. For large Wg¢ , of course, the

domain over which (BY4), (B6) are applicable is narrow.
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List of Illustrations

Fig.1.

Figs 2-=4

Eig.5:

Fig.6.

Fig.T.

Paths of centroids of plumes released at :ZS and CD‘ (see
text).

Descending mean motion. A comparison of computed mean plume
displacements using expressions (12), (14), (16) and (20) with
random walk simulations (25000 trajectories) for the mean ambient
conditions recorded or estimated for the Blashaval short-range
dispersion experiments (see MWJ). One figure is reproduced for
each of the three Blashaval tracer release sites.

Random Walk: solid line

Formula (12): pecked line ====-

Formula (14), \) = 0.5: crosses —+=

Formula (16), V5 0.9: triangles =&~

Formula (20): circles -o-
Fig 2: Experiment 3
Fig 3: Experiment Y4

Fig 4: Experiment 8

Trajectory of Z after an elevated release into the surface

w
stress layer. If IZb Ei is marginally larger than ku*’

the trajectory may be intermediate between (a) and (b).

As for figs 2=4 but for the weak ascending mean motion case, Exp.
9. Curve (19) is virtually identical to the random walk
solution; for formula (16), V, = 0.2

Profile of :;g‘ perpendicular to the surface derived from
3-dimensional Jackson and Hunt model estimates of divergence

parallel to the slope at various levels above the surface, for a

typical Blashaval dispersion experiment. The units ave av-\o{\mv-ﬂs.
The wededd s desonied v MUSS.
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