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OSCILLATIONS IN THE ATMOSPHERE’S
ANGULAR MOMENTUM AND TORQUES
ON THE EARTH’S BULGE

M. J. Bell
September 1992

SUMMARY

The angular momentum of the atmosphere is the sum of the wind term, W, due
to the winds relative to the Earth’s surface, and the matter term M. We show
that if the Earth were an oblate spheroid with an equipotential surface, the
atmospheric torque on the Earth would be - Q AM, Qbeing the rotation rate
of the solid Earth. As a result, the equatorial components of M for a wave
propagating at azimuthal angular velocity ¢ without changing shape are
(Q-0)/Q times the equatorial components of W. Laplace’s equation for tidal
motions "on a sphere" strictly applies to motions on such an oblate spheroid
and its solutions apply a torque on the Earth equalto - Q A M. We show that
the resulting relationship between M and W also implies that in any separable
wave solution of the tidal equations the surface wind is simpled related to the
vertical integral of the wind and the equivalent depth.

Analyses of the equatorial components of the matter term by ECMWF and
UKMO weather forecast systems are dominated by chaotic oscillations with
periods between 8 and 10 days which are well forecast out to 5 days ahead.
We argue that these are essentially free solutions of the tidal equations which
exert considerable torques on the Earth. The main feature of the equatorial
components of the wind term is a seasonally modulated diurnal oscillation.
Analyses and 2 day forecasts of this phenomenon are in less good agreement.

We argue that it is thermally forced and depends on the compressibility of the
atmosphere.
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1. INTRODUCTION

On a planet which is rotating with (nearly) constant angular velocity,  , the angular
momentum of the atmosphere

A=/ PrN\@+Q2 Np dr, (1)
atmos
where 1 is the position vector from the planet’s centre of mass of the volume elements dt
which have densities p and velocities u relative to the planet’s surface. The contribution to
A from the winds relative to the underlying planet is usually called the wind term, W, and
the contribution from the rotation of the atmosphere with the angular velocity of the planet
the matter term, M :

K=/ pr A\ ude M:/ prAQ@AD dr . (2)
atmos atmos

A, W and M are often expressed as components (eg. A= (Al . A2, A3) ) relative to a body
fixed frame with the 3rd component aligned with © and hence referred to as the axial
component. On the Earth the two other components lie in the equatorial plane, the first
“equatorial component" along the Greenwich meridian and the second along 90° E.

e The total torque on the atmosphere at the Earth’s surface produces fluctuations in the

atmosphere’s angular momentum (AAM) and equal and opposite changes in the angular

: momentum of the underlying planet. Fluctuations in A4, together with tidally induced

= changes in the Earth’s moment of inertia, have been shown (see Bames et al. 1983) to

account for most of the variations in the rotation rate of the solid Earth and hence of the

length of the day over timescales of between a few days and a few years. Most of the

i fluctuations in A, occur in W, despite the fact that M, (which is nearly constant) is about 60
times larger than W,.

Evidence for the hypothesis that the equatorial components of AAM play a similarly
dominant role in exciting the wobble of the Earth’s pole of rotation about the principal axis
of its moment of inertia for similar timescales is, as yet, much less clear-cut.

i Brzezinski (1987) has shown that M, and M, exhibit strong oscillations with periods of
: between 8 and 12 days and chaotically varying amplitude. Figure 1 presents a timeseries of-
M, for 1990. The fluctuations in figure 1 are entirely typical of those in both M, and M,,

iy their amplitude varies little with season and they are forecast quite accurately out to 5 days
by both the UKMO and ECMWF forecast systems (Bell et al. 1991). Similar fluctuations

are not apparent in W, and W, - see for example figure 2. Indeed the data appear to be very -

- noisy and for some time there seemed to be no discemible agreement between evaluations
of W, and W, based on analyses from several major forcast systems. Eventually T. M.

Eubanks inferred that W, has a diumal variation with a seasonal modulation. This is clearly

- apparent in figure 3 which presents evaluations of W, at 00Z (full line) and 12Z (dashed
line) from (a) ECMWF data for 1988 and (b) UKMO data for 1990. The values in this and

later figures have been smoothed by the application of an 11 day running mean filter. Simi-

- lar evaluations of W, are presented in figures 4. A small diumal variation is apparent in the -
UKMO data (figure 4(b)) and an even smaller one in the ECMWE data (figure 4(a)).
o The fluctuations in M and W just described are so rapid that, unless they are aliased into

longer periods, they do not greatly excite the wobble of the pole (whose resonant period is
of the order of 430 days). The understanding of their nature is nevertheless the subject of
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this paper.

Eubanks et al. (1988) suggested that the fluctuations in M; and M, could be interpreted
as free travelling wave solutions of Laplace’s tidal equations, since the period of the wave
with largest projection on these components of AAM is approximately 8 to 10 days. Whilst
this seemed plausible (and we will argue that their interpretation is correct) we were unclear
how free (unforced) solutions of Laplace’s equations on a sphere could either provide the
torque to the underlying Earth which must accompany the observed fluctuation or maintain
themselves whilst doing so.

The seasonal modulation of the diurnal variation in W, strongly suggests that it is
thermally forced. Since the torques accompanying an oscillation of the observed amplitude
in W, alone would be large (section 6) it seemed likely that the diurnal fluctuation consists
of a travelling wave with diurnal period which is stationary in inertial space. Originally our
examination of solutions of the tidal equations was motivated by desires to support this in-
terpretation and to explain the sharp difference between the periods of fluctuations dominat-
ing the wind and matter terms. Figure 5, however, practically settles the first of these two
issues, presenting evaluations of (a) W, and (b) W, at 06Z and 18Z from ECMWF data for
1988 which show that W, has a seasonally modulated diurnal oscillation. Figures 3(a), 4(a)

and 5 together show that the diurnal oscillation moves westward and is stationary in inertial
space.

The evaluations of W, at 00Z and 12Z from UKMO data for 1988 presented in figures 14
and 15 of Bell et al. (1991) (note that the scaling on the ordinate of these figures should be
marked as 10”7 not 10 ) show a diurnal oscillation in W, between 00Z and 12Z comparable
with that in W,. Of the W, data calculated from UKMO, ECMWF NMC and JMA analyses
between 1979 and 1988, only UKMO data had such a large seasonal cycle in the difference
between 00Z and 12Z. The UKMO data for 1989 (not shown) and 1990 (figure 4b) display a
markedly smaller oscillation. The only major change to the UKMO system during this
period was the introduction of a new analysis system on 30 November 1988 (Lorenc et al.
1991). Whilst this improvement in agreement between centres is encouraging it is by no
means certain that the analyses are now accurate. The amplitude of the seasonal cycle in the

change in W, in ECMWF 60 hour forecasts started at 12Z in 1988 was almost twice that -

of the change between 00Z and 12Z analyses (see Bell et al. (1991) figure 12). Understand-
ing of the nature of the diumal oscillation should facilitate the assessment of the accuracy of
the analyses and forecasts.

- The Earth’s bulge, being about 20 km high, is the most significant topography on the
planet. The mountain torque on the atmosphere due to the bulge is calculated in section 2
and shown to equal -Q A M. This result leads to a simple expression (20) for the ratio of the
equatorial matter and wind terms for a travelling wave disturbance of a given period, which
explains in large part the sharp difference between the significant periods in the equatorial
wind and matter terms. Section 3 shows that, as first established by Lamb (1932), Laplace’s
tidal equations on a sphere strictly apply to motions on a spheroid of constant geopotential
(e.g. the Barth with its bulge). Their solutions thus contain implicit mountain torques equal
to A M. Section 4 summarizes results on free and forced linear solutions of the tidal equa-
tions in preparation for sections 5 and 6. Section 5 discusses the interpretation of the matter
term oscillations, the magnitude of the associated torques and the accuracy of the approxi-
mations implicit in the linear solutions. Lindzen's (1965) solution for diurnal oscillations is
presented in section 6 and the wind term oscillation associated with it calculated and com-
pared with figures 3 to 5. Conclusions are drawn in section 7.
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2 . THE ATMOSPHERE’S ANGULAR MOMENTUM AND THE EARTH’S BULGE

Expressions for the equatorial components of M and W in the body fixed Cartesian co-
ordinate system introduced in section 1 are easily found from (2). In spherical polar co-
ordinates with r denoting radial distance, ¢ latitude, A longitude (from the Greenwich
meridian) and u the eastward and v the northward components of velocity, the wind term,

A A
_“_’=/ (porup — prvd) dv , (3)
atmos
and the matter term,
M= / pRr2cos¢ & it . )
atmos

Using the following expression for the horizontal coordinate of any vector V with V =0,
' » A2 ( —cash wed —sind \ (ng.\ 5
e ; : v (5)
Vo —<ind “.\M(* e -
and the hydrostatic relation,

dp/dr =—pg , (6)

in (3) one finds that W, and W, are given by
s 12
(W), W,) =—a3/ g [ [,' {using(cosi,sind) + v(— sind,cosA)} cos¢ dpp di dp .
—nf2
)

Using (4), (5) and (6) M, and M, can similarly be shown to be given by

12
M, M,) =—Qad* | g f /ﬂ pscos@sing(cosi,sind)cos do di . ®)
—n/2

The total torque on the atmosphere due to pressure gradient forces,

I_‘=-/ r A\ pndS =— rt\Vp dv, ©)
surf atmos
where n is the unit normal pointing into the Earth. Using (5) once more, the equatorial
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components of the surface pressure torque may be shown to be expressible as

- (A Zp)l.(z A Zp)z) = dp [/ 3¢(— sind,cosd) + dp /A tangp(cosA, sind) .
(10)

Assuming that the Earth is of uniform density and that its oblate surface coincides with a
surface of constant geopotential, its radius R(¢) is given by

— GM /R — %Q*R*cos?¢p =~—GM [a — Q%2 /4
wheére a is the radius of the Earth at 45°N. Hence
R@)- a = WZE(cos2g— 1s) | G

The pressure torque on the Earth’s bulge may be calculated by transforming the expression
for the pressure torque from spherical coordinates (r, A, 9) to spheroidal co-ordinates :
(', X', ¢") following the Earth’s surface;

r=r[t +QT:“-(cos2¢'- Wil i cdiinis o
In these co-ordinates the latitudinal pressure gradient

dplog = ar'lapaplar + dplag’

(13)
- 2r
=5~

cos¢ sing dp/or’ + aplag’ .

The volume integrals of the horizontal pressure gradient terms cancel after integration by
parts (the Earth’s surface being parallel to surfaces of constant r’) leaving

2
T, I, = Qzﬁ/gF/” Pscos@ sing(sind,— cosd) cos¢ dep dA . (14)

This expression may alternatively be derived (without introducing spheroidal co-ordinates)
by calculating the integral (9) of (10) directly. Integration by parts of the first term on the
r.h.s. of (10) with respect to ¢ yields boundary contributions which may be written as

2
Iy, Iy =— f‘/ﬂ pstcosqS dR/d¢ dp (sinA,— cosA) dA . (15)
—nf2

(14) is easily re-derived from (15) by using (11) and the shallow atmosphere approxima-
tion.
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This result, (14), also holds to a similarly good approximation (i.e. of the order of the ratio
of the maximum to the minimum radii of the Earth) when the density of the Earth is variable
and its gravity field Il non-radial, provided its surface follows the geopotential. This may be
shown by again using co-ordinates which follow the Earth’s surface

gr = (r,A,¢)— ‘%—2"3(cos2¢— 1) .
In these coordinates, taking dp/0¢ as an example,
op / 3¢ =—p(all | 3¢ + 2°a2cospsing) + dp / 3¢’

and the total force -a™! ( 9p/d¢ + dI1/d$ ) involves only the pressure gradient dp/d¢’ and
the centripetal acceleration term (c.f. (13) 7

Comparison of (14) with (8) reveals that

16
Iy =—QM, , I, = QM, . (16)

So the pressure torque on the atmosphere due to the Earth’s bulge is directly proportional to
the matter term’s contribution to A and indeed equals Q A M.

In the absence of viscous stresses, the pressure torque equals the rate of change of A in
the inertial frame; :

L=(A/d), =@Ald), +2 NA a7

where R and I denote derivatives in the planet’s rotating frame and any inertial frame
respectively. The result of combining (16) with (17) is the following important equation of
motion for the equatorial components of the angular momentum,;

(dA;/dt)p— QW, =0 , (dAy /d)p + QW =0 . (18)

Much of the theory of the motion of atmospheric tides is concerned with propagating wave
solutions of the form

a = Re{a(p,2)expi(si + o)} . (19)

in which o is any property of the wave (e.g. its temperature), &(tb, z) is a complex function
of latitude ¢ and height z, ¢ is the angular velocity of the wave and s its longitudinal wave-
number. The dependence of the relative amplitudes of the wind and matter terms of such
wave solutions on their frequency ¢ follows immediately from (18).

My, My) = E22 w, Wy - e
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Hence diumal oscillations, which are stationary in an inertial space and for which ¢ = Q,

have null matter terms. Waves with periods of N days have M, M)=(N-1)(W 1 Wz) . =
So waves with periods of many days have much larger matter terms than wind terms. The

period and structure of any wave with a non-zero wind or matter term is evidently inti-

mately linked with the pressure torque on the equatorial bulge and (18). Since the standard B
equations for tidal motion are formulated for a spherical Earth, it might be thought that their
representation of waves containing angular momentum would be incorrect. In the next . 5
section we show that the full tidal equations do satisfy (18) and hence can simulate angular [
momentum variations faithfully.
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3. ANGULAR MOMENTUM AND THE TIDAL EQUATIONS

The standard equations for tidal motions on a sphere are often derived on the assumptions
that the ellipticity of the Earth and the centripetal acceleration of fluid parcels are negligi-
ble. Here we derive the momentum equations for tidal motions by transforming the full
equations of motion into spheroidal co-ordinates. The resulting equations may be viewed as
being defined in spherical co-ordinates for a spherical Earth with negligible error. We also
demonstrate that the angular momentum of motions governed by these equations satisfies
(18).

The latitudinal and longitudinal components of the momentum equation for an inviscid
fluid are

p(dv/dt+vw/r+ultang /r +2Qusing + rsingcosg) =—1/rdplap , (21)

pldu/dt+uw/r— uvtang [r + 22wcos¢p — 22vsing) =— ap/aA . (22)
—7

rcos

On transforming the latitudinal component of the momentum equation into spheroidal co-
ordinates the centripetal acceleration term is directly balanced by the transformation term of
(14). Hence

pv/dt+w/r+ultang [r +2Qusing’) =—1/r dp/d¢’ , (23)

The longitudinal component is unaltered. (22) and (23) are exact in spheroidal coordmates
The geometric differences between the spherical and spheroidal surfaces are of order o a/g
and can safely be neglected for motions on the Earth. (That the Earth’s bulge can neverthe-
less be dynamically significant is due to the fact that vertical pressure gradients are much
larger than horizontal ones.) (22) & (23) may then be viewed as defined in spherical co-
ordinates and appropriate for a spherical Earth. The familiar momentum equations for small
amplitude tidal motions follow from them by linearising about a state of rest, neglecting
vertical velocities and making the shallow atmosphere approximation (setting r=a);

du / 9t— 2Qvsing =—1/ (pyacos¢) ap/oA 24)

av/ t + 2Qusing =—1/ (pya) 3plog .
That (22) & (23) for spherical

co-ordinates on a spherical Earth together satisfy (18) can be shown directly as follows. The
angular momentum of a fluid parcel (see (3) and (4) ) is

a = pde{(@rcos + r)p— rvi} . (25)
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Using (17) and the identities

A A A A : A
op/d¢p =—r , A/dp =0 , 0p / A =—sing 4 ,
62_/63. =—cos¢£+sin¢§ )

u=rcospdijdt , v = rdpldt ,
in (25), (da/dt); may be calculated to be

(dgjdt)I = rpdv (du/dt + uw [ r— uvtang / r + 2Qwcos¢p— 2.9vsin¢)§ (26)

— mpdv (dvjdt + vw [ r + utan¢ / r +2.(2usin¢+[22rsin¢cos¢)i ’

(22) & (23) may evidently be interpreted as statements concerning the angular momentum
of the fluid parcels. Substituting them into (26) shows that

A
dplorg i M
= (%)I = rpdt{m + (F,l aplop + o singcos@) i} . @7
That the implied torque (11) is related to the matter term as in (17) and hence that (18) holds
is easily established by integrating (27) over the whole (spherical) "atmospheric" shell,
using (6) and then integrating the pressure torque terms by parts.
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4: ASUMMARY OF SOLUTIONS OF THE TIDAL EQUATIONS

The following account of thermally forced atmospheric tides and solutions of Laplace’s
tidal equation on a sphere summarises results given in Chapman & Lindzen (1970) and
Longuet-Higgins (1968) . These works can be consulted for further algebraic details.

The tides are assumed to be describable as small wave-like motions in a thin layer of an
inviscid perfect gas covering the rotating Earth. Investigations are limited to propagating
linear wave solutions of the form of (19). The basic state of the atmosphere on which the
tidal motions are superposed is taken to be a vertically stratified state of rest with no hori-
zontal thermal variation and the tidal motions and rest state of the atmosphere are taken to
be in hydrostatic balance. Thus, denoting the density and pressure of the rest state by Po(2)
and p(z) respectively and those of the motions by 8p and op,

0py/ 0z =—pog and 30p/éz =—dp g . (28)
The horizontal motions are governed by (24). For motions of the form (19), the velocities

u and v are easily expressed in terms of the pressure field &p . The horizontal divergence of
the velocities,

where F is the differential operator given by

1 d, c8p 4. 1' sqtuing g2 (30)
e cos@ d'#qz_migw) nz-cos2¢(ﬁ,,2_sinf¢ +cos7¢)

with 1 =0/2 Q. The 3D divergence of the 3D velocity field is related to the material time
derivative of the density by the continuity equation appropriate for a compressible fluid;

Dp /Dt ==p (V. 1y, + 0w/dz) , (31)

and the system is closed by the thermodynamic equation appropriate for a compressible
perfect gas;

Dp/Dt = ygH Dp /Dt + (y— 1)p,J . (32)
In these equations y= % 7 ¢, =14,H(z)= Po(2) / (po(z) 8) , w is the vertical velocity,

D[Dt (p, p) = d/at (Op, Op) + w d/dz (p,, Py . st

and J is the distribution of diabatic heating.
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Equations (28) - (33), for modes of the form (19) may be reduced to a single equation for

SRR |
G =~ DpiDt (34)

which is essentially the pressure tendency following the motion: from (29), (31), (33) and
(34) one can show that

2 2 000) ==V = 4ﬁF(io op / py) (35)

and a second expression for ic @ (8p / Po) / 9z in terms of G and J is easily found from (33)

using (31), (32) and (35); combining the vertical derivative of the first expression with the
second gives

2G/az2 - o s L
Hd“G/dz* + (dH/dz — 1)dG / oz ) F{(dH/dz + k)G ng} i (36)
where x = (y- 1)/ y. :

This equation is clearly suited to solution by the method of separation of variables. The
heating function, J, and G are expanded as series,

A A
7, G) = Y U@, Gu@) Op@)expi(sh +at) ey
m

where ©_(¢) are eigenfunctions of the operator F;
(38)
F{6,} =—€6,, ; € = 4—;2"2‘-’2- ;

The horizontal structure of the w and 8p fields is identical to that of J and G. The vertical
structure equation is

A 2 e A /dZ‘l-K A = K‘?m 39
H d*Gpfd2? + (dHJdz— 1) dG,/dz + (dHh.. ) O = o 39)
For unforced (resonant) solutions of (38) and (39) with Jn =0, the separation constant

is an eigenvalue of (39) and the frequency of the oscillation is determined by (38). For
solutions forced at a given frequency (by J m )» B, is determined by (38).

Love’s method for the solution of (38) is particularly relevant to the discussion of
angular momentum fluctuations. Love re-expressed the velocities u and v in terms of a
streamfunction ¥ and velocity potential @ ;

au = a%a“’/a’- +3W/op ; av = D /ap— a%awax ; (40)

He used the curl of the momentum equations (24) to obtain one relation between ® and ¥
and its divergence to obtain a second relation between ® , ¥ and dp / Po- For pressure

~10.
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fields, op, which are eigenfunctions of F,

uy = —2F@p  py) =—a2-0p 1 pg a0

(see (29) and (38)), so dp / P can be eliminated from the second relation. On expanding ©
and V¥ as series of spherical harmonics,

@9) = > Ay iB}) V() Pising) expi(si + 1) , (42)

the relations reduce to recurrence relations between the A  and B ¢ (note that spherical har-
monics and their coefficients are denoted using only subscripts in the body of the text). The
solutions fall into two sets distinguished by the symmetry of their motions about the equa-
tor. The set which contains the angular momentum satisfies

Mg pwt O o . BS O
S
Qs Kot por © ¢ Asia o “3)
0 G+l M SH2L ?s;} o Gs:,_ = o
5 o Yse2. 7 2 A;—_{ o

Here K, M, p, and q, are numerical constants which depend only onn, s and €. For future
reference (in section 5) we note that the first of the relations in (43) is

( _O)Bi ; (44)

e
A2§a

It is obvious from (8) that only the P,,(sin ¢) exp iA spherical harmonic of the surface
pressure field contributes to the matter terms. (41) shows that the Laplacian of the velocity
potential is directly proportional to the pressure field, dp , if dp is an eigenfunction of (38).
Hence A, is directly proportional to the matter term. Furthermore only the

- Py4(sin ¢) exp i\ component of the streamfunction, with coefficient i B, , contributes to the
wind terms as may be shown by integrating (7) by parts:

W, W) = 2_;_2 / / /!Ifcosqb(cosl,sml)cosgbdqb didp . o5

Analogues of (45) can be found for equations using pressure and sigma coordinates.

A
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5. INTERPRETATION OF MATTER TERM OSCILLATIONS

Since the oscillations in the equatorial matter terms lack a consistent amplitude and long
term stability of phase it is natural to suppose that they may be unforced, resonant solutions
of the tidal equations. The range of periods of angular momentum oscillations to be
expected from the unforced eigensolutions of the tidal equations can be inferred from the
work of previous authors such as Madden (1979). For small values of e , the solutions of

the tidal equations divide cleanly into gravity waves and planetary waves. The planetary
waves have

0/82 — 25 /n(n+1)

0 (46)
S b ase —

W — i B V() P(sing) expi(si + ot) .

Figure 3 of Madden (1979) (which is based on fig. 2(b) of Longuct-Hiégins (1968)) shows
how the eigenfrequencies 6 of solutions with s = 1 decrease as e" decreases (i.e. h”
decreases). The set of solutions which contain angular momentum (see (43)) have even

values of n - s 50 solutions withn =1 and n = 3 are likely to contain the most angular
momentum.

The equavalent depth, h.., is an eigenvalue of equation (39) with Jn = 0, solved subject to

suitable boundary conditions. For an isothermal atmosphere the deepest equivalent depth
has :

h=H/(1-lc),H=p0/p0g. 47)

According to Madden, calculations of h, with realistic altitude dependent temperatures
differ from 10 km by less than 20%. Within this range 8 km <h_ < 12 km) the period of
the n = 3 oscillation lies between 8 and 9 days, which is in remarkably good agreement with
the observational data. The n = 1 oscillation has a period of about 1-2 days and thus, as

discussed at the end of section 2, will appear more dominantly in the wind term than the
matter term.

The neglect of the atmosphere’s mean zonal winds and horizontal thermal variations from
these calculations may seem crude but the rapidity of the phase speed of the oscillations (50
m/s at the equator) makes these approximations less significant than one might at first
suppose (see Madden (1979) for a summary of numerical calculations concerning this
point). The least accurate of the assumptions used in deriving the tidal equations are prob-
ably the neglect of thermal variations in heating between continents and oceans and the

torques associated with the principal orography other than the equatorial bulge (see Hsu &
Hoskins 1989)).

The peak minus trough fluctuation in A, over a few days is typically about 8 10%
kg m? sl Such oscillations are due to fluctuations in the P,, spherical harmonic of the
surface pressure with half amplitude in the fluctuation at 45° N of only 2 mb. The torque on
the Earth associated with these oscillations (see (17)) is nevertheless large compared with
the net torques which produce the largest 40 - 60 day oscillations in the axial component of
the AAM. The largest changes in W, over the course of 20 days are of the order of 2.5 102

-12-
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kg m? s'!. From (16) the equatorial matter term torques are 16 10“" kg m? 57! per day and

hence are consistently 10 times as large as those of the 30 - 60 day oscillation.

024

It is easy to overlook the fact that much larger torques are required to maintain M, at its
non-zero mean value (see figure 1). The climatological maps of dynamic height at 1000 mb
presented in Hoskins ef al. (1989) show that the main reason why M, is positive is that the
Siberian high (centred near 90° W) is not balanced by a correspondingly dominant high
pressure system near 90° E. It would be inaccurate to say that the positive value of M, is
due to the Siberian high alone, because the former is a global quantity and the latter a local
one. Indeed the seasonal evolution of M, cannot be described simply in terms of the
Siberian high. But providing these remarks are bome in mind one can consider the Siberian
high to be able to rotate with the Earth because of its torque on the Earth’s bulge.

The relationship between (20) and (44) is of some interest. Using (42) in (45) to express
(W, ,Wy)asa function ofBll and V(z), and (41) with (42) in (8) to express (A, A, ) asa
function of A,; and V(z), one finds that

My, My) = 2H9 o 9) AL (L, D) expion)

(48)
Wy, Wy) = 85 [ ¥ dpBL (1, Dexplion) .
Combining these with (44) gives
oy, My) = E52 ehpo¥)_ [ Dyt w,, W) . 49)
Finally comparing this last equation with (20) one infers that
[ Vdp = ghutooh),_, - (50)

In a barotropic fluid (50) merely states that p, g h | = p; (i.e. the equivalent depth
h, = H). But (50) is true for all thermal profiles T(z) and heating profiles J(z) for all
separable solutions (of the form (37)) whether they contain angular momentum or not. This
point may be proved as follows. From (35) and (41), for a single mode,

v 183132poGm) = 37-0Pm (51)
- [ 3P dz = T WPGmly - (52)

At the lower boundary z = 0, w = 0 and from (33)
= ¥PoGm = i0 opm(0) . (53)
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So

(oo}

[ Opm dz = hy 6p,(0) . . (54)

A
Finally, from (24), V(z) is proportional to 8’1; J Po and (50) is easily derived.

The description of h as the equivalent depth is quite natural in (50), even when h is
negative, and (50) provides an additional sense to the concept of the equivalent depth
Despite its simple form (50) does not appear to have been noticed before. It can be
understood as being based on the properties of angular momentum which lead to (50) for
oscillations containing angular momentum and the fact that the vertical structure equation
(39) and its boundary conditions (formed from (51) and (53) ) are independent of G . For
any solution of the form (37) with a given hcatmg function J_(z), a solution with the same
J.,(z) and vertical structure can be found at some frequency o (which will usually be
dlffercnt from that for the first solution). Since (50) must hold for this second solution it

must hold for the original solution and for all solutions whether they contain angular
momentum or not.

44
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6. INTERPRETATION OF WIND TERM OSCILLATIONS

The locking of the main oscillation in the wind terms to the solar day and its seasonal
variation makes it clear that the oscillation is principally thermally forced. For this reason
we explore here the diumnally forced oscillation rather than the resonant solution whose
period is slightly longer than a day. From (20) it is clear that the matter term of the diurnal
oscillation is identically zero. The pressure torque on the equatorial bulge is hence zero

consistent with the angular momentum of the oscillation being stationary in an inertial
frame.

Following the method outlined in section 4, the excitation of the thermal tide may be
sought by calculating the projection of the heating function J onto each of the eigenfunc-
tions of the operator F. Heating with horizontal thermal structure ©_ (¢)exp(isA) excites the
same horizontal component in the gerturbation pressure 3p (see (35) and (36) ) and the
Laplacian of the velocity potential V“® (see (41)). Hence, according to (43) the P, 1(sin ¢)
expiA component of the streamfunction (the B, coefficient) is excited by heating functions
with amplitude in P, 1(sin ¢) expil (n = 1). These heating functions are' all antisymmetric
about the equator. We anticipate that of these heating functions P, ((sin ¢) expil will have
by far the largest amplitude and that its amplitude will have a seasonal cycle.

As Lindzen (1965) pointed out, however, the Hough functions ©,,(9) exp(is)) for the
diurnal tide are all orthogonal to P, ,(sin ¢) expil . This point arises from (44) which shows
that for modes with ¢ = Q, A, ; = 0. The Hough functions are consequently not complete

for the diurnal tide and must be supplemented by solutions for which the projection of G on
P, ,(sin ¢) expil is zero.

The simplest way to find such a solution is to look for one with

Op = Pz)cos¢sing expi(i + 1) . (55)
Solving (24) for the velocities u and v one obtains

U= b%singb expi(A + Q)

(56)
A
e :
y = mcxpt(/l +£21) .
This velocity field has zero horizontal divergence
Yty = 0
and is generated by
A
R i 57
' 24 Foacosdwxpt(l + 86 . (57)

-15-
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Thus from (29) for dp given by (55), F(dp) =0 and, by (35), G = 0. (33a) then implies that
w = iQ20p/(pyg) - i

Using (31) and (32) with the results that G and the horizontal divergence are zero one infers
that

gHow/dz = kJ S

Thus pressure perturbations of the form (55) are induced by diabatic heating with the same
horizontal and temporal structure

J = ./i(z) cos¢sing expi(d + £2¢) . (60)

Since w = 0 at the surface, (58) implies that no surface pressure (and hence no matter term)
tide is excited. The pressure perturbation is related to J through (58) and (59)

i2p(2) = po(2) [ '%’dz : (61)

In summary, in this mode of motion the diurnal heating causes vertical expansion, which
induces pressure fluctuations, but no horizontal divergence. The wave propagates
horizontally like the pure barotropic Rossby wave with € = 0 (see (16)). The standard equa-
tion (36) fails to describe the motion because F{J} =

Figures 2 to 5 present X 1w and X, Which are non-dimensional functions introduced by
Barnes et al. (1983). They are related to W, and W, by

Substituting (45) into (62) and then using (57) and (61) the diurnal wind terms induced by
heating in P,, are

«yx3) = 923(82“2) / / / [ mdl; cos? ¢ exp t(l + 82t)(cosA, sind) cos ¢ dep dA dp .
(63)

Several forms of heating could make significant contributions to J; direct absorption of solar
radiation by water vapour, sensible heating in the surface layer, or latent heat release (contri-
butions from absorption by ozone in the stratosphere are probably less important because
(61) weights contributions from the lower atmosphere). None of these appears to have been
deetermined with much accuracy. The most studied contribution is that of water vapour

16-
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which Lindzen (1967), following Siebert (1961), estimates to be given by

—x' /3) (64)

where S varies sinusoidally with the season being 1 in the Northern Hemisphere summer,
the phase of J has been chosen to be zero at 12Z local time, R, = g H /T, is the gas con-
stant, and py(z) = p,(0) exp-x". Ignoring thermal veriations the vertical integrals are easily

evaluated,
[S [CXP(—#/3)dCdp = % H p(0)

and X, and X,., are found to be given by

W) = 2.86a% HPo®) 0.0858 exp iAd + £2t)(cosA,sind)dA . (65)'
iek2) B e N

Taking @ =73 10° 5", C- A= =710 /300 kg m% a=6410%m, T,=300K,H=10*m
and p,(0) = 10° N'm"2 one finds that

Wal) = iS107 exp(i€2t) (1,i) . (66)

The seasonal variation in xaw(OOZ) - xZW(IZZ) is hence estimated to be 4 10° with its maxi-
mum during the northemn hemisphere summer (July). X, 1ags X,,, by 6 hours; so ¥, has
its maximum value at 06Z GMT in July.

The ., and X, 00Z - 12Z differences presented in Figures 3 to 5 appear to have good
phase agreement with (66) but amplitudes between 50 and 100% larger than calculated. The
amplitude of the diurnal variations in the ECMWF 48 and 60 hour forecasts are about 3
times as large as suggested by (66). Both UKMO and ECMWEF forecast models use equa-
tions for compressible fluids and should be able to represent solutions of the form discussed
in this section very well. It seems most likely that the differences are due to difficiencies in
the representation of diabatic heating. ;

Fluctuations in the UKMO analyses up to 1988 of W, between 00Z and 12Z were of
concern because they suggested that the equatorial wind term oscillation was not stationary
in an inertial frame. The implied torques could be large if this were the case: if You
oscillated as observed whilst %, were constant the torque would be almost 10 times largcr
than that involved in the 30 - 60 day oscillation.The accompanying wind velocity errors
could nevertheless be small; a vertically uniform fluctutation in the P, spherical harmonic
of the streamfunction would give wind velocities with a half amphtude of only 0.1 ms .
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7. CONCLUSIONS

As noted by Lamb (1932), fluid motions on a spheroidal surface which follows an equi-
potential are well described by equations for motions on a spherical surface provided they
omit the centripetal acceleration term (i.e. Q” r sin ¢ cos ¢ in (21) ). Thus Laplace’s tidal
equations and the primitive equations used by most weather forecast systems describe
motions which (implicitly) exert a torque on the Earth’s bulge equal to - Q A M. The phase
velocity of solutions of Laplace’s tidal equations which contain angular momentum thus
depends on the ratio of their wind to their matter terms according to (20). Solutions with
null matter terms exert no torque on the Earth and are stationary in an inertial frame whilst
solutions with no wind term move with the Earth.

The fluctuations in M; and M, illustrated by figure 1 can be interpreted as free (un-
forced) solutions of the tidal equations which are able to rotate rapidly in inertial space by
the torque they exert on the Earth’s bulge. Their wind terms are small because ¢ << Q (see
(20)). A large mean value can be maintained in the M, component, which rotates with the
Earth, because of its torque on the bulge. This component reflects the large asymmetries in
the global circulation associated with the Siberian high. The seasonally modulated diurnal
fluctuations in the wind terms are thermally forced, virtually stationary in inertial space and
hence have null matter terms. Inaccuracies in their evaluation almost certainly derive from
errors in the representation of diabatic heating.
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FIGURE CAPTIONS
Figure 1:

Timeseries of Xop, €valuated from UKMO analyses valid at 00Z (full line) and 12Z (dashed
line) for 1990. 'll)'he matter term M, is related to (the non-dimensional ) sz by M2 =
(C- A)Qxy %

Figure 2:

Timeseries of X, evaluated from UKMO analyses valid at 00Z for 1990. The wind term
W, is related to (the non-dimensional ) X, by W, =(C- A)Qyx ,. /1.43.

Figure 3:

Timeseries of. Xoy €valuated at 00Z (full line) and 12Z (dashed line) from (a) uninitialised
ECMWF analyses for 1988 and (b) UKMO analyses for 1990. All timeseries have been
smoothed using an 11 day running mean filter.

Figure 4:

Timeseries of ¥, evaluated at 00Z (full line) and 12Z (dashed line) from (a) uninitialised -
ECMWF analyses for 1988 and (b) UKMO analyses for 1990. All timeseries have been
smoothed using an 11 day running mean filter.

Figure 5:

Timeseries of (a) X1w and (b) X, evaluated from uninitialised ECMWF analyses at 06Z
(full line) and 18Z (dashed line) for 1988. All timeseries have been smoothed using an 11
day running mean filter.
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