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Errata for notes on lectures 1, 2 and 3 of the 1988
Advanced Lectures on the Atmospheric Boundary

In addition to some obvious typographic errors, the following more
serious points should be noted.

Page 1.2 2nd line after equation (1) - add "and p = O".\/

Page 1.4 line 2 - delete "density". v

Pages 1.4 and 1.5 note some "V" imply "V."

Lecture 2 note all "log"s are natural logarithms, i.e. "1n".

Page 2.2 equation (1) lower case u should be upper case U.

Page 3.1 equations (3) and (4) add minus sign to stress.

Page 3.2 equations (6) and (7) lower case u and v should be upper
case U and V.

Page 3.4 equation (11) ignore ...

Page 3.5 sentence before equation (12) chosen coordinate frame

has Vg =0 not surface vw = 0.

Page 3.8 2nd line after equation (13) 10 ms™! should be 1ms~!.
Apologies.
P.J.Mason
12 September 1988. AD Met 0 (BC)




Basic Equations and Ideas

P.J.Mason

27 July 1988

Turbulence is a common characteristic of many natural and engineering flows. The
distinction between turbulent and laminar flows is fairly obvious but not easy to be precise
about. In steady flows particles follow flow lines and there is no mixing of adjacent fluid
layers. In unsteady flows the distinction is not straightforward and conceptual difficulties
can arise in some flows such as those containing waves. The issue is not just semantic and
has particular implications for the prediction and modelling of such flows. However, these
are research issues and here we will limit attention to flows with ‘unambiguous’ turbulence.
Definitions of turbulence are given through lists of properties and can be found in standard
texts, e.g. Lumley and Panofsky (1964), Tennekes and Lumley (1972).

In addition to the irregularity an essential feature is the local importance of flow ad-
vection and vortex stretching. This vortex stretching mechanism is critical in leading to
the cascade of energy to smaller and smaller scales and thus to the influence of molecular
diffusion. Before attempting any description of such turbulence and its effects it is useful
to introduce some simple, purely statistical, concepts. :

If we consider a variable in a turbulent flow which is a funetion of time it is useful to
introduce the concept of a mean and fluctuations, i.e. consider a variable ¢(z,y, z,t) Then:

A 1 T (o =
¢=T/O pdt and ¢' =3

In engineering flows the time mean may be well defined but often in meteorology there
are significant variations on many time-scales and some judgement is necessary for the
concept to be of value. Although circumstances may vary considerably a typical averaging
period for the planetary boundary layer is about 0.25 to 1 hour, this time scale is sufficient
to include almost all purely three-dimensional fluctuations. The lack of any spectral gap
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makes this division both arbitrary and imprecise, but it proves a useful distinction. In a
practical evaluation of ¢ and ¢' time averaging may be replaced by space averaging and
¢' may be defined relative, not to a constant mean, but to a linear variation with time
over the averaging period. The use of spatial averaging is employed in the analysis of
aircraft data. This supposes that ¢ is function of time only and the method is subject
to errors when there are spatial variations in ¢ such as those due to variations in surface
characteristics.

This distinction between mean and fluctuating variables can be applied to the equations
of motion, e.g. considering an incompressible homogeneous flow

%)
a—ltl—f-uVu: ~Vp+vViu (1)

(where p and v are respectively the pressure and molecular viscosity divided by density)
and substituting u = (U + »,V + v,W + w) and averaging such that @ = T=1w=0 we

obtain in tensor notation o @"'/"
an + BU, & 8u,— JoP i VGZU; (2)
e L AR U;——— = — e
ot ' 9z; ? Qu, oz; oz?

which with the aid of the continuity equation may be rewritten
8U,~ 3 BU, i JdP & V62U,~ Bu,-uj (3)
at 4 ij o 623,' 32:]2 a.'Bj

The last term is an ezact description of the effects of the flow fluctuations on the mean
flow. Its features are most easily seen in the case of a flow with no horizontal variations,
a boundary layer over a homogeneous surface. Then for a 1-D flow

otl. . oF o’U oduw

U——.—_..

—5?—_.5:1—: 022 dz
gl - aF . 4 { aUu }

Sk el ] (4)
where uw is identified as a stress whose divergence changes the mean flow. This is called a
Reynolds stress and arises from the correlation between the two components of flow. Thus
uw negative implies that faster values of U +u are correlated with downward (negative) w.
The Reynolds number, defined as UL/v, where L is a typical flow length scale, measures
the relative magnitude of the viscous and non-linear terms in the equations of motion. In
the high Reynolds numbers flows considered here the molecular diffusivity terms have a
negligible effect on the mean flow remote from the boundary. However, as we shall see
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Figure 1: (a) a typical energy spectrum and (b) a typical autocorrelation function

below, molecular processes retain an important influence in allowing the dissipation of

eddy motions, this influence does not depend on the magnitude of the viscosity but only
on its non-zero value.

The ‘Reynolds’ averaging procedure can be applied to all the equations describing the
flow and the prediction of the mean flow then just requires evaluation of the Reynolds stress
tensor and the corresponding Reynolds scalar fluxes. As they arise from the non-linear
terms these Reynolds averaging terms are not always easy to evaluate. Before considering
the basis of the various methods of estimating these terms it is useful to return to the
structure of the turbulent motions.

A precise description of the character of turbulence can be provided in idealised cases by
a knowledge of the magnitude of the fluctuations and their correlations over varying spatial
separations. In practice such full details are seldom available, and instead attention is
usually given to the one-dimensional energy spectra derived either directly by measurement
in space or by a ‘Taylor’ hypothesis where time variations at a point are translated through
a mean velocity to a spatial variation. Figure 1a illustrates a typical energy spectrum which
might be obtained by a Fourier transform of a time series of a turbulent velocity component.
The energy spectrum is a plot a the square of the amplitude S, at each frequency n (or
wavenumber by Taylor hypothesis) against frequency n. The example shown is typical
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but in some flows the shape of the low frequency part of the spectrum in particular will
differ. For short length scales the spectrum shows a fall in energy density at a slope of
-5/3. This region of the spectra is termed an inertial subrange and it is characteristic of a
truly turbulent flow. It is common to plot the spectral density, the product of the energy
and the frequency nS,, rather than S,, as this provides a measure of the amount of variance
contributed in a particular frequency band. In such plots the inertial subrange has slope
-2/3. Spectral theories of turbulence show that this region of the flow is characterised by
a flow of kinetic energy down the spectrum to progressively smaller scales and eventual
dissipation. In the atmosphere molecular dissipation becomes important on scales order
Imm. and its direct influence is seldom seen in practical observations.

If, as shown in the example, the spectrum has a well defined peak then the variable
concerned can be characterised by a magnitude based on the variance, say ¢ (provided
directly or from the area under the spectrum) and a length scale A typical of the peak of
the spectrum. The length scale A is equivalently related to the decay with separation of
the auto-correlation of ¢. The auto-correlation of a variable ¢ which is . homogeneous so
that its mean and statistics do not depend on x is a function of separation r given by

Al

¢I2
In practise the most computationally efficient way of deriving the auto-correlation function
is by fourier transformation of the power spectrum. Figure 1b illustrates a typical auto-
correlation. The integral of the area under the auto-correlation is termed the integral scale,
and should also roughly equal A. Problems defining in A by any of these methods arise
when the spectra do not fall off at low frequencies. Such difficult behaviour is common

- with most variables, but owing to the inhibiting influence of a rigid surface is not usual

with the vertical component of velocity.

This discussion has dealt only with Eulerian statistics of the flow. Langrangian statis-
tics are quite different and are important for some applications, in particular in dispersion
problems. Brevity prevents a full discussion here.

To re-cap, we have introduced notions of a mean ¢ a variance ¢ ( or standard deviation
04, = \/#?* and a characteristic length scale A\. We have also noted that the influence
of the turbulence on the mean flow depends on the divergence of the Reynolds stresses
Vu;uj. Next, we consider possible methods of representing these stresses - i.e. a so-called
turbulence closure.

The simplest approach was first proposed by Boussinesq (1877) who introduced the
concept of a turbulent viscosity. The basis is simply the analogy of the large scale mixing
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with small scale molecular mixing, i.e.

ou, an} (5)

P i :
it t{a$j+8$,'

This tensor expression follows directly from the more general form of the Navier Stokes
equations in which the viscous term is written as a divergence of the stress tensor ( with
continuity vV?u = Vv (du;/dz; + du;/dz;) ). In a 1-D boundary layer

e oU

Y9z
The turbulent viscosity v; can be expected to be a function of space and needs to be
specified in each problem. Given some thought to the specification of the values involved,
this method still finds applications. The most significant turbulence model proposed is

Prandtl’s (1928) mixing-length hypothesis which has its origin in the kinetic theory of
gases. He proposed

uw =

vy = lmvt : (6)

where [, is a mixing length and v; a turbulence velocity scale. He further noted (in 1-D)

oU
- lm —_— 7
Ut 3z ( )
giving
oU
:[2 _— 8
U m | 52 ( )

This approach requires the specification of a length scale which in Prandtl’s and many
applications was taken as proportional to distance from the surface. Refinements to this
method form the basis of many other models. For example, v, may be related to an equation
for the flow turbulence energy (see below) and [,, may be related to flow curvature or an
equation. Although close to the surface the specification of [,, is easy, in general it is the
correct specification of [, elsewhere in a flow that causes the greatest difficulties. To go
further in discussing the turbulence models it is useful to return to the equations obtained
by supposing a mean with fluctuations. If we consider the Navier-Stokes equations again
and multiply the equation for U; 4 u; by u; and add to the equation for U, + u; multiplied
by u; and then average we obtain

. A du; Ou;
el (ufuz-a—g’— + ma_U> te ("E‘ " ﬁ)

at az, az, a.'l}[ a.‘lzj a.'l:,'
Bu,'u,-ul Bﬁzﬁ Gi)‘u‘; aéu,- 8711.-
2 L : 4 9
%, (3:0; e N T Y (©)
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This is an equation for each of the components of the Reynolds stress. It contains some
terms which, are known but introduces third order correlations (correlations of pressure
and velocity are third order) which are unknown. So-called second order closures attempt
to model these third order terms and do achieve some impressive predictions in some
complex flows. On the other hand such closures have not proved universally applicable
and involve considerable complexity. They seem best reserved for flows in which fast
time and space variations cause the turbulence to be out of equilibrium with the local
flow gradient. In such cases simpler models may always fail. Given the equation for the
Reynolds stresses, there is still a need to specify either a length scale or, equivalently,
the local dissipation rate. This length scale is needed to evaluate higher order terms in
the same way that a length scale was needed for the stress in the mixing length closure.
To provide predictions of length scale an equation is usually formed but, in contrast to
the stress equations, the theoretical basis is poor. The resulting equation, perhaps for
dissipation, describes a number of useful features, such as the effect of flow curvature in
realistic manner, but has many failings.

Models employed in practice adopt various levels of complexity between the basic mix-
ing length and the full second order closure (or if equations for third order quantities are
considered, third order closure). Significant models replace the velocity scale of the mixing
length v, by the square root of the turbulence energy E obtained by an energy equation:

e.g.

v =l E? (10)
and
OF  OF _
ot : 6:1:,- =
oU; 8 OF
T —— - 11
e oz : +8:1:,-U6:L',- t)
shear production dissipation turbulent transport
where

3
e CEEQ" (12)

Im
The value of the constant ¢g is set by applying the relation near the surface in a boundary
layer. Equation (12) follows from the spectral description of turbulence. Within the inertial
subrange the dissipation is related to the energy at a particular wavlength. In keeping with
this (12) describes the gross characteristics of the spectrum with [,, being typical of but
not identical to the scale of the spectral peak. It relates the dissipation to the energy and
scale of the the dominant eddies. An important further refinement is to predict /,, by an
equation and the so-called ¢ — € models have equations for turbulence energy (called ¢ by
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engineers) and dissipation e. The next level of refinement is usually to predict the stresses
from F and ¢ on the assumption that for the individual stress components alone, the time
dependent and diffusive terms are negligible. The approach is called an algebraic closure
as the stress equations themselves then form algebraic relations for the stresses.

All of the above models can be generalised to include the influence of buoyancy effects
and can be used to describe the behaviour of passive scalars as well as the flows themselves.
The question remains as to how well all these models of varying complexity actually work.
Without dwelling on the relative merits of the various models, all tend to perform well in
certain types of flow and badly in others The successes occur in flows dominated by shear
production of turbulence and especially in regions near the ground. The characteristic
of these flows that leads to the success is the fact that the flow eddies are indeed then
relatively small compared with the scales of the flow. In such cases the mixing length does -
fairly well and refined models add improvements. On the other hand, in flow with buoyant
convection or turbulence behind bodies, the eddies are large and extend over the whole
flow. In such cases the local flow gradient is not well related, if at all, to the local stresses

and all the models can fail with a risk of more complex models suffering a more severe
failure.

In such cases, where the physical basis for the parametrization breaks down, failure of
the model must be expected but fortunately these are the very cases in which an alternative
approach should work best. This alternative, called a Large-Eddy simulation, explicitly
resolves the large scale eddies with a numerical model and only represents small scale
motion with a closure. Although the technique can work well, at present it is too expensive

in application for its general use. It can be applied to develop simpler models and examine
particular single flows.
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The Atmospheric Surface Layer

P.J.Mason

28 July 1988

A very large part of our understanding and empirical knowledge of turbulent flows
concerns the behaviour of turbulence in the region of the boundary layer near the surface.
This region of the boundary layer is studied not just because of its relative simplicity but
also because of its practical importance. A full understanding of these flows is nevertheless
complicated and it is best to proceed in stages. We will begin with high Reynolds number
flow over a smooth surface.

Consider flow between two infinite plane smooth surfaces a distance 26 apart under
the action of a pressure gradient, dP/dz parallel to the surfaces. This consideration of
a bounded flow enables a boundary layer depth (equal to half the channel width) to be
introduced without discussion of rotation or capping inversions. The equations describing
this flow in a steady state are those introduced for a 1-D flow in the previous section, i.e.

a0 [ OU
9z 0z

Noting the centre plane of symmetry and the constant value of 3P /dz, this implies that
the total shear stress (vOU/dz — uw) must have a linear gradient and range between zero
at the zero plane and +£60P/dz on the lower and upper surfaces respectively. We shall
see that in general the total shear stress always shows this characteristic linear variation
with height on scales of order the boundary layer depth.

Suppose that the Reynolds number Ué§ /v is arbitrarily large and consider the flow a
distance z < § but so that Uz/v remains very large. If z is very much less than the
boundary layer depth é then the total shear stress from 0 to z will be close to the surface
value. Such a region is termed a surface, or constant stress layer. The stress is not constant
in the sense that it has a negligible gradient but rather that its magnitude remains virtually
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Figure 1: Flow profile observed over a smooth surface

constant. Now if Uz/v is very large then the molecular term v8U/3z will be negligible at
this height z. A critical requirement in this case is that

where u, is the square root of the surface stress. This dimensional requirement follows
solely from the high Reynolds number and the constant stress. Dimensional analysis then
requires A

u,

S 1 (1)
where k is constant for all comparable high Reynolds number flows. This constant is the
von Karman constant. Note that whilst the local flow properties must be functions of u.
and z, in consequence of the behaviour very close to the surface, the mean flow U will
remain a function of the viscosity . Integration of equation 1 over the region where it
applies leads to the result that

= —:—'[logz—kC’]

where C is a dimensional constant. Again dimensional analysis suggests

U, 22U,
U—_Ic—[log< v )+A]
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where A is a non-dimensional constant. Since there are no analytical theories of turbulence
this key idea of the logarithmic velocity profile is of necessity based on dimensional analysis.
The result also follows from the ideas in mixing length turbulence closures and, more
important, as Figure 1 shows, observations. Observations find the constant A to be about
5.0 and the flow to become logarithmic at heights above zu,/v ~ 40.

Smooth surfaces are not unknown in meteorology but usually surfaces, including the
sea with waves, are rough. If the roughness features have a height scale A then we can
form the ‘Reynolds Number’ hu,/v. With these roughness elements the shear stress near
the surface is not just transfered by molecular stresses but by the pressure forces acting
on the elements. For bluff bodies at high Reynolds numbers the pressure forces dominate.
There is then an expectation on dimensional grounds that if hu,/v is very large (greater
than about 50 in practice) that the mean flow will be completely independent of v but will
depend, for roughness elements of the same type or shape, on h. ;

Such conditions usually apply in meteorology and for such cases we can expect on
dimensional grounds that

U= %log (i) (2)

where 2 is a dimensional constant related to the height and character of the roughness
elements. For bluff surface features with a high surface density of features z, is usually
about 0.1h. With this analysis molecular influences would be seen as 2, depending on
the wind speed. In fact such effects are weak and more often are not due to molecular
influences but due to flexible roughness elements, such as vegetation, changing shape and
orientation with wind speed. Equation 2 contains an assumption that U will equal zero
at z = 2z;. This is a definition of the origin of the z coordinate and although the issue
may not always be of practical consequence the height at which U = 0 above any physical
surface is unknown. For this reason it is usual to consider

U, z—D
U_Tlog( 2y )

where just as z, is no more than a constant of integration, D is no more than the height
needed (given what definition is adopted for the z co-ordinate) to satisfy U = 0 at z =
D+ z,. The displacement height D has practical significance in flow over trees, urban areas
and hilly terrain. There are no complete theories for estimating z, and D, and almost all
of our knowledge of these quantities is based on observations.

Values of z, for different terrain types are available from past experiments and values

range from ~ 10" *m over the sea, ~ 10 *m in short grass, ~ 10" m in fields with hedges
or crops, ~ 1.0m in forests and urban areas and, as noted with some caution in subsequent
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lectures, ~ 10.0m for hilly regions. In boundary layer models, including those in weather
prediction models, the influence of this near surface region is not given by an explicit
representation of the flow profile but by relating the surface stress to the flow at some
height 2 by a drag coefficient e.g.

u? = Cp.U(2)?

where L2
Cp= i

(log(z/zo0)]?
The atmospheric boundary layer has important influences from heat and moisture.
If we consider the equation for the turbulence energy we have the shear production

term—u,;u;0U; /8z; or uwdU/dz for a 1-Dimensional flow. The addition of a bouyancy -

term B (B = —g(T — Ty)/T,) to the vertical equation of motion, leads to an extra pro-
duction term wB the bouyancy flux. If wB is significant compared with ZwdU /8z then
we can expect bouyancy forces to be significant. The bouyancy flux should, like the shear
stress, have a fairly linear variation of the whole boundary layer depth and will be nearly
a constant value in the surface layer. Using the above relations we can note that in the
surface layer uwdU/dz will be ~ u?/kz so the ratio of shear to buoyant production (a flux
Richardson number) will be u?/wBkz. This may be written as L/z where

3
u
L==—

wB
is the Monin-Obukhov Length. If we consider a surface layer with L/z > 1 then the
bouyancy will have no influence on the flow. In such a case it follows, again from dimen-

sional analysis, that for our rough surface

3= Elog(z—DT)
k 20T

where T, = wT/u, and T is effectively just a passive scalar variable. In this case the
surface value of T, T, is very hard to bhe precise about. In an experiment it is the value of
T deduced only by extrapolation to the height z = Dy where Dy is determined again solely
by the requirement that the profile is logarithmic. This value of T, is just an extrapolated
value and cannot, with any certainty, be related to any measured value of temperature,
such as one on the skin of the roughness elements. In spite of this it is common in models to
associate T, with the radiative surface temperature and also the soil heat flux calculation.
This is an area of errors where further work is needed. The value of zyr is usually about one
tenth of the value of z, and probably never exceeds values of ~ 0.01m. This is because the
transfer of heat is unaffected by pressure forces and only responds to the surface roughness
in consequence of the changes in surface area and the enhanced near surface mixing.
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Observation of the vertical velocity turbulence spectra in the surface layer show a
spectral peak at a wavelength of about 32. With a knowledge of some of the constant
correlation coefficients, and energy component ratios, the neutral stability surface layer is
well described. Typically o,, = 1.3u,,0, = 1.9u,,0, = 2.4u., and or = 1.67,.

For the mixing length model to match the above description l,, = kz. The following
relations then illustrate the consistency

ou|l u, 5 ou
9z| ~ kz i iy 9z b
U =1 _82 =% Vi = lppuy = k2u,
0z

To complete a discussion of the atmospheric surface layer the case when L/z is of the
order 1 needs to be considered. Monin-Obukhov similarity then recognises that we have
the additional length scale L in our analysis. Dimensional analysis for the flux of a variable
C gives S

2 = éol#/1)
where C, = WC, /u, and ¢ is a universal function of z/L. These functions are empirical
and various functional fits are considered by various authors. Such functions may diverge
for large values of z/L but tend to match for z/L <~ 1. Most data apply to the later
region and so fortunately do most applications. A typical example is

¢m = (1 —162/L)"Y* 2/L <0

¢y = (1—162/L)"* z/L<0
and
é¢m =(14+5.02/L) =2/L>0
dn = (1+502/L) ‘2/L>0

where ¢,, and ¢y are for momentum and temperature. The above expressions give a
ratio of ¢y /dm of unity at at z/L = 1.0. Authors differ on the value of this ratio and
others use expressions with ¢y /¢, = 0.74 for 2/L = 1.0. This introduction does not have
the scope to give a critical review of the data and the reader is referred to texts, e.g. WMO
Technical Note No.165, for details. These expressions for the gradients are integrated to
specify the profiles and hence the transfer coefficients to the surface;e.g.

U(z) = ’% [log(z/20) — ®m(z/L)]
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Figure 2: A comparison of various empirical fits for ¢,, and ¢y

where ®,, has been obtained by the integration. Analytical forms of ® are available for
most ¢ but since the ¢ are empirical there is no special advantage in the analytical rather
than numerical calculation.

These Monin Obukov similarity functions can also be linked to the mixing length
specification with vy = ku,2¢(2/L)™! but more advanced turbulence models are needed
to resolve the relative changes in ¢4 or [,, implied by ¢. They likewise are involved in
converting a Gradient Richardson number

g dl

Rt—Taz

(0U/9z)?

into the flux Richardson number which relates the relative sizes of shear and bouyancy
production of turbulent energy.
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The Planetary Boundary Layer

P.J.Mason

27 July 1988

Having outlined the basic ideas of turbulence structure and some properties of the
near surface part of the boundary layer, this section considers the overall problem of the
planetary boundary layer. In essentially unbounded Engineering flows the boundary layer .-
is the region of the flow near the surface into which the deceleration due to the non-
slip condition has diffused. Such boundary layers grow for all time unless constrained
by geometry. In the planetary boundary layer the region of direct influence is invariably
confined. This confinement is usually due to stable stratification but as we shall note, in
principle, the Earth’s rotation alone could effect a limited scale.

The influence of the Earth’s rotation is more profound in the coupling of the boundary
layer to the free atmosphere. This coupling to the large scale flow occurs through the
“Ekman” pumping mechanism. Consider flow of a turbulent planetary boundary layer
with no horizontal variations apart from those of the basic pressure field, (taken to vary
in the y-direction) i.e.

R A
v Adag e bp ) (1)
v 9P )
3 e it @)

Consider steady motion and assume that above a height h the turbulent stresses are zero.
Integration from the surface to h leads to the result

/0 "1V dz —am, (3)
fh (—a—P ’ fU) ds —otp (4)
0 dy
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where —uw, and —vw, denote the surface vlaues of the stresses, i.e. —uw, = u’cosa
and —vw, = u’sina and « is angle of the surface stress to the geostrophic wind U,
—(1/f)3p/3y. These equations relate the surface stress to the mass flux of the departures
from geostrophic balance. Should the surface stress vary in space due to variations in the
geostrophic wind or surface roughness then mass continuity demands a vertical velocity
wp at the top of the boundary layer. Specifically, this relates w, to the curl of the surface
stress, i.e.
wy = lV Xy (5)
f
where 7, = (—uw,, —vw,,0), the surface stress vector. In a rotating planetary atmosphere
these vertical motions act through vortex stretching and compression on the whole of the
troposphere and tend to try to bring the atmosphere into a state of solid body rotation
(“Ekman pumping”). With this Ekman pumping “spin up” mechanism momentum trans-
fer to the bulk of the atmosphere is achieved without direct fluid mixing. The transfers
of heat and moisture are of equal importance to the atmospheric circulation but their

influence requires fluid exchange over the troposphere and usually involves either deep .

convection or frontal ascent. Heat and moisture thus enter the troposphere through re-

gions of a small area whilst most of the rest of the boundary layer is subject to gradual -

descent. Without entrainment the boundary layer would collapse. Much of this entrain-
ment is best described as encroachment and is simply due to buoyant overturning as the
surface heating raises the boundary layer temperature. The shear driven entrainment is
much harder to model as it occurs in the thin capping inversions and is not easy to describe
over a larger finite difference mesh.

The term Ekman layer strictly refers to the description of a boundary layer with a -

constant viscosity in a rotating fluid. The equations

0—+fV+ug—2y (6)
o
0= (U, - U)f+u3—2 (7)

can then be solved analytically with solution

U-U,= —-Ue*cos¢ (8)
V= Ue*sin¢

where ¢ = \/ ( f/2v)z. The height scale § = \/ 2v/ f is called the Ekman layer depth. Figure

1 illustrates this solution for a constant value of v. It is instructive to examine the general
balance of terms in this true “Ekman Layer”. The height scale § follows from a balance
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Figure 1: Tllustrating a laminar Ekman boundary layer
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between the coriolis term and the stress divergence, i.e.

o'U U
fU:Uazé — on_fV&—z
v
iy 62 = — 9
: ©)

The velocity gradients are O(U,/é) and the surface stress 7 = vU,/é and ageostrophic
mass flux is U,6/2.

For a turbulent boundary layer we have noted that in the surface layer v ~ u.kz.
Such a variation with height continues up to a fraction of the depth of the boundary layer
(~ 0.2) and then limits to a more constant value over the depth of the boundary layer.
Some analytic solutions patch a constant viscosity boundary layer onto the top. of the
surface layer. These theories are usually linked with a further application of dimensional
analysis.

In the surface layer the dimensional requirements of the variation with height were
noted and within the surface layer the flow was only a function of z, L, and u.. If the flow
above the surface layer is only a function of U,,f and the surface properties then, with the
introduction of the variable f through the scale u,/f universal functions should describe
the flow above a height z > 2,. Thus above the surface layer the flow departure from the
geostrophic will be a function of zf/u. and Lf/u, only. i.e.

(U = U} us = F(zf Ju.; LF[u.) (10)

If we assume that the validity of this function overlaps with the surface layer solution which
is only valid for z < u,/f then by matching this flow with a surface layer the similarity
relation between the geostrophic wind and the surface properties is obtained, e.g.

U2 1 U 2
il P Cal * 28 2
u? pr [(ln (fzo) A) + B

; B u.
sina = —-
k U,

where « is the angle between the surface stress and the geostrophic wind and A and B are
functions of u./fL. From observations with L = oo, A is found to be about 1.0 and B about
5.0. Such formulations are essential to so-called “bulk” boundary layer parametrisations
which, in simple cases, can allow empirical data to be used with effect. Considerations of
dimensional analysis aside, it is useful to compare the scale involved in this analysis with

(11)

and

3.4



PR —

that in the laminar boundary layer. If we suppose viscosity of magnitude v; ~ u.x8; then
the scale § = (2ut/f)% gives 6 = 2ku,/f. consistent with the adopted scaling. In many
observations the height scale of the capping inversion 2; is < u,/f and then z; rather u./f
is the appropriate scale for the analysis.

The formulations above, are termed Rossby number similarity and the parameter
u./fz, which arises is termed the “surface Rossby number”. This usage of a Rossby
number is of course unrelated to the more usual dynamical definition. This approach,
which tries to describe the whole boundary layer empirically fails when the boundary layer
is not in a local or equilibrium state. Its value is in providing a framework for the analysis
of data and theoretical results.

Owing to the lack of analytical theories for turbulent flow, observations and their
unification through proper non-dimensionalisation, form a critical part of the study of
the boundary layer. The final description is not usually just empirical but also employs
dynamical models. This section concludes with an attempt to outline the features of some
of the common types of boundary layer. The critical parameters determining the boundary
layer type are its depth and the surface fluxes. The ratio the boundary layer depth z; to the
Monin Obukhov length L = u/kwB determine the extent and sign of the main buoyancy
effects. Some remarks on complicating influences are given below.

The Neutral Static Stability Boundary Layer

Although this type of boundary layer is a convenient reference point it seldom occurs.
The most usual cases are either strong winds or near zero heat flux beneath a high level
capping inversion. A typical depth is one to two kilometres. Figure 2 illustrates various
profiles typical of neutral conditions. The mean flow profiles are logarithmic near the
surface but at the top the boundary layer show a small Ekman oscillation and slightly
super-geostrophic flow. The shear stress profiles indicate the chosen coordinate frame
with the surface value of Vg = 0. In this frame, common for the analysis of observations
it is clear from the equations of steady motion that:

i s
el ) =1V 2V, ol

Both —%w and —vw must decrease with height near the surface when U and V are less
than U, or V,. At the top of the boundary layer U must be greater than U, to allow vw
to return to zero, and as with the laminar Ekman layer, a damped oscillation of wind

vw) = /(U - U,) (12)
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Figure 2: Illustrating some features of the neutral static stability boundary layer
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Figure 3: Illustrating some features of the stable nocturnal boundary layer

speed and direction occurs with height. The energy component profiles match the total
shear stress profile in shape. Spectral analysis of this type of boundary shows eddies on
all scales but the dominant motions are eddies with a scale a fraction of the houndary
layer depth. As a result, for the greater part, the turbulence is in a local balance between
energy production due to the mean shear and the energy dissipation. This is reflected in
the match of the stress and energy profiles. In consequence of this local balance this flow
is easy to model with mixing length turbulence closures:
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The Stable Boundary Layer

Under the action of nocturnal cooling or passage over a cold sea a stable surface heat
flux arises. Compared with the neutral boundary layer the magnitude of the turbulence
intensity and the depth of the boundary layer reduce. The depth is typically between
10’s and 100’s of metres. Were equilibrium to prevail then Rossbly number similarity
could provide a useful description. In fact most stable boundary layers are evolving due
to the limited time of cooling and/or the influence of sloping terrain, e.g. consider the
U-component of the equations of motion with a terrain slope «, i.e.

aa—[tj+%'_w:f(V—Vy)+gTTTsina (13)
Then if T — T is only 3°C and a = 1073 (1 in 1000) the ‘drainage term is as great as
a typical 1 ms™! pressure gradient term. Figure 3 illustrates some typical profiles. As
with the neutral stability boundary layer the turbulence is mainly in a local production
dissipation balance and models of stable flow seem fairly successful. They do however need
refinement for aspects of the influence of stable stratification on the turbulence structure.
Particular difficulties arise from the influence of gravity waves generated by terrain and
flow instabilities. Practical concern also arises from the strong cooling and light wind case
when turbulence essentially vanishes and material may drift for some distance with little
mixing.

The Convective Boundary Layer

Unless 2;/L is less than perhaps 0.5 convective dynamics dominate the flow; such
conditions occur most of the time over the land during the day. Other convective situations
can arise with cloud top cooling rather than surface heating. Figure 4 illustrates profiles
for the case with surface heating. In contrast to the shear driven flows there is no longer a
balance between local production and dissipation. The energy production is given by the
heat flux profile and shows a near linear decrease with height with a negative region at the
top of the boundary layer due to entrainment. In contrast the dissipation is fairly uniform
with height. The vertical velocity variance shows a maximum at mid-boundary layer and
the horizontal velocity variances show weak maxima near the surface and inversion. The
turbulence is evidently no longer in a locally balanced state. The flow is dominated by
eddy structures which occupy the whole of the depth of the boundary layer.

Unlike the neutral and stable static stability boundary layers in which the surface stress

forms the velocity scale, and gives the typical magnitude of the velocity fluctuations, the
relevant velocity scale for the convective boundary layer is determined by the heat flux.
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Figure 4: Illustrating some features of the convective boundary layer
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This convective velocity scale w, is given by (wBz)'/® where wB is the surface value of

the bouyancy flux and z; is the boundary layer depth. This scale can be seen to follow

from the turbulence energy equation with the bouyant energy production wB balancing

the dissipation E*/?/l where E is the turbulence energy ~ w? and [ is a length scale of

order z;. Alternatively if we note that the eddy viscosty should be of order w.z; then
Sl oB AB

wB ~v— ~ w,2;
dz Z

If the value of AB implied by this relation is assumed to balance the non-linear term in
the vertical equation of motion i.e.

giving as before
Wy = (ﬁ}sz;)l/s

Note that the ratio L/z; is nearly equal to u®/w?.

If a mean wind is present then, in the absence of baroclinicity, the mean flow is fairly
uniform with height and the stress profile is fairly linear between the surface value and
near zero aloft. For a convective boundary layer the height scale (214/f)2 where v; is the
turbulent viscosity is generally much larger than z; the inversion height and the Earth’s
rotation has little direct effect on the structures within the boundary layer.
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Lecture 4

Models of the Planetary Boundary
Layer

Dr M.K. MacVean

Met O 14

In this lecture, the major points that need to be considered in the design and implementa-
tion of a one-dimensional boundary layer model will be discussed. This encompasses most
of the boundary layer considerations which enter into multi-dimensional models.

4.1 Analytic equations and turbulence closure

If molecular viscosity is neglected, the z-component of the Reynolds-averaged momentum
equation given in Lecture 1 becomes

U 9P duw

kel e 4.1
ot oz 0z (4.1)
Similarly we may obtain
oV oP Jdvw
eSO e R 4.2
ot dy 0z f¢-2)
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In the one-dimensional context, P is the pressure field supporting an externally determined
geostrophic wind. In the case of dry air, the set of prognostic equations for the mean fields
is completed by one for temperature which, in the absence of internal heat sources and
sinks, is

0O » dwl

B T a0y
A typical set of surface boundary conditions might be U = V = 0, together with either a
specified heat flux (wf = H,) or a specified temperature (© = ©,). Difficulties associated
with determining the appropriate height at which these boundary conditions should be
applied over a rough surface, have been discussed in Lecture 2. Throughout this lecture,
we will assume that they are applied at a distance z, above the surface, where z, is a
length scale characterizing the size of roughness elements on the surface. The three equa-
tions above, together with the boundary conditions, do not, however, constitute a closed
system, as they involve the correlations of fluctuating quantities. As discussed in Lecture
1, the turbulence closure problem is concerned with producing a closed set of equations
from these. At the most straightforward level, the first-order closure, no further prognostic
equations are involved and the second-order correlations are directly related to the mean
fields. In principle, an infinite hierarchy of higher-order closures exists. In the general
nth-order closure, additional prognostic equations are carried for all the correlations up to
nth-order but, because of the non-linearity of the Navier-Stokes equations, the equations
for the nth-order correlations will involve correlations of order n + 1. The closure problem
at the nth-order consists of finding a relationship between the n+1th-order correlations and
the quantities for which prognostic equations are carried. A theoretical basis for such rela-
tionships is generally lacking, thus leaving only the option of empirical relationships,which
become increasingly complex and questionable as n increases. Furthermore, the number
of prognostic equations also increases rapidly with the order of the closure. The greatly
increased computer resources necessary to carry out the additional calculations, severely
limit the applicability of closures of second-order and higher. Therefore, we shall limit
ourselves to a more detailed examination of a typical first-order closure.

(4.3)

In this case,by analogy with molecular mixing, the second-order correlations are related
to the vertical gradients of the mean-field variables by

Ty = UW = uaU
;i koAl oo
dz

S av
Tysz - —llgg
HZW = '—K,taa_@
2

where v, and k; are the eddy diffusion coefficients for heat and momentum, respectively.
For simplicity, the turbulent Prandtl Number (Pr = 1,/k,) is often regarded as a constant.
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Since molecular mixing is neglected here, we may, for simplicity of notation and without
ambiguity, omit the subscript ¢ from the eddy diffusion coefficients We would now have a
closed set of equations but for the fact that, in any realistic situation, the eddy diffusion
coefficients will be functions of the flow field. Here, we will consider a mixing length closure
of the form

v =5 F(Ri)

v (QUX" (oW

- (%) + (%)

£, is the mixing length in conditions of neutral stability, R7 is a Richardson Number defined
as the ratio of buoyancy production to shear production in the equation for sub-grid
turbulence energy and F(R:) is an empirical factor to allow for the effects of non-neutral
stability on the turbulence. Typical choices of F are (1 — 6R1)'/? in unstable conditions
(0©/3z < 0) and Maz{0,1 — 3Ri} in stable conditions (0©/9z > 0). Note that the
second of these formulae implies a critical Richardson Number of 1/3, at which turbulence
is completely suppressed. It must be stressed that there is no general agreement on the
optimal choice of F; a wide variety of different formulae are quoted in the literature. The
Richardson Number may be expressed in terms of quantities appearing in the turbulence

energy equation as
i oU A%
Ri= —wl/ (iﬁu”—~ = v‘—w——->
dz

where

@o 62
or,on substituting the first-order closure relations, as
: g 00 5
Ri = k——/vS
O, 0z /

Note that, in the case of constant Prandtl Number, Ri does not depend on the formulation
used for the eddy diffusion coefficients. The only quantity which still needs to be specified,
in order to produce a closed system, is the neutral stability mixing length (£,). A widely
used formula for this (Blackadar, 1962) is

where k is von Karman’s constant. Close to the surface, ¢, ~ kz, that is, the scale of
the eddies is determined by the proximity to the boundary. Such behaviour is reasonably
well documented observationally. For large z (i.e. in the upper part of the boundary
layer) £, ~ £,,. The appropriate choice of £,, will depend on the application; in convective
conditions it will be related to the boundary layer depth. Observational support for any
particular choice is much more limited at these greater heights than is the case close to the
surface. Other factors limiting the scale of sub-grid motions, for example, the presence of
a strong capping inversion, may also need to be taken into account in specifying £,,.
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Figure 4.1: Distribution of variables on staggered grid. Boundary conditions are applied
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4.2 Numerical Implementation

Here we give details of how the above equations and boundary conditions may be solved
using a finite difference model. It is common in dynamical numerical models to use a
staggered grid system, in which the different variables are held at different mesh points.
Suitable choice of staggering minimizes the amount of interpolation necessary to calculate
terms in an energetically consistent way. The natural choice in the present case is shown
in Figure 4.1. Consider the vertical finite difference discretization of (4.1) at level m

aU,, et Q!z +sz—sz—l
Pt oz | . Az

A Q__Pi i 1 v Um+1 b Um. ¥ <Um A Um—l)
s 0% | Azl o Az ot Az

where derived quantities are calculated as follows

Um = €8, F(Rin)

: 9 [Omi1 — Onm 2
£ — | ——— | /PrS
L 0, ( Azpyy ) / o
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Thus it may be seen that such a staggering of variables obviates the need to perform any

averaging of variables between grid boxes. Energetic consistency is also particularly easy
to demonstrate, using the control volume approach.

Turning now to the implementation of the boundary conditions, we first consider the
velocity field. In particular, the U-momentum equation at the lowest interior level is

U, aP . 1 { (U;,—U2> }

— = — | — — U | ——— | — 1

ot oz ), Az . Az o
Thus, as a boundary condition for this equation we require the value of the z-component of
the stress at z = z,. This may be calculated from knowledge of the velocity at level 2 and
the boundary condition U =0 at 2z = 2,, if we assume that the Monin-Obukhov similarity
laws hold between z = z, and the height of the first interior velocity grid point (z = z;).
For this procedure to be valid, the height of the first interior velocity grid point has to be
chosen to be within the expected surface layer. It is assumed that the wind direction and,
hence, the direction of the stress, do not change with height between z = z; and z = 2o
Thus

Tz1 = lTIlCOS'(9

where ¢ is the angle between the velocity vector at z = 2, and the z-axis. As discussed

in Lecture 2, we expect, on dimensional grounds, the velocity within the surface layer in
neutral conditions to satisfy

U

z
Also v
il = (T[ﬁ)‘z + WZ) = n

Applying the above at z = z;, remembering that the stress is constant within the surface
layer, gives

2
Tg1 = (klUlz/log?—) cost)

In non-neutral conditions, Monin-Obukhov similarity theory leads us to expect that the
non-dimensionalized shear in the surface layer will be given by universal functions ¢,,(z/L),
as discussed in Lecture 2. The form of these functions can only be determined from
observations and, although many observational experiments have been performed, there is
still no general agreement as to the best choice. Much of the data can be fitted by analytic
functions of the form ¢,, = (1— B,,2/L)~"/* in unstable conditions and ém =1+vn2z/L in
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stable conditions. These functions may be integrated to give the velocity profile. In stable
conditions, instead of (4.4) we have

10| = % {109230 + vm%} (4.5)
In unstable conditions we have
1= oo =4 (3)] (49
where
Ym :21091 ioA +1091 i —2tan"'n + er_
and

In the above, the Monin-Obukhov length L is given by

L= _uf/kg;u;a

and v,, and f3,,, are empirical constants. In Lecture 2, specific typical values of the empirical
constants were used, viz. ~,, = 5,0, = 16.

The inversion of (4.5) or (4.6) to give u, is not straightforward and, in general, must
be carried out iteratively. A further potential complication is that the surface heat flux
appears in L. If a constant heat flux boundary condition is imposed, this is trivial. If,
however, the surface temperature is specified, then the surface heat flux itself depends on
u, in a complicated way (see below). If the model time step is short enough (less than
60s, say), it may be accurate enough to use the value of L from the previous timestep.
Otherwise it might be necessary to devise a complicated iterative method for obtaining
a more accurate solution. Alternatively, an explicit method without iteration has been
developed by Louis (1979), especially for application to operational forecast models with
large timesteps.

A constant heat flux boundary condition may be straightforwardly implemented in the
temperature equation as shown below, since H, is known

6@2 1 Uy @3 — 8
R s sl e G S
ot Az | Pr Az

If, instead, the surface temperature (©,) is specified, then the implied surface heat flux
H, must be calculated for use in the temperature equation at level 2. Again using Monin-
Obukhov similarity theory in conjunction with empirical fits to observational data, we may
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obtain the relationships below. In stable conditions

0. 29 2y
Q; =0, + i {au lngo + i L} (4.7)
while, in unstable conditions
0. 23 )
O, =0, + — log— — = :
1= 0, + Zan {log — pu(2)} (18)
where
oo o)

Yu(e) = log—z—

2o\ 1/2
‘- (o)
9, = —H,[u,

and oy, By, vy are empirical constants. In the formulae for the non-dimensional sur-
face layer temperature gradient (#n) given in Lecture 2, specific typical values of these
constants were used, viz.ay = 1, fg = 16, vy = 5. Note that, strictly, the roughness
length appropriate to temperature (z,7) should appear in (4.7) and (4.8) rather than z,,
as discussed in Lecture 2. In most models, it is assumed that these quantities are identical.
Given u., these equations can be inverted to give H, in terms of ©, and ©,. It is necessary,
in general, to carry out the inversion using iterative methods. As mentioned earlier, there

is the further complication that the determination of w. itself depends on the surface heat
flux.

So far, this section has considered only the vertical discretization of terms which are
diffusive in nature. A final important remark is appropriate, concerning the time dis-
cretization of such terms. Consider, for simplicity, the equation

oU
e

where D is a diffusive term. Using a leapfrog scheme, this may be discretized as
U(t + At) - U(t — At) = 2AtD(t")

The time level t* at which D is evaluated, is still to be specified. A linear numerical
stability analysis shows that the most obvious choice (¢* = t) results in an unconditionally
unstable scheme. It is important that the calculation of all diffusive terms is performed
either at t* =t — At, in which case an explicit, conditionally stable scheme results, or at
t* = t+ At, in which case the numerical scheme will be implicit and unconditionally stable.
In the latter case, although no restriction is placed on the timestep by considerations of

numerical stability, the timestep will, in practice, be limited by the requirement to keep
the discretization error acceptably small.
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Boundary Layer Flow Over Hills

P.J.Mason
Meteorological Office, Bracknell

25 April 1988

1 Introduction

An understanding of flow in the atmospheric boundary layer is essential for wide range of appli-
cations. Estimates of the net momentum, heat and moisture fluxes are required for numerical
weather prediction models whilst information on detailed flow structures is needed for applica-
tions such as pollution dispersion, wind power studies, agriculture and the siting and strength of
buildings. Over level terrain our knowledge of these processes is incomplete but extensive studies
have allowed a description and understanding which provides reasonable guidance. Over hills
and complex terrain our knowledge is much more limited due to the absence of both theory and
observations. Here an outline of current understanding of flow over hills and complex terrain
is given. Attention will not be given to details of the complex models and theories which have
developed but rather to the conceptual ideas which they embody. The reader is referred to the
few papers cited for a more complete review and extensive bibliography.

In what follows, neutral static stability flow over a low hill is considered first. The dynamics
which determine the changes in mean flow and turbulence are outlined and estimates of the
changes made. The description then proceeds to the local and gross effects of steep orography
with flow separation and vortex generation. The important gravity wave generation processes
which occur for length scales greater than and of order about 6km are excluded from this
discussion. Finally some attention is given to buoyancy effects in short length scale flows.

o iR

Figure 1: Schematic geometry of flow over a hill

2 The Mean Flow Over A Low Hill

The ideas in this and the next section are those usually invoked for predictions of flow and
turbulence in neutral static stability flow (strong wind). A recent review, Taylor, Mason and
Bradley 1987, provides further references and details. They prove successful for the regions of
flow speed up but for reasons noted later are not reliable in regions where a flow sheltering is
expected. Consider (see Figure 1) an undisturbed flow in the lower part of the atmospheric
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boundary layer with a flow profile U,(z). Although the arguments can be applied for a general
velocity profile we can, for example, consider the usual flow in the neutral atmospheric surface
layer

Us(2) = (us/k)Inz/2, (1)

where z, is the roughness length, k the von Karman constant and u, the square root of the
surface stress. We shall not be concerned here with steep orography and flow separation and it
is easy to estimate the magnitude of key terms in the equations of motion

%—‘: +uVu = —Vp + VT,'J' (2)
where u is the flow velocity, p the pressure divided by density and 7;; a Reynolds stress tensor.
With a large flow perturbation the non-linear term uVu will be of order U2/ L where L is typical
scale of differentiation and U, a typical flow speed. In contrast the turbulent stresses in the flow
will be of order u.? and V7; of order u,?/l where | remains to be determined and is the scale
over which the stresses vary. Now u,? = CpU? where Cp is a drag coefficient which might
typically be 2.1072 for a surface with low vegetation (20 &~ 0.1m). Thus u,?/l can only be large
enough to influence the balance of the non-linear term over a small length scale [ ~ CpL. If L
is order a few kilometres then [ is only of order a few metres. Such a region does occur within a
distance =~ [ of the surface but above [, in a steady flow, the non-linear term must balance the
pressure gradient. i.e.

uVu=-Vp (3)

Further indications of the properties of this flow can be obtained by assuming the hill is so low
that the flow perturbation is much smaller than U,. Assuming for simplicity of analysis a two
dimensional ridge we have u = (U,(z) + u, w) which on substitution in 3 and with the neglect
of second order terms gives

du AU,(2)
U,(z) o + w s Vp (4)
together with a linearised boundary condition
as
w:Uo(l)g onrz=1 (5)

where h = S(z) is the hill height and I (assumed < L) is identified with the lowest height at
which these equations apply. Since U, is a function of z the solution of these equations involves
some algebra but the form of the solution is essentially that obtained with U, a constant, i.e.

u aS du Jdw
U,,E——Vp, w—-U,,E on z =1, and of course _6—:E+§_0 (6)
Taking . : ; :
S = hoe'**, u = u,e**, w = w,e**, and p = p,e'** (7)
we obtain
D Ufhoke_zk, u= —U,h,ke™** etc. (8)

The disturbance decays with height on a vertical scale k! = A/2x where A is the horizontal
wavelength of the hill. The pressure perturbation shows a minimum over the crests of the wavy
surface and maxima over the troughs. The pressure field reflects an integrated response of the
flow to the surface perturbation and a detailed analysis of the problem posed in equations 4 and
5 with U,(z) gives the solution.

p ~ U,(L)?hoke™* 9)

where U,(L) is the basic flow at a height k=! (the wavelength divided by 2r). The vertical
advection term in equation 4 is of magnitude u,/U,(2) less than the horizontal advection and
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small in effect. To a good approximation the horizontal flow perturbation u is given by the
balance

du dp
e Py e (10)
so we obtain 5
Po U,(L) —zk
~ fe *
0u(a) ™ V) ° ‘“’
where 0 = h,k is the peak slope. This flow perturbation differs from that obtained with
U,(z)= constant, by the factor (Us(L)/U,(2)).

Uy, ~

25 km

Figure 2: Contours of the digitized topography, as used in the numerical model, at 10m intervals.

The positions of the sites at which 8m mean wind velocities were measured are marked. After
Mason and King 1985.

With this flow perturbation we can make a more refined estimate of the height scale /.
Consider the balance

du dp Jduw

U (2)== =2k 12

°(z)ax oz ’ 0z (42)

The pressure gradient dp/dz derived as above is essentially independent height near the surface
and UwW is a linearised estimate obtained by a mixing length turbulence closure, i.e.

d(Uo(2) + u)
9z

IUo(2) + v)

=1t T (13)

uw + u,

This leads to the estimate of [ given by

o (UZEI))Z E (14)

l(Inl/z,)? ~ 2k2k" (15)

Note that a detailed analysis of flow over an isolated hill rather than a wavy surface shows that
27k~ the wavelength of the wavy variation, corresponds to length scale which when combined
with the hill height gives a realistic value of peak hill slope, i.e. roughly the hill half width.

or
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< 2:5 km >

Figure 3: Contours of velocity perturbations at a height of 8m above the surface obtained by
the application of model D (see Mason and King 1985) to the digitized terrain. (a) shows the
streamwise component of the perturbations and (b) the transverse component. The contour
intervals are 0.061 and 0.025 respectively where a value of unity corresponds to the undisturbed
flow speed at 8m. Negative contours are shown dashed. The basic wind direction and map
orientation are indicated. For clarity, contours are presented in a domain 2.5km square rather
than the actual 6.7km square domain used for the calculation. After Mason and King 1985.
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Figure 4: Measurements of 8m wind speed and direction at the summit site, S, and three
other selected sites. Wind speeds have been scaled by that measured at the reference site, Ug,
and directions are expressed as differences from that measured at site R. The solid lines are
predictions from model D; broken lines are measurements, averaged over 10° intervals, of wind
direction. Error bars show the typical scatter of the observations. On the plot for wind speed
at site S, results are shown from both a Gill anemometer system (......) and a cup anemometer
system (- - -). After Mason and King 1985.
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To summarise, above z = | we obtain a fractional change in the flow of

Au__ (%(L))’ g2/t

Us(2)  \U,(2)
where 6 is the peak hill slope. The factor (U,(L)/U,(z))? is introduced by the velocity profile
and arises as the pressure field, dependent on U,(L) interacts witk the local flow Us(2). As
a result of this factor the flow speed up depends upon the surface roughness z,, and as noted
below, the basic flow static stability. Below a height { given by equations 14 and 15 the flow will
be influenced by the turbulent stresses and the perturbation will reduce towards the surface. In
many practical examples this height is below the region of interest.

For a 2-D ridge good results are obtained with 0 evaluated as indicated, whilst for a circular
hill the flow is partly diverted to either side and the value of # should be reduced by about 0.75.
The dynamics and equations described have been incorporated into models which can be applied
to give complete flow predictions in complex terrain. These predictions have been verified by
comparison with field experiments. Figures 2, 3 and 4 illustrate such a comparison. Figure 2
shows terrain contours of the Hill Blashaval on North Uist. Figure 3 shows predictions for the
two flow components at 8m and Figure 4 shows individual site comparisons of the observations
and the predictions. The height of Blashaval is about 100m above the surrounding terrain and
the peak slope is about 0.4 rad giving a value of L of about 250m. The local value of roughness
length 2, was measured to be 0.01m. It follows that [ is about 6m and the expected flow speed
up at 8m over the summit is Au/U ~ 2.2 0.4 0.75 = 0.68 which corresponds well with values
observed on the summit. Here the factor 2.2 is (U(250)/U(8))2, 0.4 is the slope, and 0.75 the
circular hill factor. It is evident in Figure 4 that there are some serious discrepancies occurring on
the lee side of the hill. At site C with a wind direction of about 50° the predicted flow reduction
is only about 25° yet the observations suggest a near zero reversed flow. This discrepancy arises
as the observed flows separate in the lee of the hill at much smaller topographic slopes than
these simple ideas would suggest. This flow separation has its origins in the near surface region
close to the summit of the hill. Refined studies have found that complex turbulence closure
methods are needed to describe this feature. Indeed, as noted below, the separated regions of
all flows are also characterised by large turbulence intensities and are difficult to predict with
accuracy.

A final note is that, except for the flows with direct stability influences which are noted
below, a flow speed up much greater than a factor of 2 is unlikely. When the flow speed up
reaches a value of this size the flow will be close to separating upstream as well as downstream
and after upstream separation occurs the streamline paths over the upstream separation do not
reach greater slopes than roughly this critical angle for flow separation.

(16)

3  Turbulence structure in flow over a low hill

The boundary layer turbulence which passes over the hill is subject to the changing velocity
gradients on a time scale over order L/U (where L is scale of the hill and U a typical flow speed).
The turbulence itself involves eddies of some length scale and typical internal velocity scale.
The typical size of the flow eddies increases with distance from the surface and is of order that
distance, z. The typical velocity scale is of order the square root of the surface stress w.. Thus
an eddy turnover time is ~ z/u.. It follows that for heights z > Lu./U (u.,/U ~ /Cp ~ 0.05)
the flow gradients are changing faster than the response time of the eddies. This situation
corresponds to so-called rapid distortion and the influences are often described in terms of
the way in which the flow distortions change the length of vortex filaments and hence alter
velocity components. It is possible to make analytic calculations of these responses but the
calculations are complex and even the sign of changes can depend on the upstream values of the
different turbulent stress components. The nature of the changes also alter between two and
three dimensional flows. The general effect of these changes in both theory and observations
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is to tend to increase the vertical turbulence fluctuations i and to give a smaller decrease in
the horizontal component fluctuations . Typically the expected fractional increase in wiw is
of order (Au/U)? the speed up increase squared.

+ RS

+ R2
+ Rl 0] 200 m

Figure 5: A topographic map of Nyland hill. The contour interval is 5m. The hatched area is
covered with low trees and bushes. The sites marked R1 and R2 are the upstream reference
sites, the site RS is the ultrasonic anemometer site, S is the summit site and the mean flow
measurement sites are shown by unlabelled crosses. After Mason 1986.

The height scale {; above which these rapid distortion effects should dominate can be found
from a formal analysis involving high order turbulence closures. It is found to be given by

lelnly/z, ~ 2L (17)

and thus matches the rough estimates already made. If we consider the case of a hill with scale
L = 250m and 2z, = 0.01m we obtain a value of l¢ of about 30m. In contrast to heights above
lt, at heights well below [, the turbulence time scale is very fast compared with the rate at
which the velocity gradients change. In these regions very near to the surface the turbulence
achieves “local equilibrium” with the velocity gradients. The turbulence then simply matches
the values expected with the local flow speeds and surface roughness. In between these two
regions the changes are complex and involve challenging dynamics. The changes, however, are
no more extreme than those in the surrounding regions of the flow.

From these considerations it is clear that, apart from effects involving flow separation, the
influence on dispersion processes will occur mainly through the mean flow changes. Estimates of
gusts in the wind are harder to make but are important for regions of flow where further speed
increases may have implications for the design of structures. The above theoretical arguments
suggest that above the near surface, the turbulence energy (especially uu) will not be much
greater than upstream and the relative size of the gusts thus less. In fact this assertion can be
misleading as the above section has only considered the fluctuations due to small scale eddies.
In the atmospheric boundary layer there will usually be energy in horizontal flow fluctuations
on larger scales than the scale of many hills. For example, with a 250m hill eddies on scales
greater than 250m will behave as part of the mean flow and any u fluctuations on this scale will

5.7




e s
v

40 .

@]
Z/m upstrecm/ ) /
. O
summit
i)

e
o)

+
1
02 04 06 08 10 12 14 16 18 20

7 URs

Figure 6: Vertical profiles of wind speed at the upstream and summit sites. The ordinate shows
height above the ground on a logarithmic scale and the abscissa gives the speed relative to the
reference speed UR8. The dots show upstream data, the crosses summit data and the open
circles the difference of these two: the speed-up. After Mason 1986.
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Figure 7: Illustrating statistics of wu at the upstream and summit sites. (a), (b) and (c) show
the variance of the ‘total’ (all measured scales up to 5km), ‘short’ (all measured scales up to
200m) and ‘long’ (scales between 500m and 5km) contributions to tu respectively. Dots denote
data values for the upstream site and crosses those above the summit. Each symbol is derived
as the mean of about 6 measurements and the values are scaled by UR8. The ordinate is height
on a logarithmic scale. The u-direction is defined as streamwise. After Mason 1986.
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be subject to the mean flow speed up. Thus low frequency gusts will speed up in proportion to
the flow speed up.

These various effects can be well illustrated by data from a field experiment. Figure 5
shows contours of Nyland hill in Somerset. This is a small scale feature with L = 100m but
has the smooth surface characteristic essential for representative field measurements at single
points. Figure 6 shows the upstream and summit mean velocity profiles and Figure 7 shows
measurements of the streamwise energy component. The energy component has been displayed
as total, short scale and long scale contributions. Since the hill scale is small the importance
of the long scale components is especially marked. Application of the flow speed up rules to
this site agree well with the observed speed up of about 2.0 (Au/U ~ 1). [ has a value of
about 2m and the flow increase Au is a maximum at this low height. The height scale [, has a
value of 11m and the rapid distortion expectation of a decrease in the short scale contibution
to uu at these heights is borne out. Below 2m the short scale energy increases towards values

matching the local flow speeds. The low frequency components, like the mean flow, show a near
logarithmic increase with height and are seen to increase by fact

or of nearly four over the values
found upstream.

4 Separated Flows

480m

320m

16Um

8Um

Figure 8: Sketch showing the general arrangement on and around the island, including aircraft
flight tracks perpendicular to the mean wind. After Jenkins et.al. 1981.

When the orography is sufficiently steep flow separation will occur. With separation the adverse
pressure gradient between the lee of the hill and the summit decelerates the flow faster than it
can be accelerated by the transfer of momentum towards the surface by the diffusion. Accurate
estimates of the critical angle of slope for flow separation require complex turbulence closure
models and simple closures tend to underestimate the tendency to separate. This was seen in
the example presented above (Figure 4). The observed flow reduction in the lee of the hill was
greater than that predicted. A rough guide to the critical angle is obtained by considering a
unity flow perturbation at a height [, i.e. from equation 16

. LW) :
0cnt (UO(L) (18)
In forested terrain a typical angle for flow separation is about 20° whilst in short grass terrain
a typical angle is about 30°.
In flow over ridges the separated mean flow takes the form of a characteristic recirculating
bubble. However, in contrast to the steady separations which occur in low Reynolds number
laminar flows, turbulent separations are highly unsteady with the instantaneous velocities taking

all directions. The main impact is often thus due to the very high turbulence intensity and the
mean flow itself may be too weak to have much consequence.
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Figure 9: Mean velocity fields in vertical sections from aircraft observations. The three sections
(a) AA’, (b) BB’, (c) CC’ are defined in Figure 8 and are viewed looking in the downstream
direction. In each figure the upper field is a contour plot of the dimensionless streamwise velocity
component, i.e. normal to the section. The contour interval is 0.1, and dashed contours denote
values less than 1. The lower field shows the secondary flow vectors in the transverse section,
and the length of the arrow is proportional to the velocity. The arrow at the top of the box
shows the length of the arrow corresponding to unit speed, i.e. the mean streamwise wind speed
remote from the hill. The numbers to the right of the box indicate the number of runs used
to obtain the average, and the heights are on the left. Tick marks on the bottom of the box
indicate a horizontal spacing of approximately 100m. After Jenkins et.al. 1981.
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In flows past three dimensional bodies the flow in the separated region is of similar low mean
value and high turbulence intensity. However the three dimensionality allows the important
influence of vortex turning and stretching. The wakes of three dimensional bodies usually
contain significant mean streamwise vortical circulations (Mason and Morton 1987). These
circulations can persist some distance down wind and give mean vertical winds and enhanced
wind gusts, both of which may have practical importance. The mechanism for generating these
trailing circulations is complex but the turning of the transverse vorticity shed from the body
is usually the dominant cause. This transverse vorticity is just the region of strong vertical and
lateral shear which leaves the surface of body at separation. It can then be turned according to
relative advection around the separation region. Cross-stream-symmetrical obstacles generate
one or more nested vortex pairs, of which one pair is normally dominant. Tall objects tend to
generate a pair with central down-wash, while squat objects tend to generate central up-wash.
A more powerful circulation of a single sign is generated by a skew body. The tendency for flow
to pass faster round one side of the body provides the inertial turning of the shed vorticity. Such
vortices can be very powerful. Space prevents illustrations of all the various ideas raised in this
section. An example of a fairly two-dimensional flow with separation is given below in section
6. Figure 8 shows a plan of flight tracks relative to the island of Ailsa Craig. This island has an
elliptic section and the flow in the wake (Figure 9) reveals a powerful single trailing vortex.

5 Turbulence in complex terrain with flow separation

Oy,
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Figure 10: Values of z,/h as a function of A/S where A is the sum of the frontal areas of the

obstacles occupying a surface area S and values of Cgq = 0.3 and C,, = 0 are assumed. The curve
shows the relation given by equation 23.

Observations show that unless flow separation occurs the changes to turbulence intensity values
relative to flat terrain values are usually modest. When separation occurs the turbulence inten-
sity increases and some estimates of the changes can be made. As noted below these estimates
are borne out by observations. The basis for these estimates is the remarkable way in which
large-scale hills produce an influence greater in magnitude but similar in scaling to smaller scale
roughness features. No formal theoretical justification exists but the results are borne out by
numerical simulations and observations.

Consider a statistical distribution of steep hills with flow separation. The drag force on
each of these hills will be of order 0.5pC3A(U (h/2))? where A is a frontal area U(h/2) a typical
flow, say that at half the object height, p the fluid density and Cy the body drag coefficient.
For a separated flow Cy will be of order unity but its exact value will depend on the precise
object shape and may be hard to determine. Typical values for orography seem to be about
0.3 (see Mason 1986b). If the boundary layer containing these steep hills follows its usual non-
dimensional behaviour then the knowledge of this force allows us to infer the boundary layer
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Figure 11: Measurements made by instruments on a tethered balloon cable at heights above
complex terrain. Heights are measured above the level of the valleys and the summits extend to
about 300m. (a) shows measurements of the velocity profile and how it matches a logarithmic
variation with z, ~ 10m. (b) shows values of the local ratio of U/\/@uw and how they are
consistent with a value of z, ~ 9m.
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Figure 12: Measurements made by instruments on a tethered balloon cable at heights above
complex terrain. Heights are measured above the level of the valleys and the summits extend
to about 300m. the plots show the ratio of the 3 energy components to the estimated surface

stress value. The ordinate has been normalised by the estimated boundary layer depth z;. The
dashed line denotes predictions from a standard boundary layer model.

statistics. We argue that the hills are sufficientl

y separate so that they experience a velocity
derived from the final velocity profile, i.e.

U(h/2) = (u./x)In(h/(22,)) (19)

where h is the body height and z, and u. the effective values of 2, and u, which we seek. The
force on a body is then

F = 0.5pC4A(U(h/2))2. (20)

In order to derive a relation with no singular behaviour we assume a stress u?, due to the
undisturbed, say vegetative value of 2, 1.e. 2,1 SO

U(h/2) = (uur/x) In(h/22,1) (21)

It follows that the area average of the effective stress equals the sum of the forces on the bodies
and the background stress i.e.

Sul =) 0.5C44(U(h/2))? + SCu(U(h/2))? (22)

where S is the surface area considered, C,, = 2/(ln(h/2z01))2 and the summation includes all
bodies in the area. From these equations we obtain

(In(h/22,))* = k?/(30.5C14/S + C,) (23)

which allows z, the effective value of the roughness length to be estimated. From 2, the mean
flow profile and shear stress can be estimated. Figure 10 shows the resulting values of z, which
arise with C,, and z,; equal to a negligible value. The evidence is that the components of
turbulence energy retain their usual ratios to these enhanced values of surface stress. This
seems to apply even in separated regions of the flow where although the mean flow is very low
the turbulence energy retains values typical of the overall value of surface stress u?. Note that

the value of 2, appropriate for heat and moisture transfer will not be influenced by pressure
forces and will remain at a vegetative value.
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Figures 11 and 12 show observations of turbulence made with a tethered balloon in complex
terrain in South Wales. Application to this area of equation 23 above, gives an overall value
of z, about 8m and accords well with the observations. The mean flow profile above the hills
matches this value whilst the turbulence, even into the region of valleys, also matches it well.

6 The influence of static stability

As has already been noted, the important effects which can occur in flows with gravity waves
will not be discussed here. Such effects can be of particular importance in the estimation of
wind speeds over large scale mountains and the generation of severe downslope winds in the lee
of such mountains. The objective here is only to highlight the main influences on smaller scale
flows and to indicate the relevant parameters. Unfortunately, observations able to give measures
of these parameters are few and predictions of the flows are thus often difficult. Descriptions of
the various types of flow, and drainage flows in particular, have an extensive literature (see e.g.
Scorer 1968).

One significant influence of the static stability is indirect. The mean velocity profile is
strongly influenced by the surface heat flux; with an unstable flux the wind shear is reduced
and with a stable flux it is increased. The section on mean flows showed the importance of the
shear (Uy(L)/U,(2)) in determining the speed up and it follows that speed up will be increased
when the flows are stable. Note has already been made that the turbulent stress divergence
only influences the very near surface flow and buoyancy effects do not alter this situation. To
proceed further we need to consider when buoyancy forces will be able to have a direct influence
on the local flow.

An estimate of the direct influence of buoyancy forces on the flow is complex as it depends
on the relevant scales of both the orography and the basic buoyancy gradients. The size of the
influence will depend primarily upon the ratio of the perturbation of the hydrostatic pressure gra-
dients to the dynamic pressure gradients. The magnitude of the dynamic pressure perturbation
can be easily estimated as given above. For gentle orography of slope 8 the flow perturbations
will be of the order of U#, where U is a typical flow speed, and the linearised value of the
dynamic pressure perturbation will be ~ 2U?. For large slopes this linearisation will fail but it
should be noted that the pressure perturbation will not exceed ~ U2%. The hydrostatic pressure
perturbation will be of order ABh* where A B is the perturbation buoyancy contrast and h* the
vertical scale of this buoyancy perturbation. The ratio of the dynamic and hydrostatic pressure
perturbations is the square of a Froude number

F? =2U0%/ABA* (24)

To estimate this Froude number requires careful consideration of the appropriate values of AB
and h*.

In the case a stably stratified flow with a uniform vertical buoyancy gradient of N2 = dB/dz

we can suppose that AB will be about AN? where h is the hill height and h* will be about L

where L is the hill length. This estimate of h* ~ L will only be strictly correct when gravity

waves do not occur and the flow is close to inviscid potential flow. Noting that 6 ~ h/L we
obtain

F? ~ 20?/N%L? (25)

This is the usual Froude number obtained in the theory of linearised internal gravity waves. For
values of F' less than about unity internal gravity waves will be generated.

The main purpose of this section is simply to recognise the importance of an appropriately
defined Froude number. The Froude number has been introduced as the ratio of the hydrostatic
and dynamic pressure gradients. The Froude number given by equation 25 can also be seen as
the ratio of the Brunt Vaisala period N~!, the natural restoring period of the stable fluid, to
the time for flow over the hill L/U. To generate gravity waves L/U must be greater than N~!.
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Taking typical values of N ~ 10725 and U ~ 10ms™!, gravity waves will be generated if the
hill wavelength X is greater than ~ 27103m. The value of L denotes the scale of differentiation
A/2x.

If we consider a steep hill with a dynamic pressure perturbation U? and suppose that the
buoyancy disturbance only extends to the height of the hill so A* = h. Then we obtain

F? ~ U?/N?R? (26)

This Froude number based on the vertical scale expresses the ratio of the flow kinetic energy
to the potential energy needed to raise fluid a height h in the stable environment. When this
Froude number is less than unity the flow over obstacle will be reduced and the flow will tend to
pass around the obstacle. These various flow regimes can have important influences on plume
dispersal in complex terrain.

A case worth further consideration arises with the stable nocturnal boundary layer when the
depth of the stable boundary layer may be limited to a height scale h; of order a few hundred

metres or less. Taking h* = h; and a sufficiently high hill so that A > h; then AB = AB, the
buoyancy contrast across the stable layer and

F? ~ 2U%/AByL (27)

When this Froude number is less than unity the dominance of the hydrostatic pressure gradient
leads to drainage flows.

18xm

Figure 13: A topographic section in a roughly West-East line following the locations of the
anemometer masts. The positions of the masts are indicated; the tethered balloon was flown
from point ‘B’ and ‘S’ is the summit mast. After Mason 1987.

It is also possible to estimate the importance of buoyancy effects in the daytime convective
boundary layer. In this case the magnitude of AB depends on the efficiency of the turbulent
transfers within the boundary layer. To estimate AB it is necessary to utilise a turbulence
closure. The key variable in a turbulence closure is the turbulence length scale {,. With a
buoyancy flux H, a typical diffusivity is v ~ wyl, where the velocity scale wy, ~ (Holo)’/3. The
buoyancy difference AB over a scale h can then be estimated from

vAB/h ~ H, (28)

i.e.
AB ~ hH2BI74/3 (29)

With the assumption that the height h involved in this unstable buoyancy contrast is a small
fraction of the boundary layer depth and less than L, it follows that

F? ~ 20?0133 | H2I3R? (30)

Observations of convective boundary layers show that the largest temperature gradients are
confined to a shallow layer near the surface and that the minimum potential temperature occurs
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Figure 14: Illustrating the variation of wind velocity at 8m above the surface. (a) shows the
across valley component of motion ug and (b) the along valley component uy. The horizontal
axis corresponds to distance across the valley and the values shown are scaled by the components
(U, Usr) measured at summit. The results are for a North Easterly flow with an across valley
component from the right to the left of the figure. The symbols denoting various values and
ranges of Froude number are given on the figure the wind speeds U, corresponding to the Froude

numbers “unstable”, “neutral”,2-3,1,0.5,and 0.2 are 4.4,7.4,5.3,4.3,4.3,and 3.6 ms~! respectively.
After Mason 1987.

Figure 15: Numerical simulation of streamfunction contours at 15.00 G.M.T. obtained with an
“Easterly” wind. The vertical exaggeration is a factor of 2.5. After Mason 1987.




Table 1: Values of Froude number obtained with steady wind speeds and clear skies.

U at 200m F at 22:00 GMT F at 03:00 GMT

10 >10 >10
8 5 3
6 2 1
2 0.4 0.2

in the middle part of the boundary layer. The present simple analysis will only be realistic when
the pressure perturbations arise from the gradients above the shallow layer close to the surface.
With realistic estimates of I, (and k) equation 30 allows us to anticipate the importance of the

buoyancy effects. If we take # = 0.5, h = 300m and lo = 300m so as to correspond roughly with
a lkm deep boundary layer

F? ~0.020%/H*® numerically (31)
and with H, ~ 3.0 107®m?s~2 and roughly corresponding to a typical heat flux of 100Jm~2s~1
F' = U numerically (32)

which suggests that unstable buoyancy effects should only be important for wind speeds of order
and less than a few metres per second. In practise the local winds within a valley with steep
sides will be less than the flow above the valley and a more local criteria may be important.

Although the details of the buoyancy effects vary from case to case it is useful to consider an
example. Figure 13 illustrates a topographic section of a valley located within a sequence of such
valleys. The peak slope of the terrain is 30° and further details can be found in Mason (1987).
Table 1 shows values of a Froude number obtained at night with clear skies. This Froude number
is based on the hill height. The values obtained for various times and wind speeds are typical
but of course depend on the meteorological and surface conditions. Figure 14 shows observations
of the wind field 8m above the surface for a range of Froude numbers. The neutral stability
flow shows a small flow separation near the valley floor. In the unstable case the surface heat
flux was about 100Js™'m~2 and the wind speed at the summit was 4.4ms™!. This summit wind
is subject to a flow speed up and consistent with arguments above there is a moderate change
in the flow with the separation increasing under the influence of the up-slope winds. Figure 15
shows a numerical simulation of the streamline pattern for this case. For lighter mean winds
the up-slope winds took a value of about 2ms~!. The stable Froude numbers show two distinct
effects. With a Froude number, based on the height, of about 2 the Froude number based on
the length matches that required for a gravity wave and the flow through the valley does not
separate. With Froude numbers less than unity drainage flows occur and with light winds and
clear skies reached peak velocities of 4 ms~!. The peak velocities in the up and down slope
winds are difficult to predict without a comprehensive description of the turbulent boundary

layers which these currents comprise. They do however always increase with the scale of the
orography.
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&.1. FLUX MEASUREMENTS

Frequently in boundary layer meteorology a firm knowledge of the

vertical fluxes of heat, momentum, water vapour and gases is required,

whether this be through the surface or in the upper part of the

boundary layer. Measurement of fluxes directly through the surface is
very difficult and often, for practical reasons, use is made of the
'constant flux' or 'surface layer' approximation. Here use is made of
the assumption of zero flux divergence between the surface and the

measurement level, which may be up to a few tens of metres.

6.1.1. Eddy Correlation Technique

The vertical turbulence flux of a property S is

e /o s/ w!
where the prime denotes a fluctuation about a suitably defined mean,

and W is the vertical velocity component. The density is normally

taken as constant and removed from the average. For measurements in

the surface layer an indication of the instrumental frequency response
required can be judged from the observation that contributions to the
flux can be expected at frequencies in the range 0-005< f< 10, where

f = nz/u (n is the 'natural' frequency, z the height and u the mean
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wind speed). So if z = 10m, u = 10m é-‘ and £ = 10, then n = 10Hz. At
greater heights, above the surface layer, the main contributions to the
flux will tend to be at lower frequencies, and the requirements of the

instrument frequency response are correspondingly less severe.

6.1.2. Profile Method

Turbulent fluxes can often be related to the mean gradient of a
quantity, particularly close to a boundary. Perhaps the best known
flux-gradient relationship is the logarithmic velocity profile
introduced in lecture 2. Limitations are placed on the usefulness of
this method by the accuracy and stability of the instruments used. For
example the difference in wind speed between 2m and 10m will, over
the sea, be only about 157 of the total difference between the surface

and 10m, and perhaps 30% over an open land site.

(..2.  ANEMOMETERS

©.2.1. Cup Anemometers

Cup anemometers are simple, reliable instruments that are
extremely widely used and have been so for many years. They do not
require any alignment into wind and can be made relatively sturdy.
Leaving aside the problems of overspeeding and angular response
discussed below they can be made typically accurate to = 13 of reading,

Abovel Suos - and>te Sem o below.

A simple linear calibration function of the following form is

usually sufficient.

LA = uS+CRQ
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where U5 is the starting or threshold speed, R is the cup-arm radius
and {2 ‘the angular velocity. The starting speed arises from the need
to overcome friction in the bearings. This linear relationship masks
the complex aerodynamic interactions between individual cups and does

not apply when A2 Uy , particularly if the rotation of the cups is

intermittent.

In terms of its dynamic response a Cup anemometer can be treated

as a simple, linear first-order system with a power transfer function

of the form, \

|+ (fh\'{k)z

Nk} =

where K is the wavenumber, and { is the length or distance constant,
which may be defined as the length of the air column which must pass
the anemometer to give 63% of the change towards the new equilibrium.
An instrument with very lightweight polystyrene cups may have a length
constant of about 0+5m, while the small anemometers with plastic cups
typically used in boundary layer work have length constants of a few
metres. The larger, heavier instruments intended for continuous,
unattended operation may well have length constants significantly in
excess of 10m. Principally, the length constant is related to the
inertia of the cups, and can be reduced substanially only by the use of
very lightweight materials; hence the difficulty in constructing short

length constant instruments that are also physically robust.

Cup anemometers respond more quickly to an increase in the wind
speed than to a decrease of the same magnitude. Consequently an
anemometer calibrated in a laminar flow will overestimate the wind

speed in a turbulent flow; this characteristic is usually known as
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'overspeeding'. As a simple guide the relative overspeeding, §U/U,
can be taken as approximately equal to the square of the turbulence

'71/ 5
intensity, W /W » a typical value of which may be 0-05.

An ideal cup anemometer would have a cosine angular response, ie

the angular velocity would be independent of the velocity component

parallel to the anemometer axis. In practice the actual response,
particularly for large inclinations to the wind may be significantly
from ideal, and may be asymmetric to positive and negative angles of

attack, because of wake effects from the anemometer body.

6.2.2. Wind Vanes

A cup anemometer will frequently be deployed in conjunction with a
wind vane to provide directional information. The characteristics of a
particular vane will depend largely on the area and mass of the vane
and its distance from the centre of rotation; there can be considerable

variations in the design of vanes to suit particular applications.

Broadly a vane can be considered to be a second-order system; the
transfer function will rise (for an underdamped system) from a value of
unity at low frequencies to reach a peak at a characteristic equivalent
wavelength, falling again thereafter. Variations on the basic theme
are bivanes, which are free to rotate about two axes, and trivanes,

which are bivanes with a propeller mounted to give information about

all three velocity components.
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6.2.3. Propeller Anemometers

In recent years propeller anemometers have become a practical
alternative to cup anemometer-vane combinations. An orthogonal set of
propellers allows the measurement of three velocity components. A
popular  commercially available design is the 'Gill' propeller
anemometer; this is made from polystyrene, or in a more robust version
polypropylene, with usually four blades of helicoidal shape. The

calibration can be taken as a linear function,

A= ke i y C R )

where Lls is the threshold speed, ] is the pitch factor (= 043 for

Gill propellers), R is the length of the blades, {2 the rotation speed

and C is a constant.

Threshold speeds can be as low as O+lm s ' with length constants
of about one metre for the polystyrene versions and about 3 metres for
the polypropylene. Unlike a cup anemometer a propeller will tend to

'underspeed' in a turbulent flow, although the magnitude of the effect

can be expected to be less.

For small angles of attack (up to210°) the Gill propeller has an
almost ideal cosine response. However, as the angle of attack
increases there is a substantial deviation from a cosine response, the
actual speed of rotation being now smaller than would be expected.
With the propeller mounted perpendicular to the mean wind there is a
small range of angles (% 2° to 4°) about the horizontal over which the

propeller stalls and stops completely.
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6.2.4. Hot Wire/Film Anemometers

For very high frequency response measurements (up to = 10 KHz)
resort must be made to hot wire/hot film sensors. The principle of
operation is very simple; the cooling of a heated wire or film depends
on the velocity and density of the flow past the sensor. Hot wire
sensors are made typically from wire of ~IO/Mm diameter, and
therefore tend to be fragile. Hot film sensors use a platinum or
nickel film (A'O'%/im thickness) laid onto an insulating substrate and
then in turn covered with an insulating layer; these are more robust

than hot wires.

There are two normal modes of operation; constant current or
constant temperature. Constant current is the easiest to arrange but
results in a nonlinear calibration; constant temperature is more
complicated to arrange but results in an extended high frequency
response. There is now a vast literature on the construction,
configuration and use of hot wire and hot film sensors, the range of

which is well beyond the scope of this lecture.

6.2.5. Sonic Anemometers

Sonic anemometers measure wind velocity components from the
arrival times (or phases) of acoustic signals transmitted along a fixed
path. This results in a good high frequency response limited by the
implied averaging along the acoustic path, and the capabilities of the
subsequent signal processing. The calibration is determined
essentially by the characteristics of the transducers and the geometry
of the instrument, and is very stable. Sonic anemometers are now
established as prime research instruments in atmospheric boundary layer

work. A typical commercially available instrument has an accuracy of
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1% over its operating range of 0 to 30m s » With a resolution of

= -1
Os5cm s %,

6.3. TEMPERATURE AND HUMIDITY MEASUREMENTS

This is a very extensive subject that can only be touched upon

briefly here. Broadly, instruments can be separated into two

categories, fast response and slow response.

€.3.1. Slow Response Measurements

The determination of surface fluxes via the profile method may

typically require temperature differences between the various levels to

be measured to 0-01K. If the air-surface (land or sea) difference can

be measured the requirement can be relaxed to perhaps 0<1K. The most

common sensors used are thermocouples, thermistors and resistance

thermometers (particularly platinum). For the highest absolute

accuracy careful attention must be paid to adequate ventilation and

shielding from radiation (short and long wave). Humidity measurements

are still frequently made from a combination of wet and dry bulb

temperatures, although increasing use is being made of humidity

sensitive capacitative sensors.

6.3.2. Fast Response Measuremnts

For the measurement of variances and eddy fluxes the same basic

sensors are available, although absolute accuracy is much less

important and any radiation errors are frequently ignored. For

platinum resistance wires of BﬁAm in diameter extreme time constants of
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10 % seconds can be achieved. For humidity measurements from wet and
dry bulb temperatures time constants of about O+l seconds can be
achieved, although particular attention must be given to ensuring the
close matching of the responses of the two sensors. If this is not
done spurious results, under conditions of vérying humidity, can easily

be generated. : .

A quite different technique of humidity measurement is based on
the absorption of radiation by water vapour. Instruments employing
absorption at both Lyman-« and infrared wavelengths are available;
although both offer fast response measurements they tend to suffer from
long-term calibration drifts and require reference to a slower-response
detector. The calibration will also be degraded at high relative
humidities when hygroscopic growth of aerosol particles increases the

measured extinction by introducing light scattering.
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ATMOSPHERIC DIFFUSION

by F.B.Smith Met 0 14

Dispersion is caused by a very wide range of turbulent motions whose
scales vary from millimetres to thousands of kilometres. Usually the
smaller turbulent motions are 3-dimensional whereas larger turbulent
motions are essentially 2-dimensional. Various techniques have been
developed over the years to describe dispersion. At this stage we will
assume the material is passive, i.e. acts like "neutral" air particles.

These techniques will be described briefly:

1. K Theory. An analogy is drawn with the conduction of heat in a

metal bar in which the flux of heat is assumed proportional to the local
gradient of temperature. This theory, when applied to diffusion in the
atmosphere, effectively assumes the turbulence consists only of very small
"eddies" with very large turbulent velocities associated with them. The
coefficient of proportionality K is called the eddy diffusivity and can be
made a function of position (and, if required, of time). When K is a
constant, and the wind speed is also constant, a Gaussian concentration
distribution results acrosswind at positions downwind of the source. The
width of the resulting plume grows like time* (or x%). This behaviour is

known to be unrealistic at short range.

Other Difficulties: Eddies are not all very small. Transfer may thus

not depend on the local gradient alone. Application in unstable convective
conditions is consequently very suspect. Counter-gradient transfer of

material is not unknown.

Advantages: The method is relatively simple and can produce both

analytic or numerical solutions which are enlightening.



2. Higher-Order Closure Schemes. Equations of conservation can be

taken to higher order in concentration, so that, for example, the time
variation of the flux can be explicitly described in terms of other more
complex terms rather than empirically expressed in terms of the
concentration-gradient as in the K-theory. However, no closed set of

equations can ever be obtained which can be solved.

Always at least one (and wusually several) higher order terms are
included which cannot be inferred except by "dimensional" empiricism. The
expectation is that by making the empiricism at higher order smaller errors
will result in the solution. To some extent this has proved to be the

case, but at the expense of a much more complex numerical process.
This approach is not universally popular.

3. Similarity Theories. Rather like the Monin-Obukhov approach to

describe the wind speed and temperature profiles in the lower boundary
layer, dimensional arguments can be used to describe the growth of a plume

from a source at ground level.

For example:

47 - bu,o(%)
where z is the mean height of the "particles" in the plume, wu, is the
friction height velocity. This equation can be combined with the wind
speed equation W

dX . Tlcz)

dt
when x is the mean along-wind displacement of the particles released at
time t = 0o, u is the mean wind at a height cz. (c is another constant.) In
neutral stability conditions it has been shown that b = k = 0.4 (k = von
Karman’s constant) and ¢ = 0.6. These can be solved (in neutral
conditions) to give

ot [m%i -1+ g_f(:,m.e)]

T2
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Note however that this does not give z = z(x) since the particles released

at time t = o have a range of values of x and are not all at x.

The method becomes much more complicated when two or more

length-scales are involved. (e.g. 1in non-neutral conditions well above

the surface layer.)

However, some progress has been made even in convective conditions

(Yaglom 1972, Deardorff and Willis 1974). The latter authors give the

)

where z; is the convective boundary layer depth

following similarity form

o2& f(_w,.t
z;

= =
¢

v, is the convective velocity

cz(t) is the r.m.s. vertical displacement of the particles at

time t.

(the source is at the ground.)

Figure 1 shows the result of this scaling for concentrations downwind

of elevated sources within a convective boundary layer.

4. Statistical Theories. This approach, based on G.I.Taylor’s (1925)

classical work, has proved very productive.

In homogeneous turbulence, for a single particle

dz _ w(t)
T G

t
Integrating z(£) = fw(s)ds
o

Multiplying them together gives ;
d (z‘(f)) 2.9 fw(c)w(s) ds
de o

Averaging over the vhole ensemble of "particles" coming from the source

t
gives d_d-j:-o;l(t) A T j R(t-s) ds

o
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vc §
or @) = 29 [ [ R(E-5) ds s

wvhere R is the correlation between turbulent velocities, taken in a

Lagrangian sense, of the same particle at times t and s.

At small times t, R =1
so that 5
k% A -
Oot). = Do 1;. O
i.e. G;(t) = O"wt

This is the result one would get if all particles followed straight paths

during the short time interval t.

At large times t, R » 0 but [R dt - constant T, T has the dimensions of

time and is called the Lagrangian time-scale of the turbulence.
s

s oz(t)ec JE
in accord with the K-theory result. These results specifically apply to
homogeneous turbulence but the technique has been extended to cover
(i) diffusion in the inhomogeneous boundary layer (see Pasquill
and Smith (1984))
(ii) the growth of puffs (or instantaneous releases)
(iii) "conditioned" diffusion of particles with some other aspect
pre-defined, e.g. those that pass through a second downwind

point, or those that have a prescribed initial velocity.

5. Stochastic Models. The simplest form of this class is the

Markovian random walk in which the diffusion process is represented by the
movement of an ensemble of independent particles released from the source
in which each particle has a motion governed by a continuous but gradual

exchange of "momentum" with the environment of the particle. In the
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simplest case of one-dimensional homogeneous stationary turbulence, this

means its velocity at any time is governed by:
w(t+st) = (1~ 52_") wt) + 2o (&)‘/‘Lg
< w\ T
wvhere T is the Lagrangian time scale
Ot is a small time interval
o, is the r.m.s. value of w
€ is a random quantity derived from a Gaussian
probability-distribution with zero mean and s.d = 1.
The first term on the r.h.s. corresponds to the gradual "decay" in the

articles momentum, the second term represents the "gain" in momentum from
g

the surrounding environment.

The concentration distribution is built up by summing the contribution
from very many particles whose motion is prescribed by the above equation.
A computer is needed for this purpose of course, since the tracks of

several thousand particles are normally required.

In inhomogeneous turbulence where o, is varying with %, the above

equation has to be modified to
: Y,
e GF do’ ¢ sey*
Witest) = (1- & Jwe) + 200 .66 + 20 (&)

The justification for this has been given by Thomson (1984).

Concentration Fluctuations: Thomson (1986) has also extended the

technique to study the problem of concentration fluctuations within a plume
by considering the probability that two adjacent particles within a plume
could have originated from the same source. The techniques uses the random
walk equation, applied in a linked vay, to the two particles to determine
this probability.

Large-Scale Diffusion: The random walk approach is becoming

increasingly popular for simulating the dispersion of material on

a very large scale. To give an example, which will be returned to
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in more detail in Mr.Maryon’s lecture, the technique has been applied
to the dispersion of radioactive debris across Europe originating
from the damaged nuclear reactor at Chernobyl on April 26th 1986.

Figure 2 shows the results for May 2nd.

6. Empirical Techniques. In a "field" situation it is often difficult

to use the above methods because they involve parameters that can only be

estimated using instrumentation.

To meet this need, Pasquill (1959) developed a simple approach which
has proved very popular both in its original and developed states. He
recognised that vertical dispersion takes place through the action of
turbulence which has two major sources of energy: dynamic (through the
action of wind over a rough surface) and thermal (through the difference in

temperature between the ground and the air).

Pasquill therefore attempted to categorise the rate of vertical
plume-growth in terms of the 10 metre wind-speed and the amount of incoming
solar radiation. Later developments included other appropriate parameters

like surface roughness and the moisture-state of the ground.

These methods are described in Pasquill (1974).
Advantages: Very simple requiring little instrumentation.
Easy to see the influence of and sensitivity to the
input parameters.
Easy to use for the "layman".

Disadvantages: Should not be used for - (i) elevated sources

(ii) very convective conditions
(iii) in complex terrain especially
in stable conditions.

Figure 3 shows one popular form of the method.
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ATMOSPHERIC DIFFUSION: COMPLICATING ISSUES

by F.B.Smith, Met 0 14

Dispersion near hills

As already described in earlier lectures, the flow of the air over
hills and other complex terrain can be very complicated and it is difficult
to come forward with simple rules. Indeed, this is still an area of

continuing research and controversy.

Consequently we will 1limit ourselves to a number of qualitative

observations:

) The first question that has to be posed is how does the terrain
affect the flow field, taking into account the stability of the air ? Wwill
there be drainage flows, recirculating eddies, flow separation, different
levels of surface heating due to slopes of different orientation relative
to the sun, sea or land breezes, etc. ? This question often dominates

over all others in regard to plume behaviour.

(ii) In gently-sloping terrain, where flow separation is absent, then
plume behaviour and ground-level concentrations in neutral and unstable

conditions will be little affected by the terrain.

(iii) When a source is immediately upwind of a hill, the hill will
tend to magnify the natural acrosswind fluctuations in the airstream and
this will result in an enhancement of the width of the plume over the hill,

thereby lowering the time-averaged ground-level concentrations.

In contrast, a plume originating from a source that is more
"off-centre" may actually be narrowed as it passes round the side of the

hill thereby increasing its time-averaged concentrations.
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These changes in width modify ground-level concentrations in inverse

proportion compared to those concentrations that would be experienced

without the hill.

(iv) In stable conditions the plume may impinge on the upwind side of
the hill if the hill-Froude number 1is less than 1, since the flow has
insufficient energy to rise against gravity over the hill. Concentrations

then are approximately equal to the peak concentration within the elevated

plume in the absence of the hill.

(v) In unstable or neutral conditions when separation occurs
(implying slopes > 30°) the peak ground-level concentration may occur on
the lee-slope of the hill. Pollution from sources within a recirculating
eddy will tend to give relatively high concentrations within the eddy.
Note, however, that these eddies tend to be very transient in their

structure, varying in size and position quite rapidly with time.

Effect of buildings on dispersion

Many sources are either on buildings or very close to them. The
pollution-concentration is then often considerably affected by the presence
of the building for quite some distance downwind. This is especially true

if the plume gets incorporated into the wake behind the building.

The following simple formulae give a feel for the effect on plume
dimensions. The easiest way to use them is in conjunction with the

Pasquill/Smith scheme outlined in section 6 of my first lecture.

(a) Barker’s Model

This is a so-called "virtual source" model. By this is meant, the
effect of the building on the plume is essentially to make it appear as if
the source were in reality some distance upwind so that at the lee face of

the building the plume already has width and depth.

8.2
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If h

the height of the building

w

il

the acrosswind width of the building

then the plume dimensions downwind of the building are inferred from

assuming at the lee face of the building

4 "ol h
03 % ? 7 O"Z 7 3‘
and the source height is h: = ‘%

(b) Ferrara and Cagnetti Model

This is very similar in concept, but is rather simpler to use:

oy () = Ty() + EV\LS y G0 = G+ 2‘?5

(c) Huber and Snyder Model

o3'(x) = 0-35W + (%-3h)/is5
For Ol < x < 10h

Oz (=) = 0.7Th+ (x-3L)/is
and for x > 10h apply a virtual source model matching of
o/ and ¢, at x = 10h
y z

Use the actual stack height in calculating concentrations.

In all these models, Gaussian concentration profiles are assumed,
although these are modified by the addition of an extra contribution from a
virtual source of identical magnitude at a depth h_ below the ground (to

allow for the reflection of the plume by the ground). h_ = the real source

height.

If the material coming from the source is either hotter or colder than
the ambient airstream then proper allowance has to be made. Discussion of

this can be found in NRPB Reports on Atmospheric Dispersion Modelling, but

is too complex to discuss here.

8.3




Hot Plumes

Hot plumes result in significant ascent and hence lower ground-level
concentrations. A doubling of the effective source height decreases gl
concentrations by about 4. Moreover, since chimney height positively
affects the rise of the plume, an increase in chimney height by a factor F
results in more than an F? decrease in g1 concentration. However,
should the plume interact with an elevated inversion, which it has

insufficient buoyancy to penetrate, the g.l. concentrations will decrease

by a smaller factor.

Equating the rate of change of upward momentum per unit length of the

plume (along the wind) to the buoyancy force

d‘f ' ] 2 - 1 2 AT
-(PWTr) T 391?

where p

density
w = upward velocity
r = plume radius
T = temperature
t =%/,0 = time
Assuming no loss of heat from the plume
fz (mripe, AT) = 0

and that the plume width grows linearly with height, then
1

3 Aa
z(x)ee @, /%

(the coefficient of proportionality is about 15).

gQ, /(mpc,T,)

8 db
T dz
Then the plume rise AH is given by:

Writing the stack parameter F

]

and the stability parameter S

: : 5 A V3 M3 j—

incomplete rise in neutral windy conditions AH < F ' x /'u.
% S
final rise in stable windy conditions AH o< F-J//(ILS) g

Y4 3
final rise in stable calm conditions AHec F /S 4
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Very many formulae have been suggested for final plume rise in neutral
conditions. A good source for a discussion of these is Chapter 8 by
G.A.Briggs in "Atmospheric Science and Power Production", edited by
D.Randerson, to be found in the Met.Office Library. 1In practice, what is

most often required is the maximum downwind g.l. concentration and wvhere

it occurs.

Moore (1974) has supplied formulae for these which are largely based

on measurements made around power stations in the U.K.

3

5 A G ;
R 3 ) (FF + liluf'k ) {' in neutral and stable, and
all stability conditions
2 C Y3 /2
= Q ('éc g R ) in unstable conditions
H H w
28
vhere H = h_+ (275 + 20 )®/% = h_+ th
h, = chimney height
Q, = heat output in MV
Q = pollutant output
u = mean vind speed at chimney height
k = min (1,0.002H)

A and C are given as follows:

A C
All stabilities 1.63 x 10° 2.55 x 10°
Unstable 1.57 x 10° 5.43 x 10°
Slightly stable 1.76 x 10° 2.06 x 10°
Stable 1.76 x 108 1.76 x 10°
This maximum occurs at about x = xmax where
P A
= £, + R, (H-250) k { 275*1" _'_f‘nié‘&"_‘;? (in melres)
|+ W

where ’F = 5-81x !Os_hJ._(‘__tl‘:)._Q___

witd Cp
k, ={0:67 stable R, ,{5 unstable, H>250m
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LONG RANGE TRANSPORT AND DISPERSION.

R.H.MARYON.

1.The nature of dispersion in the Earth’s atmosphere.

The transport and diffusion of a passive scalar released into the
atmosphere reflect the whole range of scales of motion. These can be
summarised using a variance power spectrum, for example that of Gage and
Nastrom (1986), Fig.l, which was derived from GASP aircraft observations of
winds and temperatures. These curves may be divided into two 2zones: for
wavelengths above about 1000 km all the spectra have a slope proportional
to the wave-number (k) raised to the power -3, while below about 500 km the

/3, The long wavelengths are on the scale of

slope is proportional to k-
synoptic motion systems, and the . k™ spectrum reflects the
quasi-2-dimensional transfer of eddy enstrophy (root-mean-square vorticity)
to higher wave numbers by the relative motions of the velocity field - for
vorticity, the constraints on geostrophic flow are dynamically similar to
those of purely 2-dimensional systems (Charney, 1971). Absolute vorticity
is conserved (strictly, in frictionless, adiabatic, barotropic flows) so
that the vorticity field becomes ever more convoluted as variations are
driven towards smaller scales of motion. Fig.2, from a ‘’dishpan’

simulation, illustrates this phenomenon. The enstrophy is dissipated at

the high wave-number end of the k™3 region of the spectrum.

From dimensional analysis, the velocity v and rate of transfer of

enstrophy, nh, are related by

Vi nll!l,

wvhere 1 is an eddy length scale. Hence the kinetic energy may be expressed
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Writing k1l = 1, for wavenumber,

8 S

so that energy per unit wave-number, defining spectral density, is
proportional to k3. In this region of the spectrum the fluctuations of
vorticity, I, are independent of the eddy length scales and it is easily

shown (Tennekes, 1978)

&) = nt/?

and the characteristic time scale of the motion T, is

Wi/l w Inlt
(of the order of a day) where f is the Coriolis parameter.

In 3-dimensional (and strictly, isotropic) turbulence chaotic motion
is produced by the stretching of much smaller scale eddy vortices, in the
first instance by the mean wind shear in the planetary boundary layer, but
instabilities develop and Richardson’s well-known cascade of energy to
smaller and smaller motions occurs until ultimately the energy is
dissipated (converted to heat) at and below the so-called micro-scales.
The energy cascade region of the spectrum is called the inertial subrange.
A similar argument to the above, but using energy rather than enstrophy,
shows that the K.E. per unit wave number is proportional to k™ */3:
proportionality with €?/3k 3/ (where ¢ is the rate of dissipation of

turbulent kinetic energy) was proposed by Kolmogorov as long ago as 1941.
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3-dimensional turbulence in the boundary layer, however, is largely
confined to scales below about 1 km - we are left with the problem of the
large range of meso-scales between, say, 2 and several hundred km. Gage
(1979) put forward the suggestion that the -5/3 law extended to lower
vavenumbers through a 2-dimensional inertial range in which energy is
'reverse cascaded’ from high to low wave numbers. Thus motions initiated
by thunderstorms, orography, breaking waves and other mesoscale features
could cascade energy in both directions, 3-D to high wavenumbers, 2-D to
low. Lilly (1983) analyses the reverse cascade in terms of the decay of
3-dimensional turbulence into stratified 2-dimensional turbulence and
gravity wvave modes. Whether, between the enstrophy and energy cascades an
energy/enstrophy sink exists, or the meso-scale spectrum is generally as

free from gaps as Fig.l suggests, are matters as yet unresolved.

The characteristic time-scale of the k™>/3 cascade is T, = vi/e = 1/f,
- i.e. about 2 - 3 hours (Barr and Gifford, 1987). This scale is often
estimated from the lag correlation function derived from time series of
velocity measurements:

T, = [oR(t+s)ds
wvhere s is a time interval.

The foregoing discussion is necessary to illustrate the mechanics of
atmospheric dispersion. Pollutants are DIFFUSED in the 3-D energy cascade
range, although it has been suggested that diffusion can occur throughout a
good part of the k™3/3 region - perhaps due to the presence of vertical
components. The inertial subrange has been much studied, and we talk of
material ’spreading’ or ’'mixing’. In the enstrophy cascade region, as we
have noted, the dynamics require the transfer of eddy enstrophy to higher
wvavenumbers by quasi-2-dimensional vortex motions generated on a large
scale. The effect upon a patch of material is to DISTORT or DEFORM it,

kinematically, (or as some say, stir it!). This large scale deformation,
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vhich is area conserving, does not of itself cause diffusion, as there is
no 3-D eddy vortex stretching necessary for the energy cascade. Howvever,
as will be seen from Fig.3, chaotic behaviour does not require high
Reynold’s number turbulence effects - simply a modulation in time of the
stream function. Indeed, for 3-dimensional flows chaotic orbits are
possible even in steady conditions. These effects are termed ’‘chaotic
advection’. Chaiken et al (1986,1987) following Berry et al (1979)
diagnose the typical morphologies of 2-dimensional deformation as WHORLS
and TENDRILS, the former tight, curling structures wvhich develops when a
line element wraps around the neighbourhood of a stable circulation, the
latter exponentially growing oscillations where a line element evolves in a
more variable region of the flow. Their dye-streak experiments with
concentric, rotating cylinders (Fig.3) feature these effects. Analogous
features can be demonstrated as occurring in the atmosphere - e.g. Fig 4
which reproduces the simulation of a single 1level (2-dimensional) plume
from a source in Cumbria, ’‘released’ in Feb 1988. A whorl is associated
vith a complex low over Scandinavia in Fig 4(a), and tendrils appear to be
in evidence in Figs. 4(b), (c) and (d). These plots also show diffusive
effects, as the component trajectories were randomly perturbed to take into

account sub-grid scale motions.

In summary, over long time scales a plume is distorted by the evolving
synoptic pattern and, as a result of the stretching and thinning of the
polluted air, the area of contact with clear air is increased, allowing the
energy cascade diffusion processes to continue to operate on individual
elements of the cloud. Distortion will generally take over from turbulent
diffusion as the main mechanism for dispersing material in the atmosphere

vhen a plume is about 2 to 3 days old.
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2. Plume growth on regional scales.

The growth of plumes over scales of hundreds of km poses considerable
difficulties for the experimental scientist, but studies have been made
using releases of tracer or, in favourable conditions, plumes from
industrial sources, such as the Mt. Isa smelter in Australia (Carras and
Williams, 1981). Adventitious sources, such as radioactive clouds from
nuclear weapon tests, have also been used. Such experimental results as
are available have been studied in great detail in the light of theoretical
predictions. It is necessary to contrast the spreading of a puff about its
centroid (or an instantaneous plume about its centreline), RELATIVE
DIFFUSION, with that of the time-averaged plume (which reflects the
meandering of the plume). Batchelor (1952) investigated puff-spread by
considering the separation of pairs of particles. He concluded that where
the time elapsed was sufficiently large for the distance between the
particles to have ’'forgotten’ the initial value, but not large in relation
to the scale of turbulence, then the variance of the separation

i) = Bt (1)
The time-averaged plume does not expand at the same rate as a puff (whose
expansion increases with puff size as progressively larger scale motions
become engaged). Taylor’s classical (1921) statistical theory, which
assumes that the absolute velocities of individual particles are
independent (clearly inappropriate for a puff, but applicable to a
time-averaged plume) gives the well-known asymptotic result for large t:
o?(t) = 2viT,t = 2Kt, (2)
the ’parabolic’ plume. 1In (2), v? is averaged over the time of travel and
K is an eddy diffusivity. Gifford (1982,1984) has obtained both these
results as limiting cases of his ‘random force’ theory for relative

diffusion. He solves the standard Langevin equation

g% . 12 BET) vet) 4 n(t) (3)
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(taken from the theory of Brownian motion, and extensively utilised in
dispersion modelling) which expresses an instantaneous change in velocity
as the sum of a correlated component R(t)v(t) and a random impulse n(t), to

give
0,(t) - 6(0) = 2vI2[T - (1-e"T) - %(1-e77)?] (4)

wvhere T = t/1,. There are certain conceptual difficulties attached to
Gifford’s specification but for large t (4) reduces to (2), implying that
at large times relative and absolute diffusion approach a similar value:
the instantaneous puff and time averaged plume both, presumably, have
engaged the bulk of the scales of diffusive motion. For t small but not

too near the source, (4) reduces to
o?(t) = 2/3.v%/1,.13 (5)

which is similar to (1). An identical result to (5) was, incidentally,
obtained by Smith (1968) using his more stringent theory of conditioned
particle motion which considers the release of puffs with the same initial
velocity v(0) and an exponential shape for the autocorrelation, R(T).
Gifford deduces that t3/? plume growth (5) begins at about t = 0.1t, and

that a transition to t!/? growth (2) occurs for t around 5 - 10 times Ty

Fig.5 shows a range of estimates of plume spread, o, (from Hage and
Church, 1967), with an empirical fit (solid line); in fact equation (4) is
very close to the fitted line. However, Gifford’s analysis of the Mt. Isa
data (Fig.6) shoving a region of accelerating (t3/2) diffusion from 2 to 10

or more hours may not convince everybody.
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For the enstrophy cascade range Lin (1972) has argued from similarity

reasoning that particle pairs will separate in an exponential fashion, i.e.

o(t) = exp[2t/T] (6)

where T is a time constant for diffusion in this range. However, (6) must
be taken as an extreme simplification for the highly irregular deformations
that occur in the k™® region. It may, perhaps, be applicable in some
ensemble average sense, as Morel and Larcheveque (1974) found from the
separation of series of balloons released at 200mb. This isnot, .of
course, a strictly diffusive process. At 1low wavenumbers, beyond the
enstrophy cascade region, the spectra (Fig.1) depart from the k~* slope.
Morel and Larcheveque (1974) found that on these very large scales balloon
pairs separated at t!/2, at a rate governed by a global-scale diffusivity,

K, = 2x10° m?s™!. This compares with representative values for K in the

vit, = et?) of about 2x10* m?s7!.

energy cascade (where K = 5

Long range plume spread over the sea seems to be less than that over
the land - see Crabtree’S (1982) results in Fig 7 from Pasquill and Smith
(1983). This may be attributed to the uniform surface (meso-scale motions
are less in evidence) and perhaps to a greater incidence of stable

stratification.

3. Practical difficulties in simulating the transport and dispersion of

pollutants.

An accurate representation of the mean wind is, of course, of first
importance when simulating plume transport. Either observations or the
vind as resolved on the grid of a Numerical Weather Prediction (NWP) model
can be used. Observations may be sparse in space and/or time, wvhile
modelled winds, strictly grid-volume means, subject to the smoothing and

inaccuracies of the analysis process and perhaps less representative of
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real terrain and conditions. In either case a good deal of interpolation

is wusually required. The advecting wind may be single-level (e.g. on a
pressure surface or a mean boundary layer wind), or trajectories in 3
dimensions, or on isentropic surfaces. Trajectories derived from NWP’s can
be subject to error of various kinds, including systematic errors
associated with the particular model or resulting from the choice of level
used to simulate the trajectory. Comparisons of model trajectories with
those of low-level tetroons (Hoecker, 1977) and with tracers (Haagensen et
al, 1987) suggest a mean divergence of about 12° from validation. If
forecast wind fields are used, further inaccuracies are involved - these
are discussed and quantified in Maryon and Heasman (1988). Most NWP’s of
course, fail to represent properly the mesoscale motion systems which can
be generated, for example, by land/sea juxtapositions or orography, or
other changes in surface topography, type and roughness, which can
influence the transports or the diffusive process. One advantage enjoyed
by the long range modeller, however, is that the effects of the ensemble of
small scale motion syétems encountered over a track of hundreds or
thousands of km will tend to undergo considerable blurring and smoothing,

with individually little impact on the mature plume.

The mean vertical motion of the air can have a critical effect upon a
trajectory, particularly near a region of marked mass ascent, such as a
front. A 2-dimensional trajectory entering a region of horizontal
convergence, such as this, can ’stagnate’ and the apparent concentration of
a pollutant in the boundary layer (which might, for example, have been
computed using the area of a simulated plume segment) show a spurious
increase. The conservation of area can only apply with strictly

2-dimensional motion systems.
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Plumes can be laterally spread by wind shears in the vertical. Within
the boundary layer the turbulent motions will convey parcels up and down so
that they experience the wind at all levels - the plume centreline responds
to a mean boundary layer wind. Above the boundary layer material extended
in the vertical can be fanned out, as illustrated in the plume simulation
in Fig.9(b). Should a developing convective boundary layer extend into
such a region, material is quickly brought down to what might be a
previously unaffected surface - a process analogous to plume ’fumigation’.
Material can also be vented out of the boundary layer by convection - e.g.
in cumulus clouds, which can ’vacuum up’ pollutants, carrying them up into
the free troposphere and releasing them in the dissipation stage. Frontal

cloud may do this on a large scale.

It is clear from the foregoing that the static stability of the
atmosphere, the diurnal changes in the boundary layer depth, and associated
shears (including the ’nocturnal jet’ which can develop above the stable
night-time boundary layer), all influence the transport and spread of

pollutants, and their treatment requires careful consideration.

There remains the problem of accurately estimating the strength (and
sometimes position!) of the source of the pollutant, and its profiles in
time and space. Loss processes also have to be parametrized. The latter
include the flux of material to the surface in dry air (dry deposition)
vhich may or may not involve gravitational settling, and the removal of
pollutants in rainfall. Wet deposition processes are of profound
importance, witness the acid rain problem and the washout of radioactive
species following the Chernobyl release. Radioactive decay can be treated

as a loss process.
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4. Long range transport models.

Space permits only a brief summary of the methods wused in the
multitude of models developed to simulate the transport and dispersion of
pollutants.

Eulerian models:

An obvious approach is the diffusion equation

3o+ U3 ey VR = HIKE e FHIKE e FIKE) ™
(standard notation, ¢ is concentration) which can be incorporated in
operational NWP models. These can, in principle, hold all the evolving
3-dimensional motion fields and meteorology (including a more or less crude
representation of the boundary layer). However, a model with a grid
spacing of many km cannot be satisfactorily employed around a source region
and early plume of perhaps a few tens of metres in width - there is an
inevitable spurious diffusion. In addition, it is not easy to specify the
vertical exchange coefficients, while it can be difficult to follow
material emanating from specific source locations. There are variations on
the Eulerian theme which to some extent surmount the computational
difficulties: Fourier transforming the concentration equation into
spectral space (e.g., Prahm and Christensen, 1977) can control the grid
diffusion. Other workers (Egan and Mahoney, 1972) have developed models

which conserve the low order moments of the concentration distribution.

Higher order closure models have also been applied in the solution of
(7) (Enger, 1983).
Lagrangian models:
One alternative is to compute Lagrangian trajectories wusing observed or

modelled winds, either by simply integrating

&x
5 Ay

or by using more sophisticated integration schemes (some Met Office
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trajectory routines employ a 5th order Runge-Kutta technique). The u,
generally require interpolation in time and space. The trajectories can be
used to advect consecutive ’puff’ centroids, or used to develop a plume
centreline - in either case an empirical spread must be parametrized to
allow the puffs or plume to expand, e.g. as t'/? or x°-®7% (the latter an
empirical but consistent result over land - see Fig.7). Plume meandering
and the relative diffusion are sometimes (e.g. for the meso-scales) dealt
with as separate components. These models are very economical for

computation and storage.

The Met Office ’'Basic Model’ developed for the national response in
the event of another nuclear release such as Windscale or Chernobyl, is a
2-dimensional centreline model (using Fine Mesh winds) in which the plume
is empirically expanded and divided into hourly segments (Fig.8). The
segments are sub-divided across the width of the plume and, after a day or
two, the segment vertices are advected individually as deformation takes
over from turbulent spread as the key mechanism of dispersal. The ’Main
Model’, currently being developed for the same purpose, is multi-layered
(to allow for macroscopic shear) and of ’Monte Carlo’ type - the plume is
represented by large numbers of particles which are released from the model
’source’ and advected in the 3-dimensional wind field. Sub-grid scale
motions in the boundary layer are accounted for by the addition at each
timestep of a random contribution (from a formulation similar to (3)) to
the horizontal wind components, and then random re-assignment in the
vertical so that winds are sampled at all levels within the boundary layer.
A mass of pollutant or measure of radioactivity is associated with each
particle, which is progressively reduced by the processes of deposition and
radio-active decay. Air concentrations are computed each hour, due weight
being given to the position of the particles at each intervening timestep.

Examples of the output are given in Fig.9.
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A vide range of Lagrangian models 1is described in Chapter 7 of
Pasquill and Smith (1983).
Particle in cell (PIC) models:
First formulated by Sklarew(1971), these also represent a plume by
Lagrangian mass particles, which are advected through a network of
grid-cells. Each particle contributes to the mass and hence concentration
in a cell either by its location within the cell or, by treating the
particles as puff centroids, computing the overlap of puffs with cells. A
'fictitious total velocity’ is used for advection:

v = v+ (K.%)/c

where v is the mean velocity and the right-hand term a turbulent flux
velocity which depends upon the concentration gradient (or equivalently,
the change in density of the particles).
Mass-consistent models:
These models are perhaps most applicable to moderate sized regions. They
attempt to obtain a realistic wind field over realistically defined
orography. Assuming incompressible flow they conserve mass within the
volume of integration - the wind components are adjusted using variational
analysis to ensure non-divergence of the 3-dimensional wind field. The
typical integral for minimization (using the standard Euler-Lagrange
formulation) is

I=J,[u-u)? + 2(v-v®)? + ad(v-v")? +

+ NG+ gy + 5 dxdydz

where u° etc are first guesses obtained by interpolation from the
observations, and the o, relative weightings for the horizontal and
vertical components. The wind is calculated throughout the model domain
and the method is considered economical in comparison with NWP
integrations. (Sherman (1978), Barnard and Vegley (1987)).

Statistical models:
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Many models are not event orientated, but are designed to produce long-term
concentration patterns or regional emission/wet and dry deposition budgets.
These may utilise climatological wind-roses and straight trajectories
combined with a probabilistic or stochastic description of rainfall. Many

kinds have been developed; examples are Fisher (1978), Smith (1982).
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FIGURES:

1. Diagram and caption from Gage and Nastrom (1986).

2. Diagram and caption from Tennekes (1978) after Welander.

3(a) Vhorls and 3(b) tendrils demonstrated by Chaiken et al (1986)

- streamlines developed in a fluid between two rotating cylinders.

4. 2-dimensional simulation by particles of a plume ’‘released’ 1200z
4th Feb., 1988 (continuing source). 4(a) 1200z, 7th Feb; 4(b) 1200z
8th Feb; 4(c) 00z 9th Feb., 4(d) 1200z 9th Feb., 4(e) Corresponding
synoptic situation 1200z 6th Feb to 1200z 9th Feb from Weather magazine
Monthly Summary.

5. Diagram and caption from Gifford (1982) (after Hage and Church).
6. Diagram and caption from Gifford (1984).

7. Diagram and caption from Pasquill and Smith (1983), incorporating
Crabtree’s (1982) results obtained over the North Sea.

8. The Met Office ’Basic’ nuclear response model output for a plume

release 1200z 22nd Dec, 1987: 24 hr forecast.
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9. Samples of ’hindcast’ output from the Met Office ’Main’ nuclear
response model, currently under development. Plume release 00z 15th
July, 1988 and continuing - 9(a) boundary layer plume at 00z 17th
July; 9(b) plume between top of boundary layer and 850 mb, 00z, 17th
July; 9(c) significant concentrations-in-air (Bq m %) 1200z, 19th

July.
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F\a ‘ _ Variance power spectra of wind and potential temperature near the tropopause from

GASP aircraft data. The spectra for meridional wind and temperature are shifted one and two

decades to the right, respectively; lines with slopes ~3 and —3%, are entered at the same relative
coordinates for each variable for comparison.

F"ﬂ ? 2“Sucoasive stages in the evolution of a patch of dye
being advected around on the surface of a pan filled with

liquid (after Welander, 1955). The original pictures were
redrawn with a fairly wide Leroy pen in order to simulate the
effects of a small, but finite, diffusivity.
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Lessons from the dispersion and deposition of debris from Chernobyl

F.B. Smith
Meteorological Office, Bracknell

Summary

Activity escaped from the wrecked reactor at Chernobyl for 10 days and spread over most of Europe. Part of the debris crossed
Britain a week after it was emitted. Heavy thunderstorms and a northward-moving cold front washed out much of the radoactive
iodine and caesium, especially on to the upland areas of North Wales, northern England, south-west Scotland, and Ulster. Several
lessons have been learnt, including information on the dry and wet removad ‘rates. These Iessons are discussed in this paper,

1. The accident

The release of radioactive debris into the atmosphere from Reactor 4 at the nuclear power plant at
Chernobyl in the Ukraine was the most serious in the history of the civil nuclear industry.

The disaster started in the early morning of 26 April 1986 during a rather special expériment. The aim
was to test the safety of the reactor should two breakdowns occur simultaneously: firstly should the
steam from the reactor suddenly fail to reach the great turbine generators and secondly should the
supply of electricity from the national grid to the turbines be cut off. The question then was: would the
mechanical inertia of rotation of the turbines be sufficient to generate enough electricity to keep such
vital components as the pumps working within the reactor for up to 50 seconds before stand-by diesel
generators could be started and take over the necessary supply.

In fulfilment of this experiment the power of the reactor was brought to well below 20% of normal
power in spite of the fact that the particular design of/reactor at Chernobyl was known to become
potentially unstable at such low levels. At 0123 local timé this iristability was realized and the reactor
accelerated from a small fraction of full power to 100 times full power in just 4 seconds, causing an
explosive generation of steam and the rupturing of pipes and protective shielding. The core was now
exposed to the air and rapid chemical reactions resulted causing a second explosion. The reactor
building was destroyed and burning graphite and core debris were spewed out over the site and into the
atmosphere.

The loss of radioactive material to the atmosphere persisted for nearly 10 days in spite of valiant
efforts to seal the reactor with about 5000 tonnes of material dropped from helicopters. Roughly
2 X 10" becquerels of activity were released into the air during this period, about a third of which went
out in the first few hours. (A becquerel (Bq) represents one atomic disintegration per second.) Debris
released in this early period was very hot and rose 1 or 2 kilometiresinto the atmosphere. Later emissions
were much cooler and travelled largely within the boundary ‘layer over long distances except when
advected upwards at fronts or in large convective clouds.
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2. The spread of debris over Europe

At the time of the explosion a ridge of high pressure was centred over north-west USSR (see
Fig. 1). The wind circulation associated with this ridge carried the upper part of the plume away towards
the Baltic Sea and Scandinavia. Nearer the ground, the nocturnal clear skies had resulted in the
development of a 500 m deep surface-based inversion. This inversion, whilst not preventing the
sedimentation of the larger particles in the airborne debris, helped to insulate the local population from
the downward diffusion of the inhalable small particles which could have caused a great deal of damage
within people's lungs.

Once the plume reached Scandinavia, it split into three ‘fingers’. One moved away to the east across
northern parts of the USSR into Japan and China. A second finger, caused by a jet ahead of the cold
front of an active depression, crossed central Norway and the Norwegian Sea and moved towards North
America. Heavy rain which affected this finger on 28 April resulted in very large depositions of activity
in central Scandinavia which contaminated the lichens and mosses, the main diet of the Lapp reindeer. A
third finger moved south-westwards in response to a transient ridge of high pressure which followed the
depression across north-west Europe. The finger moved across central Europe and the Alpine areas into
France and then turned northwards, entering the United Kingdom in the early hours of Friday, 2 May.

3. Passage over the United Kingdom

The passage of the debris over Britain makes an interesting story which can only be summarized here.
A fuller description is given in Smith and Clarke (n.d.). Beautiful warm spring weather on Friday, 2 May
experienced over much of Britain was soon replaced by wet and stormy conditions on the Saturday and
Sunday as a depression to the south-west of Cornwall deepened and an associated cold {ront moved into
the country. Additionally, the warm air moving in from France ahead of the front became increasingly
unstable and thunderstorms developed over the south-east of England in the early hours of Saturday,
moved fitfully north-westwards and caught up the main body of the cloud of debris over North Wales
and northern England. These storms drew great quantities of contaminated low-level air into their
systems causing considerable rainfall and heavy depositions, particularly in Snowdonia, the Skipton
area of Yorkshire, Cumbria, the Isle of Man, Ulster and south-west Scotland. Parts of the radioactive
cloud were drawn off to the west across Ireland by the circulation of the depression, but most of the
debris continued to move northwards, the tail of the cloud eventually leaving the northernmost parts of
Scotland by the end of Sunday. However, small traces of activity were detected later in the subscquent
week as parts of the debris drawn off by the depression recrossed the country. Some of these features can

be seen in Fig. 2.
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4. Deposition of hazardous nuclides

The cloud of debris contained a host of different radio-nuclides originating from the reactor. Froma
health point of view the most important of these were iodine-131, a short-lived isotope which gets into
milk and then into human thyroids, caseium-134 with a half-life of about 2 years, and caesium-137 witha
half-life of 30 years. The caesium isotopes can accumulate in the human body and, like the iodine-131,
can cause cancer. Nevertheless, the risk of this is very small indeed and, except in the most heavily
contaminated areas around Chernobyl itself, increases in cancer incidence within the population are
likely to prove undetectable. The main pathway for these isotopes into the body is through foodstuffs
and not by direct inhalation. Consequently the activity has to be deposited first on the ground. This
deposition arises not just from the ‘cleansing’ action of rain, a process generally termed ‘wet deposition’,
but also from dry deposition — the combined effect of sedimentation of large particles under gravity, of
impaction of particulates and aerosols on leaves (etc.) and absorption of reactive gases by the soil and
vegetation.

Dry deposition depends on the product of the concentration, C, of the material close to the surface
and a so-called ‘deposition velocity’ vq:

Dry deposition = v4C.

By comparison with wet deposition, dry deposition is rather slow; just | mm of rain can remove more
material than can dry deposition operating over 24 hours. However, dry deposition is an almost
continuous processes whereas wet deposition is usually very intermittent. Consequently in the
deposition of acidifying species (in the acid rain problem) dry deposition is more important than wet
deposition except in a few very wet areas of Europe like the Norwegian mountains.

In the Chernobyl debris, iodine-131 was partly gaseous in form and partly particulate. The gaseous
component dry-deposited some eight times more rapidly than the particulate component. This can be
inferred from the relative concentrations and depositions of both particulate caesium-137 and iodine in
areas where no rain occurred (on the assumption that particulate iodine deposited as efficiently as the
caesium). :

The wet removal is assumed to follow the simplified expression:

Wet deposition = wCR.

where Cis the average concentration in the air during the rain, Cis the rainfall expressed in millimetres
and w is an empirically determined coefficient. Units of concentration are becquerels per cubic metre;
units of deposition are becquerels per square metre. Based on measured depositions and air
concentrations the following values of vand w have been inferred:

Iondine-131, gaseous: v¢=0.4 cms™', w= 490

particulate: v = 0.05 cm s » w = 650
Caesium-137, particulate: v4 = 0.05 cm 5™, w= 650.
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S. Rainfall over the United Kingdom

In the first few days and weeks following the passage of the Chernobyl debris over the United
Kingdom the only rainfall data available in sufficient detail were from the weather radar output,
Although the radar coverage at that time only covered England, Wales and the most southern parts of
Scotland the picture provided was extremely useful and sufficiently accurate to pinpoint the areas most
likely to have been significantly contaminated by deposition. By July 1986 enough surface rain-gauge
data had become available for a reasonable rainfall map for the whole of the United Kingdom to be
drawn up, although it was not until late September that a complete quality-controlled map could be
prepared. Fig.3 shows this final rainfall picture. The values represent the rainfall which actually
intercepted the radioactive cloud. Two points are of particular interest: firstly the convective storms
resulted in narrow but very elongated ‘footprints’ of rainfall; secondly it is clear that the strength of the
storms responded in a quite dramatic way to the nature of the terrain over which they were passing.
Level uniform countryside tended to weaken the storms whereas large cities like London, mountains,
and stretches of sea like the Solway Firth, rapidly strengthened them.

6. Total depositions

Fig. 4 gives the estimated deposition map for caesium-137 over the United Kingdom using the
deposition parameters given above in conjunction with the rainfall data implicit in Fig.3 and the
assessed concentrations of caesium-137 in the air. The levels of deposition vary enormously over the
country and the highest reflect the areas of heaviest rainfall. The maximum estimated deposition is in
excess of 30000 Bqm™ near Whithorn in Dumfries and Galloway. These depositions and the
corresponding ones of iodine-131 can be integrated over the whole of the United Kingdom and
compared with the estimated emissions from Chernobyl:

lodine-131:  Total deposition on the United Kingdom = 2 X 10" Bq,
Deposition as a fraction of total emission = 0.7%,
Deposition as a fraction of first day’s emission = 29,

Caesium-137: Total deposition on the United Kingdom = 3 X 10" Bq,
Deposition as a fraction of totak emission = 0.8%,
Deposition as a fraction of first day’s emission =3 %,.

The depositions are compared with the emissions on the first day of the accident because trajectory
analyses indicate that the debris that crossed the United Kingdom was emitted in a roughly 2-hourslot in
the late morning of 26 April. Itis interesting that a higher percentage of the caesium emission than of the
iodine emission on that day was deposited on the United Kingdom; this can only be because the iodine,
being partly gaseous, had lost more en route by dry deposition before reaching this country.

Caesium-134 is believed to have behaved in a very similar manner to caesium-137, and in fact was used
to distinguish deposited caesium-137 arising from Chernobyl from that previously in the ground which
had its origins in the weapons tests of the 1950s and 1960s. During the passage of the Chernobyl debris
the concentration of caesium-134 was typically just over half that of the caesium-137. Consequently the
total caesium-134 deposition on the United Kingdom is inferred to be about 1.5 X 10" Bq.
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7. Agricultural effects

The consequences for agriculture in the United Kingdom were only of real significance in sheep
farming. In all other areas levels of activity were well below the emergency reference levels set by the
Government (except for some game birds and freshwater fish in limited parts of south-west Scotland).
Unfortunately many upland sheep-farming areas were affected by relatively heavy depositions of
caesium-137, and this has led to restrictions on the movement and slaughter of sheep on farms where
levels in excess of 1000 Bq kg have been recorded. To make matters worse, levels have changed only very
slowly on some of these farms in contrast to the more rapid decline observed in many lowland areas. The
important element appears to be the nature of the soil. Soils rich in clay minerals rapidly lock in the free
caesium so that it becomes unavailable to the vegetation. Poor acidic soils typical of many upland areas
are unable to do this and.the caesium cycles through the uppermost humic layers of the soil and the
vegetation so that its availability to grazing sheep falls off only very slowly.

8. Summary of the lessons of Chernobyl

A new perspective has been gained from the terrible accident at Chernobyl. This will be invaluable in
the preparation of new models now under way in the Meteorological Office and elsewhere, and in the
design and operation of monitoring networks and other procedures for use should another major
accident every occur in the future. This perspective can be summarized through a listing of so-called
‘lessons’. Limiting these to those with some meteorological interest, they may be subdivided into three
categories: lessons regarding transport in the atmosphere, lessons regarding deposition and lessons for
agriculture. :

8.1 Transport and dispersion

(a) Synoptic-scale deformation: Close to the source, the plume probably behaved very much like a
conventional plume from a factory chimney, growing under the action of three-dimensional
; .. --turbulence in a quasi-conical manner. When the width of the plume exceeded 100 or
200 kilometres, the synoptic variations of velocity became dominant and the plume then grew
through deformation as decribed by Gifford (1987).

(b) Wind shear in the vertical: Changes of wind speed and direction with height through the plume
were principal factors, in diluting the concentration within the plume, especially when deformation
became dominant. Dilution occurs when shear is coupled with vertical mixing, either concurrently or
successively through a diurnal cycle.

(c) Correction of trajectories using radiological data: Although it appears that most trajectory
analyses carried out on the Chernobyl release have been reasonably successful in predicting the
spread of the debris over Europe, it is almost certain that individual trajectories starting from
Chernobyl at the same time differed significantly at long range and the apparent overall success
simply reflects the very variable meteorological situation during the whole release. In other
circumstances, differences might be more obvious. Radiological reports of activity would then be
invaluable in optimizing the information that models are capable of giving. Fig. 5 shows the output of
the Meteorological Office’s basic Monte Carlo model simulation of the Chernobyl accident at four
different times in apparent good accord with the known movement of the debris. This agreement has
been optimized to some extent by judiciously selecting the best wind level in the light of radiological

data.
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8.2 Deposition
(a) Atmospheric stability at the source: Large releases will u

sually be hot releases and much of the l

airborne debris will rise away from the surface. How far is rises will depend critically on the stability
of the air, and this will have consequences for the subsequent transport and deposition of the I
material. As seen earlier, a stable surface layer can protect the local population from much of the

small inhalable particles and radioactive gases.

(b) Deposition rates for differing species: Washout rates and dry deposition velocities will diffcrl

significantly from one species to another, and these
if model output is to be of real value.

need to be well known in advance of any accident

(c) Convective rainfall and deposition shows banded structure: As evident in Figs 3 and 4, rainfalll

and deposition resulting from the thunders

torms during the passage of the Chernobyl debris over the

United Kingdom were banded in narrow elongated ‘footprints’. Interpolation between measurements,

of caesium-137 (for example) on grass or in soil
along-wind weighting and not with simple circular weighting.

8.3 Agriculture
(a) The importance of wet deposition: The Chernobyl accident has emphasized how much more
efficient wet deposition is compared with dry deposition whenever rain occurs. Agriculturists wishing
to monitor levels of deposition rapidly should therefore concentrate initially on areas where
significant rain intercepted the debris. Quick help for this can be obtained from operational weather
radar as long as the debris” movement is roughly known from models or from monitors in the field.
(b) Retention on vegetation: In areas where little or no rain occurred most of the deposition was
through dry deposition and a high percentage was retained on the vegetation available to grazing
animals. In areas of significant rain the total deposition may have been much higher but retention on
the vegetation appeared to have been only some 10-259% of the deposited particulates, and very small
indeed for the gases. This effect was very evident in the levels of iodine-131 in milk: levels in
comparatively dry areas were not dramatically smaller than in wet areas for these reasons (Clark and
Smith 1988).
(c) Theinfluence of soil type onlong-term effects: As seen from the aftermath of Chernobyl, soil type
can critically influence the duration of the continued contamination of foodstuffs and grazing

animals.
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