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'INTRODUCTION

This paper describes the basic formulation of a meso-scale
numerical model of the planetary boundary layer, outlines the
progress that has been achieved so far and discusses proposals

for the future development and use of the model.,

After several years' experience with the Bushby-Timpson fine
mesh 10-level model (Benwell et al, 1971) it has become clear
that, although such finite difference models are able to
predict the broad structure of certain sub-synoptic scale
phenomena, a grid length of 100 km is too coarse to describe
the detailed structure and local modification of meso-scale
weather systems. For this reason it has been decided to
develop an experimental limited area model with a grid length
considerably smaller than has been used so far., The model is
designed to forecast ®WesO.gcale flow in the lower troposphere
end its interaction with the planetary boundary layer.

Synoptic scale motion will be introduced by specifying time
dependent lateral and upper boundary conditions provided by the
10-level model, but it is intended that the ' mesv-scale model
itsel f should contain a comprehensive description of the physics

and dynamics of the boundary layer.

Because the eventual requirements of the model are not yet
known, the computer programs have been written in a general
way so that the configuration of the model may be altered
easily without the need for major re-programming. At present
the model has a 20km horizontal grid length and ten unequally



spaced levels confined to the lowest 2 km of the atmosphere,
However the spacing of the levels is arbitrary and may be
altered at will, the number of levels can be changed up to a

maximum of 20 and the grid length may be reduced or increased

as desired. The number of grid points in the horizontal may be also
changed subject to certain computer hardware limitations, With

a 10 km grid an array of about 60x100 grid points is sufficient

to cover the UK, although this would have to be increased to
100x100 to include the whole of Ireland. Most of the experi-

ments 8o far have used a 61x61 array.

On the synoptic scale it is sufficient to regard the atmosphere
as being in hydrostatic balance, but this assumption must be
re-examined when considering flow with horizontal length scales
of only a few kilometres. Examination of the linear theory of
gravity waves suggests that non-hydrostatic effects are signifi-
cant when the horizontal length scale is less than the vertical
length scale. Although the model proposed (with a depth of 2 lm
and a horizontal grid length of 20 km) does not permit such
waves, it may pe argued that the small errors due to the hydro-
static approximation are such as to make the flow more sensitive
to vertical accelerations than would otherwise be the case.
Furthermore effects which depend on the dispersive qualities of
gravity waves (such as the trapping of gravity waves by stable
layers) are represented incorrectly in a hydrostatic model. It
has therefore been decided to retain the full non-hydrostatic
vertical equation of motion. This has the added advantage that
future development of the model to shorter grid lengths and
greater depths (where the hydrostatioc approximation would be

seriously in error) is possible.

The principal difficulty in using the non-hydrostatic equations
is that they permit the vertical propagation of sound waves. The
combination of a rapid phase speed (of order 300 m eec-') and a
emall vertical separation between the levels imposes severe
stability restrictions on the time step for conventional explicit
finite difference schemes. In order to avoid the excessive

amount of computation that such a procedure would require, a

2w



a semi-implicit finite difference scheme has been developed

which treats the main terms responsible for sound wave

propagation implicitly and the remaining terms explicitly.

The stability criterion is then governed by the wind speed and

the speed of internal gravity waves, both of which are considerahly
less than the speed of sound. Gravity waves for example (with
vertical length scales of less than 2 km) have horizontal
propagation speeds of little more than 10 m sec-', even under
conditions of extreme stability. Their vertical propagation
speeds, however, may be of the order of 1 m sec-' and may impose
limitations on the time step if the level separation is small.
With the model described in this paper a time step of 100 secs

is sufficient to ensure stability.,

At the present time initial data for testing the model agre being
obtained by interpolation from the 10-level fine mesh model.
Steps are taken to ensure that the wind and temperature fields
satisfy some sort of approximate balance conditions in order to
prevent the spurious development of gravity or sound waves in the

early part of the forecasts. This is described in section 4.

Considerable difficulty wne experienced, during the enrly attempts
at integrating the model, in the specification of suitable
boundayy conditions. The set described in section 4 is not
regarded necessarily as the best boundary conditions to use, but
they do appear to give sufficiently stable results to enable
integrations to be performed to at least 6 hours. They have been
designed in such a way that changes on the synoptic scale can be
fed into the model from the 10-level model, although in the fore-
casts performed so far all the external tendencies have been

assumed to be zero,

At the time of writing a fully interactive parameterisation of the
surface fluxes has not been included in the model. Section 5
contains a discussion of the proposed scheme. Tests conducted on
observed data suggest that the method - a combination of Penman's
evaporation equation and Clarke's method I (Penman, 1948, Clarke,

1971) - gives reasonable results.
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2.

BASIC EQUATIONS
The basic dynamical equations for the model are the three

equations of motion, the continuity equation and the
thermodynamic equation. Additional equations describing
the transfer of water vapour etc. will be excluded from
the current discussion. The main respect in which this set
differs from those used in synoptic scale modelling lies in
the inclusion of the non-hydrostatic terms in the vertical
equation, The model also uses the height z as the vertical

coordinate rather than pressure,

With the usual notation the three equations of motion are
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where the Lagrangian derivative D/Dt is given by
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and the velocity v is given in component form by v = (u, v,

g 1
W) e V., is the horizontal Laplacian operator. The continuity
equation is

'D_,f»{—(‘v-y:o
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and the thermodynamic equation is
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The only source terms considered at present are those due to
horizontal and vertical diffusion, although additional terms
representing the effects of radiation and cloud physics will
be included at a later date. The equations are somewhat

gimpified if a new pressure variable P is introduced where

P IR
Prilng
and R-‘-Q/C.', R is the gas constant, C, is the specific heat
at constant pressure and 'Fs is a constant reference value of

the pressure. Since the potential temperature © is given by
iy
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the pressure force term (’-'VP may be written as C,-QVP , and Q
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may be eliminated from the continuity equation (4) to give an

equation for P of the form
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It is convenient at this stage to write the variables P and
© in terms of deviations T, and ©, from a steady neutrally
stable state of the atmosphere ¥, (2) and O_= constant, i.e.

P=P@R)+P(,y,2,t)
e: e° i O,(?()kj,z)k>
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We deduce from the hydrostatic equation that R, is given by

PO.: \—Z/H

where we have chosen Pu =] at 2z = 0, and H = <\»Oo}jis a scale

height for the basic atmosphere.

With this transformation, the equations (1) - (5) become
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for H (6+0)) at
These equations describe the rates of change of the three wind

components u, v, w and the perturbation potential temperature
and pressure variebles O, and P, « The absolute temperature
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T may be calculated at any stage from

N = (@0+ 6.><Pu+ ?J

The interesting features of this system are a) the
inclusion of the non-hydrostatic terms in the vertical
momen tum equation and b) the fact that the pressure is
predicted from the continuity equation rather than from a
combination of the hydrostatic and thermodynamic equations

a8 in most synoptic type models,

THE FINITE DIFFERENCE SCHEME

In the current form the model has ten levels set at unequal
intervals in the vertical between 30 m and 2000 m above
ground level, as indicated in Fig 1, The lowest levels

are closer together in order to increase the vertical reso-
lution there. The horizontul grid etructure is given in Fig2.
Pressure and potential temperature are held at the main
levels for each grid point and the horizontal wind compo-
nents are kept midway between adjacent grid points as
indicated., The vertical velocities are stored at inter-

mediate levels midway between the main levels.

Since the fastest waves described by the system of equations
(6) - (10) are sound waves (propagating both horizontally
and vertically), the method of computation must be chosen to
teke this into account. If ¢ denotes the speed of sound and
§% the minimum vertical grid separation (i.e. 50 m) then
there is a stability restriction on the time step for a
conventional explicit integration scheme of the form

St 4 fale 2 0.7 Gl
This is unreasonably restrictive and recourse must be made to
semi-implicit methods in order to increase the integration
time step. The procedure adopted here is to use an implicit
scheme on the terms which involve the propagation of sound
waves, while the remaining terms are treated explicitly.
Provided a reasonably representative yalue of 6, is chosen,
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the speed of sound waves is determined to a high degree of
accuracy by the temperature distribution of the basic atmos-
phere itself, since the departures amount to only a few per
cent. Consequently we adopt a method similar to that des-
cribed by Kwizak and Robert (1971) for the semi-implicit
treatment of gravity waves; that is we treat implicitly
only thoee terms which involve sound wave propagation in the
basic adiabatic atmosphere, while all perturbation quantities

are represented explioitly.

The finite difference approximations are centred in both
space and time, The implicit terms are represented as an
average between time levels (n+l) and (n-1), i.e. the

pressure gradient term ¢, 6. VP 1is replaced by

—7"{ ¢p B0 U [_ p(m')+ P'j and the terms ‘rW/H - ¥R V.y

in the continuity equation appear as .
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The explicit terms are evaluated either at time level (n) or

(n-1) depending on stability requirements., After some

rearrangement the finite difference forms of equations

(6) - (10) may be written
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and Po(l)ie the square of the speed of sound in the
adiabatic atmosphere defined by

Posiclis ¥R 6062
The terms X ,Y ,Z,@ and Q) are given in Appendixﬁfl

oy




If we eliminate §w and §V between squations (11) - (15) we
arrive at the three dimensional partial differential

equation
-~ '

1
¥, M = géa'z i %o ;%1— Pow%ﬂ" F (16)
where F is a function of the variables at time levels (n)
and (n-1) only. The algebraic form of F is given in
Appendix 1. With the values of the variables at time levels
(n) and (n-1) known, the new pressure field at time level
(n+1) can be found by solving (16), and the values of the
wind components J“*”, yE Y e WY asbeewinen Dron
(11) - (13). Since the thermodynamic equation (14) does not
contain terms involved in sound wave propagation it can be

handled in a direct explicit fashion,

The pressures at levels 1 - 9 are obtained from equation
(16) while the pressure at the top level is obtained from
the boundary conditions., If finite differences are substi-
tuted for the bracketed term in (16) we obtain the vector

equation
V, T + AT =F (17)

II is a column vector representing the unknown pressures
at each of the levels and !i is a 9x9 matrix which is the
finite difference equivalent of the vertical differential
operator. The form of the matrix :e s which is given in
Appendix 1, is the same at each &rid point in the horizontal.

Equation (17) represents a set of 9 coupled Helmhol tz
equations to solve for [T « In order to reduce the problem
to one of solving a set of two-dimensional equations we
calculate the row eigenvectors ", and eigenvalues )\; of
ﬂ where 5

L h- n n

If H 4is the matrix of eigenvectors

ti =




then

AR = diag(N2)

By pre-multiplying (17)by H and writing % = HTT
and G = HF we have the uncoupled system

W
o

V:’ ’(‘.+>\‘\(" = (& L;o’(l. 8 (18)

This set of 9 two-dimensional Helmholtz equations can be
solved by ADI techniques. Each equation represents a
different sound wave mode which, because of the linearity of

the system, is separable from the other modes.

The computation may however be shortened by noticing that for
the current model configuration all the eigenvalues except
one Xo (correSponding to the horizontally propagating mode)
are much larger than the eigenvalues of the ‘7L operator,
This suggests that only for this root need the Helmholtz
equation be solved. For the other (vertically propagating)

modes we write
Yo £ 2 5, L e B e

Although this appears at first gight to be an approximation,
we note that since the variable 1! is a second order
difference in time of the pressure 13 s the use of (19)
instead of (18) for the internal sound wave modes simply
results in different expressions for the higher order terms
in the finite difference expansion. Indeed it may be shown
that it is equivalent to treating the uncoupled horizontal
pressure gradients explicitly and the vertical gradients
implicitly (this is discussed further in Appendix 2), The
theoretical examination of the system suggests that it is
stable provided that the overall depth of the model is
sufficiently small compared with the horizontal grid length,
For a model with a larger depth than the present model only
those waves with a sufficiently small vertical wavelength can
be treated by this simplified procedure. This method of
using different finite difference schemes for the uncoupled
modes has many similarities with the selective semi-implicit
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4.

treatment of gravity waves described by Burridge. It

reduces the computational and core storage requirements

considerably since only one Helmholtz equation need be

solved.

The final pressure at time level (n+l) may be recovered by

recoupling the modes using

INITIAL DATA AND BOUNDARY CONDITIONS

a) Initial data,

Since the model is in its early stages of development no
effort has yet been devoted to theamalysis of observed data.
At present, the basis of the initial data is an interpolated

pressure field extracted from the 10-level fine mesh model
output. The various steps used in producing consistent
fields of wind, pressure and potential temperature are as

followss

i) Extraction of geopotentials at the 1000 mb, 900 mb,
800 mb, and 700 mb levels of the 10-level model,

ii)- Representation in the horizontal of the height fields
by a least squares fit in terms of Chebyshev polynomials
(see Appendix 3).

iii) Evaluation of the Chebyshev representation at the
grid points of the planetary boundary layer model,

iv) Interpolation of the pressure vertically (using a
cubic fit) to model levels.

v) Evaluation of the potential temperature field from
the hydrostatic equation.

vi) Solution of the Ekman equations (which express a
balance between the Coriolis, friction and pressure gradient
terms) to obtain the horizontal winds.

vii) Evaluation of the vertical velocity from a balance
equation (see Appendix 4) obtained by eliminating time
derivaties between the thermodynamic and continuity equations

2 (0r39)- 0

=10~

and the equation



(v) and (vii) ensure that vertically propagating sound waves
are filtered out during the first time step, while (vi)

gives an approximate balance condition between the horizontal

wind and the pressure fields.

b) Boundary conditions,

Although it is eventually intended to feed in tendencies at
the lateral and upper boundaries of the model using results
obtained from the 10-level model, the test integrations
performed so far have used zero tendencies. At present the
normal wind component is specified 2t all points round the
latersl boundary and the tangential wind component, the
pressure rnd the potenllal temperature are specified ot
inflow points. At outflow points the potential temperature
changes are calculated by upstream advection, while the
tendencies of the tangential wind and the pressure on the
boundary are set equal to the values of the tendencies one
¢rid point inside. The horizontal diffusion coefficient K
is also increasedin a zone 3 grid lengths wide round the
boundury. At the bottom of the model the vertical velocity
is set equal to zero (in the absence of tOpography) and at

the upper level all variables are held constunt,

PARAMETERISATION O} THE SURFACE FLUXES

Near the earth's surface vertical gradients tend to be large
and the structure of the atmosphere is dominated by turbu-
lent diffusion. In this section the proposed representation
of the surface layer is discussed, The lowest 30 m are
parameterised as a 'constant flux layer' which is assumed to
adjust instantaneously to changes in external parameters,
and whose bulk tendencies are ignored in the energy and
momentum budgets. The method discussed below for determin-
ing the vertical fluxes of heat, moisture and momentum in
the surface layer is a combination of Clarke's method I
(Clarke, 1970) and Penman's evapo-transpiration techniques
(Penman, 1948, Monteith, 1964). Tha procedures over land
differ from thoseover the sea and will be dealt with

separately.,
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a) Surface fluxes over land,

There are five equations used to describe the transfer

processes in the surface layer

(i) the surface evapo-transpiration equation

A
E. 2 P . e S (20)
Vg
(1i) the momentum flux equation
T. = ¢ Gy (21)

(1ii) the heat flux equation

H. == p& Cyu, (B,-60) (22)
(iv) the water vapour flux equation

E.= = ¢Suwly,-9,.) (23)
(v) the radiation balance equation

Rl =l v LB (24)

where R, is the net radiation, G 1is the heat flux into
the ground and | is the latent heat, The subscript O
refers to ground level and the subscript 1 refers to the
first level of the main planetary boundary layer model
(i.e. 30 m). @ is the saturated specific humidity at the
surface. It is related to the saturated value at level
g %} y by the approximate form of the Clausius-Clapeyron
equation

A R

q=3 L oe & [ am) ]
where

Nz e Wik

R

Assuming for the present that the drag coefficient Cp and the
heat (and moisture) transfer coefficient C, are known,then the
five equations are sufficient to determine the three surface
fluxes 7, , Ho and E, together with the surface temperature
T. and humidity 9, in terms of (Ry-G) and values of para~
meters given by the finite difference model at level 1.
After some algebraic re-arrangement we obtain
T-To= A lh- Do ncnndith st eyt 0

2,0 +[1 +rcuu]ee/L
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0,-6, =T, -To + 3(?."lo)/fr (26)
3,- 9, = ~p(0,-0) L = (Ru-6)[eCuwL (27)

The parameter v, appearing in equation (20) is known as the
surface resistance (measured in units of secs cm—'). It is
essentially a function of the leaf structure of the plants and
has a large diurnal variation, with a minimum during the day and

a maximum at night when transpiration virtually ceases.

In order to assess values of v, for each grid point, the type of
surface has been extracted every 3{/3 km over the UK from % inch
Ordinance Survey maps according to a four fold categorisation:

1) towns, 2) woods, 3) open countryside 4) water. The results,
which are shown in Fig 3, can be used for estimating the

fraction of a grid square covered by a particular type of surface.
Measurements (see Monteith, 1964) suggest a minimum day-time
value of the surface resistance for most crops and grasses of

' end a value of 1,0 secs em~' for pine forests,

about 0,3 secs cm”
Little is known about the influence of %owns and one must guess a
value from an assumed proportion of vegetation within the urban

-1
area, say 10 secs cm .

The method of using this information in the model has not yet
been finally agreed but it is suggested that for the land cate-
gories 1) - 3) we form a composite surface resistance R;

1
o 55
R& z C e

) }
where ©. and ¥,. are the fraction of a grid square and the value
of the surface resistance appropriate to category i. Where part
of the grid square is covered by water we may perform the cal cu-
lation as before for the land part of the grid square, but then
augment the evaporation by writing

E g B Kkl w gty i) (3,-3.) 2

total
where 4, is the fraction of the grid square occupied by water,
When the entire grid square is covered by water it is assumed
that the fetch is sufficient to allow a different turbulent
regime to be established and this is discussed in the next
subsection,

g A




These calculations lead to a value for the potential evapora-
tion - that is the evaporation which would occur if an ade-

quate supply of soil moisture were available to the plants,
In general the evaporation depends on the soil moisture
deficit, and this can be taken into account, as suggested by
Priestley and Taylor (1972), by multiplying the potential
evaporation by an empirical function of the water content of

the ground,

b) Surface fluxes over the sea.

Over the sea the air is assumed to have the same temperature
as the sea surface and be saturated at that temperature,

Four equations are used to desoribe the surface fluxes

(1) Charnock's equation

72, = ol T /ey
(ii) the momentum flux equation
‘Y, = (') Co “l\

(111) the heat flux equation

Ho = ,()C,,u, (e,-0.)
(iv) the water vapour flux equation

Eo = —(’CH“. (“l«,‘ao)

Charnock's equation, which relates the roughness length z, to
the surface stress, is intended to describe the changes in
the nature of the sea surface under different atmospheric
conditions. However it is essentially a hypothetical
relgtionship based on dimensional arguments and there is
considerable disagreement about the value of the empirical
constant X ,

¢) The determination of the drag and heat transfer
coefficients.

The assumptions of similarity theory for the constant flux
layer lead to relationships between vertical gradients and



vertical fluxes within the layer. Integrated throughout
the depth of the surface layer they become

- " A @ E) c)?

G = J k2 "k‘- (28)

Z>

. ?
-1 e Qs ——><)2

Cy Co = ]' k3 éhK‘— (29)

r Y
where | = C‘;llc:/bs , R is the Von Karman constant and

S is the bulk Richardson number defined by
¢ &
S: j?l[<el“eb)/9| + '6'(1')‘?'0)]/M'

Using empirically derived functions Q)h and @,, we may solve
the simultaneous equations (28) and (29) numerically to obtain

CD: CQ(Y)$>
Cuw = Kn (V)g)

where v - los(%,/a.) « Values of Cp and Cw have been
tabulated in the computer as a look-up table, where the
function E[’h and @, have been taken as theRabb-Dyer-Clarke
combination used by Clarke (1970). The variation of the
roughness length over the UK can be assessed from the esti-
mated values of the neutral geostrophic drag coefficient
obtained by Carson and Smith (1974) for 10 km squares

on the national grid.

Since both ¢p and ¢, depend on (©,- ©.) and (‘L,'CL‘), an
iterative procedure is required to solve equations (25) - (27)
for the surface temperature and humidity., A similar iterative
procedure is required over the sea since ¢p and C,, are also
functions of 2, . However it is probably sufficiently
accurate to use the values of <o and Cu for the previous
time step in equations (25) - (27) and then to calculate new
values of Cp and Cu consistent with the derived surface
temperatures and humidities for use at the next time step.
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DISCUSSION

All the integrations performed so far have been tests to
prove the viability of the dynamical system and the

numerical scheme, rather than experiments to examine meteoro-
logical phenomena themselves. Fig 4 shows the variation of
“W,V, P and © at level 1 and W at level 5 for an
arbitrary grid point during the first 24 hours of an inte-
gration using a grid length of 20 km and a time step of

| and

100 secs. Constant values of W = 2.5 m * sec
K = 5x101 m’ seck‘ have been used (except near the

boundary where K is increased to leOQ )o Ky has been taken

to be zero.

The initial adjustment, which is most noticeable in w« and

V » appears to be quite rapid, suggesting that the initial-
isation procedure described in section 4 is8 adequate, Other-
wise the variations are quite smooth although there is an
indication of a 30 min oscillation in the wind field. A
detailed examination of the vertical velocities however
reveals a small amplitude oscillation (about 0,05 em eec")
with a period of 4§t. The analysis of appendix 2 suggests
that this consists of truncated sound waves whose frequencies
are too large to be represented accurately in a model with

a time step of 100 secs. The variation of the wind hodograph
at an arbitrary grid point is illustrated in Fig 5. The Ekman
spiral shape is maintained and there is no evidence of rough-
ness developing in the vertical except near the top where the
maintenance . of constant boundary conditions has led . to the

development of large shears.

The next slnge in Lhe development of the model will be to
include a fairly comprehensive parameterisation of physical
processes. These include (i) the variation of Km and Wi
with height and the matching of the fluxes in the main model
to thosein the constant flux layer, (1ii) the physics of cloud
and rain, (iii) a radiation scheme, and (iv) topographic
effects,
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Some progress has been made on the design of a scheme for
including topography by using the height above ground level
(z = H) as the vertical coordinate instead of z. The topo-
graphic height over the UK has been extracted from Ordinance
Survey 4 in maps every 3 1/3 km and this has been used to
provide mean values for each grid square (Fig 6).
Difficulties are likely to arise due to the steepness of

the slope in some parts of the country,

Methods of parameterising radiation, cloud physics and
vertiocal fluxes have not yet been decided on, though several
methods have been suggested in the scientific literature,
for example the parameterisation of cloud physics used by

Miller and Pearce (1974) in a dynamical model of a
cummulo-nimbus cloud.

It is intended to use the model in the first instance as a
research tool to examine particular cases which have been
the subject of intensive field study - for example sea
breezes, mesoscale structure of fronts, lee waves. In
addition the model may be used to investigate simple artifi-
cial flows in order to tie up linear theory with finite
amplitude development, leading to a better understanding of
the type of meso-scale phenomena which may arise. This is
a necessary preliminary step before meso-scale effects may
be parameterised in synoptic scale and general circulation
models. The ultimate use of the model as a forecasting
tool is a long way off and it would be wise to assess its
performance before commenting on its operational
possibilities.
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APPENDIX 1

The terms X , VY

’ Z y (@ , and @ which eppear in the
finite difference scheme givem in section 3 are
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PRV, 2 (ke 2 ) ]

M- .53

")
y = 2§t [‘fu‘"’— V" (0, + 8") ¢p 2P
; # . (CERD]

FRVh Q(Kﬁs“ ) |

It ot

7 =9 §t [96] /ooy TW"

r KV, w*“")}
@:25&[‘”V9W+kv o

oA
i

25t [-cpy" VRS §R P T, o

23]
\,‘-\) i

repw = YRR V. .

5 MR Pai B

y & (h V) (n-1)
wn) {Kv ( 39 )}]
O, + 6, b?. o2

In the above expressions the diffusion terms have been evaluated

at time level (n-1) to ensure computational stability in the
numerical scheme.

The function [ appearing in the Helmholtz equation (16 ) is

5 | 2c¢( (. n-1) i Z H
e (i jea. p ) il
ax 32)]
+YRP ( N
k A 33 22

The matrix é » introduced in section 3, can be written in the
form

Lok '

e

; o K3
'3 Stiel(x) '
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where A“is the component in row k and columm J y <o(k)is the
speed of sound at the k'th level and

( 0 KFE
k;:) ) K= J
The components of the matrix [ may be written as

['“,“” = B“(k) & ‘;'\—Zk) B.(k)

(o

Ek\( z Bkl = : %’(k)

éjzk)
" 3 R,(x)
Ey x-1 = B () - k) 2

for k = 2, veeeeeees 8. Fork =1 E,, and £, , are given by

and for k = 9

all other elements of E being zero. b(') denotes the separation
between levels 1 and 2 of the model. (, , B, , B, B ¥

and 86 are the coefficients appearing in the finite difference

9

expressions for the first and second order vertical derivatives.

They are obtained by means of a Taylor series expansion about
level k to give

29 (1= B (k) iket) + Bolk) P(k)+ By(K) plk-1) # + « = - -
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APPENDIX 2

THE TREATMENT OF SQUND WAVES BY THE FINITE DIFFERENCE SCHEME

a) The continuous solution
We consider equations (6) -~ (10) and apply them to the study of
sound wave propagation in the basic adiabatic atmosphere, The

Iinearised form of the equations is

?—LA “+ CI' G\,B?' o O

At A
0¥ 4 0. 3f - o (2.1)
2t 02
)’PI 1(3 Aw)—o )
C (’° _—r W =
(Pet)—_—' 3W £ Nt 32

where ¢, is the speed of sound in the unperturbed adiabatic
atmosphere. The motion has been confined to the x-z plane for

simplicity and the depth of the model is assumed to be h.

If we eliminate u and w from equations (2.1) we obtain an

equation for P, of the form

2 "
—b___P’ + M P‘ it (u-l L' s O (2'2)
-3 P
SR i
where the operator M = - c. §L1 + 9 3 « The eigen values
€ 22

M, of M are given by

Mt = bk,
where §, is the r'th eigen function of M
: L t
For purely vertical oscillations of the form ?, = $(@)
we find from equation (2,2) M= «," , where & 1is the frequency
of the r'th harmonic of the acoustic oscillations of a column of
air of depth h. It can be shomn (c.f. Lamb, 1932) that the
frequencies are given approximately by

oA N TE Gy vz O

h

’...
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where ¢; is a mean value of the speed of sound.

In the general case where there is a horizontal dependence of

the form g s the frequency o satisfies the equation

( X
1 v Lt
g & W, + <5 k

Since the maximum value of k is T\‘/Sn , and §xx=20km and h=2km,
we have

S TR S T e a0
“\ / &
L'Slk ln

b) The finite difference solution.

It is convenient for the examination of the finite difference
solution to make the transformation

w :_},f_,
D2

Equations (2.1) then take the form (after replacing vertical
derivatives by finite differences)

5&‘ + ¢ Os ﬁ’

- =6

ot DX

’%—‘:—Q + CP 80 R — O (2'3)

3t Z
Lraoﬁ'—rj@*c;L;_”:O

'aL- A oo

where [:'] is the matrix representing the finite difference form

of the operator M , v , @ and B are the vectors whose

components are the values of u, w and P at each of the levels

of the model. Equations (2.3) may be de-coupled by multiplying
by X  (the matrix of eigenveotors of M), where

LB a0
,

i)
1>

A

B
V!
WX

e

\o
il

WX
=

«22m



3__0(' + (r e<> ’é__b" = Q

ot d e

35{;1 S (2.4)
cfogij_ 'A+c 3%, _ o

‘)L Ao

We now consider the following two finite difference schemes for
equations (2.4)

a) fully implicit
I T A L
2gelk, - A b St Aal Gn

Y

(n41)

|
C

b;, ]
i

S T et [ v

nwa PR 1 0((“ h
(fo ]’J\.ﬂ\\ W l)] },\V-‘ [r‘\ ) {k( \] C.\ %{ = % DD( ] - ©)

) S' J <
b) partially implicit

-L 3 (nHL (n-1)" . 6. > ), "
istl'u(' ’(1 J ‘, o

(ne1) -1 ¢ . (vu') (n-1) =8
—2)—&“. -] i " [Y ¥ ]

gl ne) s i bo(("") (*"
Zst[y( ) \ q '1[p\u;‘P}.q o 51 ] 0

Eliminating oﬁ and p, from each of these sets of equations we
obtain

(o)

\)

o
a) ?._ff + \,1, = l),.
Ny
Ly St - |
where

1, = B[ 23, y o]
)\1 v E‘}[g‘;\ +/A,]
= 2 (w) =) (n-') ¢ (G
beo ol c}'l (Vo(b\‘n )= 15"‘“',6 ")
+c,(_ = Ftp 80 ¥ )]

D¢

Comparing with the finite difference scheme discussed in section %
we see that the method described uses the fully implicit scheme a)
for the horizontally propagating sound waves, and scheme b) (which
has an explicit representation for the horizontal gradient of
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pressure) for the vertically propagating modes.

The finite difference schemes are found to be stable if |¢| < |

were ¢ 1is given by
a) E“(hf +3> ._151(\—,"—3) +(\+f+c;).: 0
b) g"f(]+‘>) +2(l iﬁ_ 251(”[’)"112 & (‘—ff):o

N

and \q <P ot and (l = lf(\. 'Et S'J(ka/I).Ue deduce that

§ 5

a) |¢]= | , implying unconditional stability,

Bk JEl=4 8 g <7

Since y : i
q/ L.C; S*Ml(kga/l> < &_,(_.S e ‘lf_f_é—‘ ~ LI-L\
? B My £t i J B Cﬂx §>t Y’lﬂ1 "

the scheme b) is stable provided that the depth of the model h is
sufficiently small compared with the horizontal grid length. For
the model under consideration ¢ 4 .

The frequency o * of the sound waves in the finite difference

model is given by

a) s 2 w24k = ke, 0
B

Since p% O for the horizontally propagating wave we deduce that

=~ = —\—- ._' ¢ A ,'- = ZrSt L“L((Sh }
e D [ 225 Sulenr)

FAN

. (|+Y.)(0$2€*(gk + 21 (s c¥8t _(|-',>) = .0
Y ’/L
i.e. ; : A q, i i -'_—]
Gs e¥t = TR e 4(1ap)t % I+ p

Since, for the vertically propagating modes, P>> | and q K p we
deduce that |(s(c*8t)|4< |, that is the internal waves (which in
phyeical space have frequencies much higher than | [ §& ) have
periods in the finite difference model of about 4 §t .
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APPENDIX 3.

2-DIMENSIONAL REPRESENTATION OVER A UNIFORM GRID USING CHEBYSHEV
POLYNOMIALS.

LetTn be the Chebyshev polynomial of order n. Then it is
required to expand a function h(ﬂ,3> in the form
PLIE. .
L\(";Lj>: Z O(v)s T,(") Ts\j)
v=0 §=o
The pressure heights h are given at discrete points, i.e.

L\”L\(ﬂ;,jj) ; 0L 4N 0¢ ;<&M

- -

The conditions n { N and m{M are applied so that the problem
is not over-determined. Strict inequality implies a least squares
fit with a consequent smoothing of the data.

The problem of determining the coefficients g(,,s can be solved
by utilising the orthogonality of the polynomials over a discrete
set of points (see for example Ambramowitz and Stegun, 1965).
It may be shown that the scalar product is given by

(Tr;Tw)?:o Pl gt = o pEg

where

I )
$0-1) ( V- ) ‘
Wi _(f_f’___)“.__ﬁz__,_.

(2 p+! )! (PJ!)
The coefficients o/, ¢ are then calculated from

N M
ol Z Z h (2, 9,) T,(?(:)Tskm)

i N y >
Y s J

v
n

Ylv, M)W (s, h)

The polynomials themselves are most conveniently found from the
recurrance relation

T ()

T2

(v+|)(N-4)T”'(:(;) :(2v+|}<N-2’(QT1 = (N“")Tf-'

]

|
=22 /N
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APPENDIX 4

FILTERING VERTICALLY PROPAGATING SOUND WAVES IN THE INITIAL DATA

It may be shown (see for example Haltiner, 1971 ) that the hydro-

static approximation filters out vertically propagating sound waves.

In order to ensure that spurious sound waves are not generated by
inconsistencies in the initial data, the initial variables are
adjusted so as to satisfy two constraints (i) the hydrostatic

equation, and (ii) an equation which states that the total derivat-

ive with respect to time of the hydrostatic terms is zero. In

the notation of the model these are

d7,
q En ~ (.P(Oo+ 8.) Y = i

: (4.1)
and
D O _clo..0Y20 ] _
{)‘L[ B el '); i (&.2)

Neglecting diffusion and non-adiabatic effects, the equations for

¢, and ‘P, take the form
.ilf?' =20
5 (4.3)
D% W )
LT e SR SR A (4.4)
e o

Using the adiabatic equation (4.3) the second of the initial

constraints (4.2) becomes

o6, + o) 2 (éﬁ’> 4 (4.5)
e \oz

Further, using the identity

D aj’-) : '3.@23') _ S e
;D—t(?ﬂ AN ot

1<
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equation (4.5) can be written in the form

P ’D_l.P' = ?.:T/ oV ?, = O

22\ Dt o
Now substituting for DY, /thron the continuity equation (L4.4) we
obtain, after some algebraic re-organisation, the second order
differential equation

=11 Ts dw _ ¥ _ 6 2w
(Y >(\ +P’) _é—-;x H Q°+6, 32

N2 ()T ] - 2w L YP
- - ‘)é—%[(lwh)v., > !

Given W\ , Vv , P, , and 9, , this equation can be solved for w.
The boundary conditions used are w=oat 2= 0 (in the absence

of topography) and W given by interpolation from the 10-level
model at the top level .
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Figure 4 The time variation of parameters at an arbitrary gridpoint.
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