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Abstract

Improvements to the ocean and sea-ice components of the Met Office’s coupled Numerical Weather Prediction (NWP) ensemble
system have been implemented. These include the use of an ensemble of data assimilations (EDA) approach whereby the ocean
and sea-ice components of each ensemble member include their own DA with perturbed observations. Stochastic perturbations
were also added to the ocean model component of each coupled ensemble member forecast. These developments bring the
ocean and sea-ice into line with the methods already used in the atmospheric component of the coupled ensemble. The availability
of an ocean ensemble also allowed us to test the impact of using hybrid-3DEnVar data assimilation in the ocean component of
the coupled ensemble together with an ensemble inflation scheme.

The impact of the ocean/sea-ice ensemble developments on the coupled ensemble was assessed by running some two-month
trials. The ocean and sea-ice forecasts were shown to be more accurate in both a deterministic and ensemble sense compared
to the existing coupled ensemble set-up whereby all the ocean/sea-ice ensemble members are initialised from the deterministic
analysis on each cycle, with extra perturbations made to the sea surface temperature (SST) seen by the atmosphere. The sea-ice
component was shown to have better spread with the developments included, but there were issues affecting the mean sea-ice
concentration which had knock-on impacts on the coupled system due to the high sensitivity of the air-sea fluxes in areas of sea-
ice. The atmospheric forecasts in the boundary layer were shown to need significantly larger perturbations than the uncertainty
in the SSTs would suggest, which indicates that the perturbation methodology for the atmospheric boundary layer should be
revisited so that it is not just the SST which generates the required spread. When we re—introduced some of the extra SST
perturbations needed by the atmosphere on top of the ocean ensemble developments, we had a system with similar ensemble
performance in the atmosphere compared to the existing system, a fairly reliable ocean ensemble, and significant improvements
to the ocean performance through the use of hybrid-3DEnVar.

Keywords — data assimilation, ensembles, ocean, coupled, global

1 Introduction

The Met Office implemented a coupled model with coupled data assimilation (DA) in its operational
global Numerical Weather Prediction (NWP) system in 2022. Prior to that the atmospheric forecasts
were forced at the surface by external analyses of sea surface temperature (SST) and sea-ice from the
Operational sea Surface Temperature and sea-lce Analysis (OSTIA) product (Good et al. 2020). The
initial coupled NWP implementation focussed largely on the deterministic aspects of the forecast system
which were shown to be improved by the use of a coupled model (Vellinga et al. 2020, Guiavarc’h et al.
2019). The ensemble forecasts in the Met Office Global and Regional Ensemble Prediction System —
Global (MOGREPS-G; Inverarity et al. (2023)) also now use the coupled model, but the ocean/sea-
ice component of the coupled ensemble is not currently initialised well. The ocean/sea-ice component
of each ensemble member is initialised from the deterministic ocean/sea-ice analysis on each cycle
meaning that the spread in the ocean component, particularly in the early stages of the forecast, is very
small. For that reason, additional perturbations were added to the SST fields seen by the atmospheric
ensemble members in the same way that was done before the coupled model introduction, as described
by Tennant & Beare (2014).

The current operational coupled NWP system performs well in the deterministic sense for both ocean
and atmosphere, but the ocean components of the ensemble forecasts are not adequate for providing
uncertainty information to ocean users, or for use in possible ensemble or hybrid ocean DA schemes.
Also, the evolution of spread in the ocean, which forces the atmospheric ensemble, could be improved
by implementing a proper ocean ensemble. An improved ocean ensemble could also be used to improve
the initialisation of coupled seasonal predictions with the GloSea system which currently uses a lagged
ensemble approach for initialisation, using the deterministic coupled NWP analyses without any explicit
perturbations in the sub-surface ocean (MacLachlan et al. 2015). However, the inclusion of ocean
ensemble developments in the coupled NWP system will add significant extra computational cost and
extra complication which will also add to the cost of maintaining the system. The work described here
therefore aims to assess the potential benefits of improving the ocean/sea-ice component of the coupled
ensemble on both the ocean/sea-ice and atmospheric components.

Work to develop the ocean/sea-ice component of the ensemble system was previously carried out in an
uncoupled framework by Lea et al. (2022). That work included the use of an ensemble of data assimila-
tions (EDA) approach with perturbed observations and the use of stochastic ocean model perturbations.
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It included work to assess the impact of using hybrid-3DEnVar data assimilation in the ocean, making
use of the ensemble information to improve the DA, which necessitated the use of an ensemble inflation
scheme. All these developments resulted in a system which was able to produce reliable short-range
ocean forecasts (the ensemble spread was representative of the error in the ensemble mean), and the
hybrid-3DEnVar scheme resulted in significant improvements to the accuracy of the ensemble mean.

Other centres around the world have implemented coupled data assimilation to initialise coupled NWP
forecasts. The latest status of the ECMWF coupled data assimilation framework is described by de Ros-
nay et al. (2022) who also provide a description of the various flavours of coupled DA. Another major
centre which has implemented coupled DA to initialise NWP forecasts is the US Navy whose system,
including a coupled EDA system, is described by Barton et al. (2020). A weakly coupled DA system
was also implemented in the Environment and Climate Change Canada (ECCC) global NWP system
(Skachko et al. 2019).

The implementation in the Met Office system of coupled DA and coupled EDA, while similar in some
respects, is somewhat different compared to those other systems. In section 2 we provide an overview
of the present operational coupled NWP system at the Met Office together with a description of the
changes to the ocean component of the coupled ensemble. Section 3 describes the experiments which
are designed to assess the impact of those developments. An assessment of the results of the experi-
ments is given in section 4 including the impact on the ocean, sea-ice and atmospheric components of
the ensemble. Finally, section 5 gives a summary of the main results and discusses the way forward.

2 Ensemble system developments

2.1 Description of current coupled NWP system

2.1.1 Coupled model

The model used in the coupled NWP system is the GC4 configuration of the Met Office coupled mod-
elling system. It consists of the Unified Model (UM) atmospheric model in the GA8 configuration, the
JULES (Joint UK Land Environment Simulator) land surface model in the GL9 configuration, the NEMO
ocean model in the GO6 configuration (Storkey et al. 2018) and the CICE sea-ice model in the GSI8.1
configuration (Ridley et al. 2018). Earlier versions of the atmosphere and land model components
were described by Walters et al. (2019) with the the key changes since then being: prognostic based
entrainment, which adds convective memory and improves precipitation rates and spatial structures;
time-smoothed convective increments, which improves the convection-dynamics coupling and greatly
reduces the dynamical effects of convective intermittency; a new riming parameterisation, which in-
creases the amount of supercooled water and hence reduces southern ocean biases; and a package of
surface changes, which improves the forecast of near-surface winds and removes the need for the ag-
gregate tile in NWP. The atmosphere and land are run in one executable, as are the ocean and sea-ice,
and the coupling fields are exchanged using the OASIS coupler every hour.

In the operational system the horizontal resolution of the atmosphere and land models is N1280 (~10
km) for the deterministic forecasts and N640 (~20 km) for the ensemble forecasts. However, these are
very computationally expensive to run, so the experiments described later use lower resolution versions
of N640 (~20 km) for the deterministic forecasts and N320 (~40 km) for the ensemble forecasts. The
ocean and sea-ice model horizontal resolution is 1/4° (~25 km) for both deterministic and ensemble
components both operationally and in the experiments described later. The ocean model has 75 vertical
levels which range in thickness from 1 m near the surface to 300 m at 6000 m depth.
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2.1.2 Coupled data assimilation

The atmospheric component of the DA for the deterministic forecasting system is carried out using a
hybrid—4DVar (four-dimensional variational DA) approach (Bowler et al. 2017). This uses a combination
of the forecast-error covariances from the MOGREPS-G ensemble (described in section 2.1.3) with
climatological error covariance information. It uses a linear Perturbation Forecast model to (in effect)
evolve the forecast-error covariances through the assimilation window of 6 hours. The land surface DA
uses an Extended Kalman Filter approach and is described by Gomez et al. (2020).

The ocean and sea-ice DA are both carried out using a 3DVar-FGAT (First Guess at Appropriate Time)
scheme based on the NEMOVAR code (Waters et al. 2015, Mirouze et al. 2016). The DA for ocean
and sea-ice are run separately. A hybrid-3DEnVar scheme (also using FGAT) has also been developed
using NEMOVAR and tested by Lea et al. (2022) for the ocean DA (with the sea-ice still using 3DVar-
FGAT), though this is not yet operational.

These separate atmosphere, land, ocean and sea-ice DA systems are combined in a coupled DA frame-
work as described by Lea et al. (2015). The way in which the coupled DA cycles is shown in Fig. 1.
All of the component DA systems are run on a 6-hour cycle where the inputs to the DA, including the
innovations (observation-minus-model values in observation space) and non-linear model trajectory in-
formation, come from the coupled model forecast. Separate systems (as just described) are then used
to produce the analysis increments for the ocean, sea-ice, atmosphere and land. Note that the sea-ice
data assimilated are from a product which collects all data for each day and has a nominal time of 12Z,
so only the 12Z cycle includes sea-ice DA. The atmospheric increments are added into the atmospheric
component of the coupled model at the beginning of the time window with direct insertion (DI), while
the ocean and sea-ice increments are added in using incremental analysis updates (IAU, Bloom et al.
(1996)) over the first 3 hours of the time window. The analysis is valid in the middle of the time windows
(00Z, 062, 12Z, 18Z) and forecasts are launched from these times.

00z 067 127 182 00z

Innovations

Atmos/land DA

Ocean DA
A-DI, O-1AU

nnn

Atmos/l.and DA

Ocean/sea-ice DA

A-DI, O-1AU
Inovationi l l l

Atmos/land DA
E Ocean DA

A-DI, O-IAU

Figure 1: Schematic of the way in which the deterministic coupled data assimilation system is imple-
mented.

In the operational implementation of this system, the main set of analysis/forecast cycles are run just

before the end of the assimilation time window on each cycle in order to produce timely products. Re-
runs of the analyses are carried out later in the day to allow for late-arriving observations. For the
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previous atmospheric-only system, only one of these re-runs was carried out. With the coupled system,
multiple re-runs are carried out on some cycles in order to allow ocean observations, which typically
arrive later than the atmospheric ones, to influence subsequent forecast cycles.

2.1.3 Coupled ensemble generation

The atmospheric component of the ensemble uses an ensemble of hybrid four-dimensional ensemble
variational data assimilations (En-4DEnVar) as described by Inverarity et al. (2023). The Mean-Pert
method of Lorenc et al. (2017) is used to reduce the cost of the EDA by generating an accurate anal-
ysis of the ensemble mean, with the analyses of the ensemble perturbations carried out using fewer
minimisation iterations (and therefore lower computational cost). EDA schemes either need to perturb
observations or adopt adjusted formulations of the analysis update equation. The atmospheric EDA
takes the latter approach using the Relaxation to Prior Perturbations (RTPP) technique (Whitaker &
Hamill 2012) (the ocean ensemble adopts the former approach, as described in section 2.2). Ensemble
inflation is also used in the atmospheric EDA using the Relaxation to Prior Spread (RTPS) method to
account for errors in the DA specifications. Stochastic atmospheric model perturbations are applied in
all ensemble member forecasts using the Stochastic Kinetic Energy Backscatter (SKEB) scheme (Ten-
nant et al. 2011) and Stochastic Perturbation of Tendencies (SPT) scheme (Sanchez et al. 2016). An
additive inflation scheme (Piccolo et al. 2019) is also used both to provide additional perturbations to
the ensemble forecast and to correct model biases.

As mentioned in the introduction, the ocean and sea-ice components of the ensemble are currently
initialised from the deterministic analyses on each cycle. This means that there is zero spread in the
ocean/sea-ice ensemble at the start of each forecast, and the spread will only grow during the forecast
due to the atmospheric perturbations. The aim of this paper is to improve on this, and the developments
to do so are described in the next sub-section.

The spread in SST is an important property of the coupled ensemble (see for example Hotta & Ota
(2019)) and is crucial for generating spread in the lower troposphere over the oceans. The scheme
used to generate these SST perturbations before the use of a coupled model was described by Tennant
& Beare (2014). They used the day-to-day SST changes in the OSTIA product as a proxy for the uncer-
tainty in the SST field. The power spectrum of these changes was then used to generate SST anomalies
with the spatial covariance structures of the day-to-day SST variations, and with amplitude associated
with each spectral component of those changes. Crucial to the work described in the current paper
is that an additional calibration factor was used to increase the magnitude of these SST perturbations
above the level of the derived uncertainties in OSTIA. This factor, which we call « here, multiplies the
basic SST perturbations by two and was determined to give the best ensemble verification scores in the
atmosphere (based on the Continuous Ranked Probability Score; CRPS). In the initial implementation
of the coupled ensemble, this same SST perturbation method has been used to increase the magnitude
of the SST spread in the ensemble as seen by the atmosphere, but this does not directly change the
SSTs in the ocean model (only indirectly through changes to the surface fluxes).

2.2 Description of ocean ensemble changes to the coupled NWP system

The development of an improved ocean component of the coupled ensemble has been carried out in an
ocean/sea-ice system forced by, but not coupled with, the Met Office atmospheric ensemble, and was
reported by Lea et al. (2022). Here we recall the main developments from that work and describe how
they have been applied in the coupled NWP ensemble framework.

The first change was to allow the transfer of ocean and sea-ice information from one cycle to the
next for each ensemble member. Then a separate ocean/sea-ice data assimilation was implemented
for each ensemble member where the observations used in the assimilation are perturbed in their
values (by the expected measurement error for each observation) and locations (to mimic errors of
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representation). These observation perturbations were shown by Lea et al. (2022) to generate good
spread in the different observed variables.

Stochastic model perturbations were also included in the NEMO ocean model for each ensemble mem-
ber based on schemes described by Storto & Andriopoulos (2021). These include the SPT scheme
(Sanchez et al. 2016) which adds a perturbation to the total parametrised physics tendencies that is
the product of the unperturbed tendencies and a random field. The stochastically perturbed parameters
(SPP) scheme (Ollinaho et al. 2017) introduces stochastic perturbations to model parameters within
parametrised processes. The SKEB scheme (Tennant et al. 2011) adds perturbations to the barotropic
streamfunction proportionally to some sinks of energy on small scales in the model, which in a higher
resolution model would otherwise have been backscattered to the scales we can resolve.

As well as the main changes to the ocean/sea-ice system to implement the above perturbation schemes,
Lea et al. (2022) implemented additional changes to the data assimilation in each ensemble member,
to use a hybrid-3DEnVar scheme. In that scheme the ensemble forecast-error covariance spatial struc-
tures are localised and used in conjunction with the existing 3DVar background error covariances. A
multiplicative ensemble inflation scheme was also implemented alongside the hybrid-3DEnVar, based
on the RTPS scheme to account for mis-specifications of the error covariances used in the data assim-
ilation.

An assessment of the reliability of the ocean/sea-ice ensemble including the above changes was shown
by Lea et al. (2022) to be good after the first 6 months of ensemble spin-up for all the observed variables.
The use of hybrid-3DEnVar ocean data assimilation resulted in significant reductions in the error in the
ensemble mean compared to the standard 3DVar scheme currently used operationally.

All of the above developments have been implemented in the ocean and sea-ice components of the cou-
pled ensemble system and a summary of the coupled ensemble is given in table 1. The main difference
between the coupled ensemble and the previous ocean/sea-ice ensemble system is that the coupled
system runs on a 6-hour data assimilation cycle whereas the system of Lea et al. (2022) used a 24-hour
cycle. We have not made any adjustments to the ocean/sea-ice ensemble perturbation strategies since
they are independent of the cycle length. An assessment of the ocean spread at the shorter 6-hour
forecast lead time will be shown in section 4. A schematic of a single member of the coupled ensemble
is shown in Fig. 2. Including the ocean ensemble as we do means the ensemble members are now
treated in a very similar way to the deterministic run as each now has its own ocean and atmosphere
DA increments. One of the questions addressed in this work is whether the developments to the ocean
component of the ensemble allow us to remove the previous method of adding SST perturbations as
seen by the atmosphere discussed in section 2.1.3, represented by the red arrows in the figure.
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06z

Single member of the coupled ensemble system on one cycle

Coupled stochastic
forecast

I Surface fluxes of heat, freshwater,
momentum from atmosphere to ocean

Perturbed

| SSTs and currents from ocean to
innovations

atmosphere

I Additional SST perturbations
generated a priori

Coupled stocnastic

fogecast

Figure 2: Schematic of the way in which the coupled ensemble system is implemented.

\ | Atmosphere | Land | Ocean | Sea-ice |
Deterministic N640 (~20 km) | N640 (~20 km) | 1/4° (~25 km) | 1/4° (~25 km)
model configura- | UM JULES NEMO CICE
tion
Ensemble model | N320 (~40 km) | N320 (~40 km) | 1/4° (~25 km) | 1/4° (~25 km)
configuration UM JULES NEMO CICE
Ensemble data | Ensemble of | Extended Ensemble of | Ensemble of
assimilation 4DEnVars with | Kalman Filter 3DVars or hybrid- | 3DVars with
approach RTPP 3DEnVars with | perturbed ob-

perturbed ob- | servation values

servation values
and positions

and positions

Stochastic model | SPPT, SKEB Breeding method | SPP, SPPT, | -

perturbations SKEB

Ensemble infla- | Additive inflation | — RTPS (when | —

tion and RTPS hybrid-3DEnVar
activated)

Table 1: Summary of the coupled ensemble system and developments made to the ocean/sea-ice
components (which are in red text). Note that the operational atmosphere/land resolution is N1280
(~10 km) for the deterministic forecast and N640 (~20 km) for the ensemble.

3 Experiment description

All experiments were run for the period 1st December 2019 to 31st January 2020. The system runs 44
ensemble members on each 6-hour cycle with forecasts out to 12 hours. Longer forecasts out to 8-days
are carried out, but for only 18 members on each 6-hour cycle. Initial conditions for the ocean/sea-
ice ensemble on 1st December were taken from an uncoupled ocean/sea-ice ensemble run which had
been run for about 21 months. The first portion of the experiment is the same as described by Lea et al.
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(2022) (experiment ensda08.inf08 in that paper) and the experiment was continued on to 1st Dec 2019
to provide initial conditions for these experiments. That ensemble consisted of only 36 members, so we
initialised members 37-44 of the new ensemble with the first 8 members of the uncoupled ensemble.
The atmospheric initial conditions were taken from the operational MOGREPS-G ensemble.

All the experiments described in this paper are coupled ensemble experiments and only differ in the
way the ocean and sea-ice components of the ensemble are designed and used. A control experiment
(Control) was run which was set to be the same as the present operational system. None of the ocean
ensemble developments are included in that experiment and the previous method for adding SST per-
turbations based on Tennant & Beare (2014) was used. The second experiment, OEn3DVar, included
all the ocean ensemble developments described above with a 3DVar method used in the ocean DA,
and the additional SST perturbations were removed. Since the SST spread in experiment OEn3DVar
was much lower than the spread of the perturbations used in the current operational system, a tuning
exercise was carried out to determine an « factor which could be applied to the additional SST pertur-
bations such that the total SST spread from the ocean and SST perturbations would add up to a similar
level globally as that of Tennant & Beare (2014). This resulted in an « factor of 1.8, and an experiment
with both the ocean perturbations and the additional SST perturbations generated using this reduced
« factor was carried out (OEn3DVar_SSTperts). The last experiment, OHybrEn3DVar, is one in which
the ocean DA uses hybrid-3DEnVar rather than 3DVar in all ensemble members, with a hybrid weight of
0.5 (equal weight is given to the ensemble-based and modelled background error covariances), but no
additional SST perturbations are included. The hybrid DA is described in more detail in section 4.3 and
in Lea et al. (2022). A summary of these experiments is given in table 2.

Experiment name Description SST perturbation
factor*.
Control A coupled ensemble experiment where the ocean | 2.0

ensemble members are all initialised from the de-
terministic ocean analysis on every cycle.
OEn3DVar Same as Control except the ocean ensemble | 0.0
is initialised each cycle with an ensemble of
3DVars with observation perturbations, and in-
cludes stochastic ocean model perturbations.

OEn3DVar_SSTperts As for OEn3DVar except the additional SST per- | 1.8
turbations are also included

OHybrEn3DVar As for OEn3DVar but each ocean data assimila- | 0.0
tion uses a hybrid-En3DVar with a hybrid weight
of 0.5.

Table 2: List of experiments. All experiments use a coupled model and differ only in the way the
ocean component of the ensembile is configured and in the SST perturbations which the atmospheric
component uses. *The SST perturbation factor is applied to a set of additional SST perturbations
generated a priori which are applied in the atmospheric model on top of the SST generated by the
ocean model.

© Crown Copyright 2023, Met Office 8 of 55



== Met Office

4 Impact of improving the ocean component of the coupled en-
semble

4.1 Impact on the ocean

4.1.1 Overall impacts on characteristics of the ensemble at 6-hour forecast lead times

In Fig. 3 we plot time-series of the innovations for the 6-hour deterministic forecasts of Sea
Level Anomaly (SLA), SST, profile temperature and profile salinity comparing experiments Control,
OEn3DVar, OEn3DVar_SSTperts and OHybrEn3DVar. In all the plots there is an initial adjustment
taking only a few days in the statistics. This may be because the initial ocean restarts come from a 24
hour cycling uncoupled ocean system. For SLA there is a dramatic reduction in the SLA RMS innova-
tions in OHybrEn3DVar compared to all the other experiments. This result is consistent with that seen
in the ocean only results by Lea et al. (2022) when hybrid DA is used. There is little difference between
the experiments with in situ SST. For the profile temperature and profile salinity, hybrid DA does result
in some reduction in the RMS innovations.

The ensemble mean RMS innovations time-series results in Fig. 4 are O(10%) smaller than the deter-
ministic for all experiments and SLA, profile temperature and salinity observation types. The exception
is SST which shows no reduction in RMS innovations compared to the deterministic run.

The ensemble spread at 6-hour lead time in Fig. 5 is very similar for OEn3DVar and OEn3DVar_SST-
perts except that the SST perturbation experiment does have a slightly increased spread in SST which
suggests a weak feedback from perturbing the SSTs seen by the atmosphere into the ocean ensem-
ble. The SST spread is lower for hybrid DA compared to those other 3DVar experiments. For SLA,
even though we started the runs with a fully spun up ocean ensemble, the spread does increase sig-
nificantly in the OEn3DVar and OEn3DVar_SSTperts experiments, taking about 1 month to stabilise. In
contrast, the spread in the OHybrEn3DVar experiment remains fairly constant during the run. Perhaps
the change in spread in the other experiments is reflecting the fact that they have larger forecast errors,
as shown in Fig. 4 (note the ocean ensemble was generated by a previous ocean-only run which was
doing hybrid DA). The profile temperature and salinity spread in the OEn3DVar and OEn3DVar SST-
perts experiments show an increase over the first month of the runs, similar to that of SLA but again the
hybrid DA reduces the ensemble spread.

For the hybrid DA the spread is controlled partly by the RTPS (Return To Prior Spread) multiplicative
inflation scheme. We used the same inflation factors here as in the ocean only experiments of Lea
et al. (2022). The above results could indicate a need to retune the inflation factor for the coupled NWP
context in order to improve the ensemble reliability. More discussion on the ensemble reliability can be
found in section 4.1.5.

The spatial patterns of the RMS of the SLA ensemble mean innovations, Fig. 6, show that the SLA
innovations are highest in regions with strong eddy activity like the Antarctic Circumpolar Current (ACC)
and the Gulf Stream. Consistent with this, the ensemble spread is higher in these locations. Hybrid DA
reduces the error and spread in these same locations. There is a small increase in error and spread in
the tropical Atlantic and eastern tropical Indian ocean. More details on the impact of hybrid DA and the
problems in this location can be found in section 4.3.

The spatial patterns of the RMS of the in situ SST innovations for the ensemble mean, Fig. 7, show
that the SST innovations are large in regions with strong eddy activity like the ACC, the Gulf Stream,
Kuroshio, and the Agulhas as was seen in the SLA results, but also in other regions such as the up-
welling regions off the west coast of Africa, North and South America. The ensemble spread reflects
the larger errors in some of these regions, such as the Gulf Stream and Kuroshio, but other areas of
increased RMS do not show up in the ensemble spread. This indicates a deficiency in the ensemble
generation for SST in the coupled NWP implementation which was not seen in the previous ocean-only
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(a) SLA (b) In situ SST

(c) Profile temperature (d) Profile salinity

Figure 3: Time-series of the RMS (solid lines) and mean (dashed lines) in the deterministic 6-hour
forecast errors compared to observations.

(a) SLA (b) In situ SST

(c) Profile temperature (d) Profile salinity

Figure 4: Time-series of the RMS (solid lines) and mean (dashed lines) in the ensemble mean 6-hour
forecast errors compared to observations.
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(a) SLA (b) In situ SST

(c) Profile temperature (d) Profile salinity

Figure 5: Time-series of the RMS (solid lines) and mean (dashed lines) in the 6-hour forecast ensemble
spread.

work.

4.1.2 Ocean deterministic forecast verification

The impact of the ocean ensemble developments on ocean fields in the deterministic forecasts can
be assessed using “Class 4” statistics. This is where the forecast is compared to observations at the
observation locations. In Fig. 8 we compare the experiments. Encouragingly the improvement seen with
hybrid DA is retained into the forecast for all variable types (SLA, SST, profile temperature and salinity).
Indeed for SST, while the error still increases during the forecast, the improvement seen with hybrid
DA also increases with forecast lead time (there is more improvement at the end of the 6-day forecast
than in the analysis). This is perhaps due to the improvements in the other variables’ initial conditions
affecting the SST later in the forecast.

The deterministic forecast performance differs little between the Control and ocean ensemble 3DVar
experiments as might be expected since the ocean data assimilation on the deterministic is identical for
these experiments. Small differences can arise due to impact of the ocean ensemble on the atmosphere
ensemble which then affects the atmosphere assimilation and atmosphere model which then affects the
ocean.

The other result of note is that there is an SST bias which develops in the forecast. This is particularly
evident (not shown) in the tropical regions and the Southern Hemisphere (where the ocean mixed layer
is shallower).

4.1.3 Impact on ensemble mean and spread in the ocean

The impact of the atmospheric SST perturbation changes on the mean and spread of the ensemble in
the ocean is generally very small so the results shown below focus on the changes from the Control
experiment to the OEn3DVar experiment.
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(a) Ens mean RMSE OEn3DVar (b) As (a) but spread
(c) Ens mean RMSE OEn3DVar_SSTperts (diff) (d) As (c) but spread
(e) Ens mean RMSE OHybrEn3DVar (diff) (f) As (e) but spread

Figure 6: The SLA (m) 6-hour ensemble mean forecast error is shown in panel (a), and ensemble
spread for OEn3DVar is shown in panel (b). Panels (c) and (d) show the difference in forecast error
and spread to OEn3DVar for OEn3DVar_SSTperts, and (e) and (f) show the differences to OEn3DVar
for OHybrEn3DVar. For (c)—(f) blue/red indicates a reduction/increase in error or spread compared to

OEn3DVar.
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(a) Ens mean RMSE OEn3DVar (b) As (a) but spread
(c) Ens mean RMSE OEn3DVar_SSTperts (diff) (d) As (c) but spread
(e) Ens mean RMSE OHybrEn3DVar (diff) (f) As (e) but spread

Figure 7: Spatial plots of SST (°C) 6-hour ensemble mean forecast error and ensemble spread. As
Fig. 6 but for SST.
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(a) SLA (b) In situ SST

(c) Profile temperature (d) Profile salinity

Figure 8: Deterministic ocean forecast RMSE error (solid lines) and bias (dotted lines) compared to
various observation times as function of forecast lead time (also known as “Class 4 statistics”). Statistics
calculated over 1 Dec 2019 — 12 Jan 2020.
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Fig. 9 illustrates significant differences between the mean SST in the OEn3DVar and Control in partic-
ular at high latitudes where OEn3DVar is about 0.5°C cooler and there is a warming to a lesser degree
at lower latitudes. This signal is sustained into the forecast.

Figure 9: SST ensemble mean (°C) at T+0 (left) and T+120 (right) averaged over forecasts initialised
between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus Control.

The ensemble SST spread in the Control shown in Fig. 10 is very small since the ensemble is reini-
tialised from the deterministic analysis on every cycle. The spread does increase into the forecast
somewhat due to the differences in atmosphere forcing from the atmosphere ensemble members, but
only where the mixed layer is shallow. When we introduce the ocean ensemble in OEn3DVar the spread
increases markedly, even at T+0 as the ensemble spread is now retained from cycle to cycle, with high
spread in locations with strong currents and strong eddy activity.

For Sea Surface Salinity (SSS) the ensemble mean salinity is higher in OEn3DVar than Control in
most of the Arctic where there is sea-ice (Fig. 11). This suggests a difference in the ensemble mean
sea-ice concentration could be driving this salinity difference. At lower latitudes the differences in the
ensemble mean are smaller scale resulting perhaps from chaotic changes in the circulation. The SSS
spread again is very weak in the Control (Fig. 12). During the forecast the spread does increase in
the control as a result of the forcing on the ocean from the spread in the atmosphere ensemble. The
spread is much higher with the ocean ensemble included, even at T+0. There is particularly high spread
in regions with strong currents, and in locations with strong river outflow like the Bay of Bengal, near
the Amazon outflow and the Congo river outflow. There is also strong variability in parts of the Arctic
perhaps associated with variations in the sea-ice concentration.

The ensemble mean mixed layer depth (MLD) is particularly deep in the North Atlantic and in some parts
of the ACC (Fig.13). There is relatively little change in the mean MLD in the OEn3DVar experiment,
though there is a small increase in mean MLD in the Arctic and south of the ACC. The MLD spread again
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Figure 10: SST ensemble standard deviation (°C) at T+0 (left) and T+120 (right) averaged over forecasts
initialised between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus Control.
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Figure 11: SSS ensemble mean (psu) at T+0 (left) and T+120 (right) averaged over forecasts initialised
between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus Control.
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Figure 12: SSS ensemble standard deviation (psu) at T+0 (left) and T+120 (right) averaged over fore-
casts initialised between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus
Control.
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is generally small in the Control (Fig. 14). As the forecast proceeds however it is high in some locations
where the ocean is sensitive to the spread in the atmosphere forcing. The spread increases nearly
everywhere with the ocean ensemble included, most notably in the ACC region and North Atlantic, and
also the Gulf Stream and Kuroshio.

Figure 13: MLD ensemble mean (m) at T+0 (left) and T+120 (right) averaged over forecasts initialised
between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus Control.

The model Sea Surface Height (SSH) ensemble mean is changed at high latitudes comparing Control
to OEn3DVar (Fig. 15). The SSH spread, again, is generally small in the Control (Fig. 16) and as
the forecast proceeds it increases only in shelf locations where the spread in the atmosphere forcing
induces variations in the barotropic SSH. The spread increases nearly everywhere with the ocean en-
semble included. Particularly high spreads are seen in the ACC region and also the Gulf Stream and
Kuroshio.

4.1.4 Impact on ensemble mean and spread in the sea-ice

For sea-ice concentration the ensemble mean is reduced in the Arctic at high latitudes in OEn3DVar
compared to Control (Fig. 17) except near the ice edge where there is a small increase in ice con-
centration. A plausible reason for this pattern is the impact of the observation perturbations on the
assimilation due to the fact that the ice concentration cannot exceed 100% or go below 0%. In the ice
pack where the ice concentration is close to 100% the observation value perturbations are bound to
reduce the average concentration. The opposite effect may hold around the ice edge where the ice
concentration cannot go below 0% resulting in a positive mean change. To resolve this changes in the
observations perturbation strategy for ice would be needed. It may be wise to reduce observation value
perturbations where the values are close to hard limits.
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Figure 14: MLD ensemble standard deviation (m) at T+0 (left) and T+120 (right) averaged over forecasts
initialised between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus Control.
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Figure 15: SSH ensemble mean (m) at T+0 (left) and T+120 (right) averaged over forecasts initialised
between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus Control.
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Figure 16: SSH ensemble standard deviation (m) at T+0 (left) and T+120 (right) averaged over forecasts
initialised between 1st — 15th January 2020. Top plots: Control, bottom plots: OEn3DVar minus Control.
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The sea-ice spread is generally small in the Control as the sea-ice ensemble, like the ocean ensem-
ble, is reset each cycle in this experiment. The spread increases in OEn3DVar in the ice pack and
particularly strongly near the ice edge (Fig. 18).

The ensemble mean sea-ice thickness is shown in Fig. 19. The thickness is generally reduced in
OEn3DVar compared to Control. This is consistent with the ice concentration results above. The
ensemble changes in OEn3DVar generate significant increases in ensemble spread in sea-ice thickness
as shown in Fig. 20. This is particularly obvious to the east of Greenland and near the Canadian
Archipelago. There are even larger increases in spread in thickness in the Antarctic.

The ensemble mean sea-ice temperatures are -20 to -30°C over the ice compared to water tempera-
tures of about -2°C in the Arctic in Fig. 21. This means that the small reduction in the sea-ice concen-
tration in the Arctic in OEn3DVar can increase the (grid cell average) ice surface temperature markedly
(since more of the grid cell will be open water which is warmer than the ice). In this case the mean ice
concentration is only reduced by 2-3%, but that leads to a change in ice surface temperature of 2-4°C
(shown in Fig. 21). The sea-ice temperature ensemble standard deviation is shown in Fig. 22. This
shows high spread in the Arctic but weak spread in the Antarctic where the ice temperature and ocean
temperature are only minimally different in Southern Hemisphere summer.

In Fig. 23 we show time-series of sea-ice concentration innovation statistics comparing all the exper-
iments in the deterministic runs where there are no significant differences. This is not too surprising
since we do not include ice ensemble perturbations in the hybrid DA. For the ensemble mean statistics
again the hybrid DA shows no difference to the equivalent 3DVar experiment. Including the additional
SST perturbations to the atmosphere degrades the sea-ice concentration RMSE by around 20%. The
SST perturbations also increase the ensemble spread of sea-ice concentration by around 20%. It may
be that the SST perturbations are applied in the sea-ice covered regions of the ocean which through
the coupling results in excessive sea-ice melting. If this is the case we will look to ramp down the SST
perturbations over parts of the ocean which contain sea-ice.
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Figure 17: Sea-ice concentration ensemble mean (concentration) at T+0 for the Arctic (left) and Antarc-
tic (right) averaged over forecasts initialised between 1st — 15th January 2020. Top plots: Control,
bottom plots: OEn3DVar minus Control.
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Figure 18: Change (OEn3DVar minus Control) in sea-ice concentration ensemble standard deviation
(concentration) at T+0 for the Arctic (left) and Antarctic (right) averaged over forecasts initialised be-
tween 1st — 15th January 2020. The standard deviation of Control is very small.
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Figure 19: Sea-ice thickness ensemble mean (m) at T+0 for the Arctic (left) and Antarctic (right) av-
eraged over forecasts initialised between 1st — 15th January 2020. Top plots: Control, bottom plots:
OEn3DVar minus Control.
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Figure 20: Change (OEn3DVar minus Control) in sea-ice thickness ensemble standard deviation (m)
at T+0 for the Arctic (left) and Antarctic (right) averaged over forecasts initialised between 1st — 15th
January 2020. The standard deviation of Control is very small.
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Figure 21: Sea-ice temperature ensemble mean (°C) at T+0 for the Arctic (left) and Antarctic (right)
averaged over forecasts initialised between 1st — 15th January 2020. Top plots: Control, bottom plots:
OEn3DVar minus Control.
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Figure 22: Sea-ice temperature ensemble standard deviation (°C) at T+0 for the Arctic (left) and Antarc-
tic (right) averaged over forecasts initialised between 1st — 15th January 2020. Top plots: Control,
bottom plots: OEn3DVar minus Control.
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(a) Deterministic

(b) Ensemble mean

(c) Ensemble spread

Figure 23: Time-series of the RMS (solid lines) and mean (dashed lines) in the ensemble mean 6-hour
forecast errors of sea-ice concentration compared to observations.
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4.1.5 Ensemble reliability in the ocean

The ensemble consistency test of Rodwell et al. (2016) is used to assess the reliability of the ensemble.
For a completely reliable ensemble the ensemble spread should match the ensemble mean departure (a
measure of short term forecast uncertainty) after accounting for observation errors and bias. A residual
quantifies the ensembile reliability or the degree of mismatch.

First we focus on the reliability of the short-range (6-hour) forecast for the OEn3DVar_SSTperts exper-
iment. The reliability statistics are shown for SLA in Fig. 24. A positive residual in the ACC, the Gulf
Stream and North-West European shelf-seas indicates the ensemble spread is likely too low in those
locations. Elsewhere the residual is small indicating a reliable ensemble for SLA. For SST, shown in
Fig. 25, there is a positive residual in the Gulf Stream and Kuroshio in particular which is consistent
with an ensemble spread which is too low. Over most of the global ocean, however, the residual is very
small or slightly negative indicating a reasonable ensemble spread for SST.

Departure? Bias? Ensemble Variance

Figure 24: Reliability statistics of OEn3DVar_SSTperts for SLA (m?) calculated over Dec 2019. Obser-
vation uncertainty as used in the assimilation (except for an extra near coastal amplification applied in
the assimilation).

The impact of the hybrid-3DEnVar DA in experiment OHybrEn3DVar on the reliability is shown in
Figs. 26 and 27 for SLA and SST respectively. The SLA has a lower ensemble spread and departure
than OEn3DVar_SSTperts (Fig. 24), but a lower residual and a more reliable ensemble. The SST has
a lower ensemble spread and similar departure to OEn3DVar_SSTperts (Fig. 25), but a higher residual
and a slightly less reliable ensemble for SST with ocean hybrid DA. It may be that is possible to correct
the problem here by appropriately tuning the ocean RTPS inflation scheme.
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Departure? Bias? Ensemble Variance

Figure 25: Reliability statistics of OEn3DVar_SSTperts for SST (°C 2) calculated over Dec 2019. Note a
uniform observation uncertainty of 0.3 °C is assumed.

Departure? Bias? Ensemble Variance

Figure 26: Reliability statistics of the hybrid DA experiment OHybrEn3DVar for SLA (m?) calculated over
1-15 Dec 2019. Observation uncertainty as used in the assimilation (except no coastal amplification).
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Departure? Bias? Ensemble Variance

Figure 27: Reliability statistics of the hybrid DA experiment OHybrEn3DVar for SST (m?) calculated over
1-15 Dec 2019. Observation uncertainty as used in the assimilation (except no coastal amplification).
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4.2 Impact on the atmosphere

In this section we assess the impact of the ocean/sea-ice ensemble changes on the atmospheric com-
ponent of the coupled system. Statistical verification of the results is presented first to understand where
the changes are affecting the atmosphere and whether they are beneficial or detrimental. This verifica-
tion is calculated over the two months of the experiments, 1st Dec 2019 to 31st Jan 2020. Deterministic
and ensemble aspects of the system are verified using both observations and ECMWF analyses as
references. Then we show the impact in terms of the changes in ensemble mean and ensemble spread
for near-surface variables averaged over the period 1st - 14th Jan 2020.

4.2.1 Atmospheric deterministic forecast verification

The only effect of the ocean/sea-ice ensemble changes on the deterministic atmospheric forecast will
come indirectly through the changes to the atmospheric ensemble fields which are used in the determin-
istic atmospheric DA through the hybrid forecast-error covariances. This is confirmed by Fig. 28 which
shows a summary of the impacts for both the OEn3DVar and OEn3DVar_SSTperts experiments com-
pared to the deterministic forecasts from the Control experiment. Very few of the scores have statistically
significant results (indicated by the filled squares). The OEn3DVar experiment has marginally worse
RMSE for some variables, most notably in the Northern Hemisphere when compared with ECMWF
analyses, though overall there are only small changes. The OEn3DVar_SSTperts experiment has even
smaller changes compared to the Control, the main exception being the tropical temperatures at 250
hPa compared to ECMWF analyses, though even there the changes are small.

4.2.2 Atmospheric ensemble forecast verification

We now focus on the impact on the ensemble atmospheric verification. Fig. 29 shows a summary of
the changes to the CRPS for different atmospheric variables at different lead times. The CRPS gives
a measure of the degree to which the probability density function of the observed forecast errors is
consistent with the ensemble predicted forecast errors with higher CRPS values indicating a bigger
mismatch between the ensemble and observations. There is a clear degradation to the CRPS, partic-
ularly for the 2 m temperatures in the Southern Hemisphere, Northern Hemisphere and tropics, when
the ocean ensemble is used without any additional perturbations to the SSTs seen by the atmosphere
(experiment OEn3DVar). This degradation is seen when the reference used in the verification is the
observations and also when the reference is the ECMWF analyses. The degradations to the tropical
2 m temperatures are more obvious against the ECMWF analyses probably because this is a global
gridded field including over the oceans, whereas the observation sampling is smaller over the oceans.
Fig. 30 shows that this degradation in CRPS is likely due to a reduction in the near-surface tempera-
ture ensemble spread, with the RMSE of the ensemble mean unaffected. The reduction in temperature
spread extends throughout the height of the atmosphere when looking at the 5-day forecast, also shown
in Fig. 30.

When additional SST perturbations are included in experiment OEn3DVar_SSTperts the overall impact
on the atmospheric CRPS is much smaller when compared with observations, though there is a small
degradation to the 500 and 850 hPa geopotential height in the Northern Hemisphere as well as the 850
hPa geopotential height in the tropics. There are also some improvements compared to Control in the
CRPS in the Southern Hemisphere for pressure at mean sea level (PMSL) and other variables. These
patterns of changes follow through to the comparison with ECMWF analyses, with the exception being
the larger degradation to the CRPS in tropical 2 m temperatures.

To learn more about the degradation of the tropical 2 m temperature in the OEn3DVar_SSTperts exper-
iment, Fig. 31 shows how the CRPS evolves as a function of forecast lead time when comparing with
observations and ECMWF analyses. The CRPS of the Control and OEn3DVar_SSTperts experiments
start at the same value at the beginning of the forecast while the CRPS in experiment OEn3DVar is
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Figure 28: Deterministic scorecards showing the impact on RMSE for different variables, regions and
forecast lead times. The left shows the impact on RMSE compared with observations while the right
shows the impact compared with ECMWF analysis. The top plots show the change in scores of experi-
ment OEn3DVar compared to Control while the bottom plots show the change in scores of experiment
OEn3DVar_SSTperts compared to Control. An upward pointing green triangle indicates an improvement
over the Control while a downward pointing purple triangle indicates a degradation. Boxes which are
shaded have statistically significant changes.
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Figure 29: Ensemble scorecards showing the impact on CRPS for different variables, regions and lead
times. The left shows the impact on CRPS compared with observations while the right shows the impact
compared with ECMWF analysis. The top plots show the change in scores of experiment OEn3DVar
compared to Control while the bottom plots show the change in scores of experiment OEn3DVar--
SSTperts compared to Control. The symbols mean the same as in Fig. 28 but for CRPS rather than
RMSE
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Figure 30: Ensemble spread (dotted) and RMSE of the ensemble mean (solid) for temperature profile
compared with ECMWF analysis for the 6 hour forecast (left) and 5 day forecast (right) in the tropics.

larger at all lead times. The OEn3DVar_SSTperts CRPS increases more quickly than that of the Con-
trol experiment through the forecast. The RMSE and ensemble standard deviation are also shown on
Fig. 31 which shows that the RMSE of the ensemble mean is similar in all of the experiments. The en-
semble spread is smaller in the OEn3DVar experiment than the others (supporting what was shown in
Fig. 30) but the spread in OEn3DVar_SSTperts is similar to that of the Control experiment, so the large
change in CRPS is not easily explained. Fig. 32 shows that there is a small change in the mean error
for the ensemble mean when compared to ECMWF analyses with the OEn3DVar_SSTperts experiment
having a larger positive bias than the Control experiment, so perhaps this contributes to the increased
CRPS.

The other aspect of the summary scorecards which degraded was in the Northern Hemisphere geopo-
tential height. Fig. 33 provides more detail on this showing the ensemble spread and RMSE of the
ensemble mean of the geopotential height in the Northern Hemisphere as a function of height at 24
hour lead-time. Against the observations, the OEn3DVar_SSTperts experiment has a larger RMSE
compared to the Control experiment with a very similar spread. In the next section we look at the geo-
graphical differences in selected atmosphere fields to try understand more about this and other results
from the assessment of the CRPS scorecards here.

4.2.3 Impact on atmospheric ensemble mean and spread

The time-averaged ensemble mean surface temperatures seen by the atmospheric model (including
over the ocean, sea-ice and land) are different over large regions in the OEn3DVar and OEn3DVar--
SSTperts experiments, as shown in Fig. 34. Both experiments have a very large positive difference
compared to the Control experiment in the mean surface temperature in the Arctic, following as expected
from the sea-ice results presented earlier. There is also a large negative difference in the Southern
Ocean in both experiments. There is a dipolar structure to the changes in the North Atlantic Current
south-east of Newfoundland.

The ensemble standard deviation for the surface temperature (as shown in Fig. 35) is significantly lower
in the OEn3DVar experiment than the Control, except for over the Arctic where there is an increase in
spread. At a lead-time of 5-days the spread in this experiment has increased somewhat, but is still much
lower overall than the corresponding spread in the Control. At 5-days, there are some regions where the
spread is larger than in the Control such as in the Gulf Stream, Kuroshio and ACC. However, the spread
is still significantly lower, particularly in the northern extra-tropics and the upwelling regions (e.g. to the
west of the Sahara Desert and to the west of California). The spread in the Arctic region at 5-day lead
time is actually smaller than in the Control, in contrast to the change there at the start of the forecast.
The surface temperature spread in the OEn3DVar_SSTperts experiment is much more similar to the
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Figure 31: CRPS (top) and RMSE (bottom) in the tropical 2 m temperature (K) as a function of lead time
calculated using observations (left) and ECMWF analyses (right).

Figure 32: RMSE and mean error for the tropical 2 m temperature (K) ensemble mean and control
member compared to ECMWF analyses as a function of lead time.

© Crown Copyright 2023, Met Office 38 of 55



== Met Office

Figure 33: Ensemble spread (dashed) and RMSE of the ensemble mean (solid) of the geopotential
height (m) compared to observations (left) and ECMWF analysis (right) in the Northern Hemisphere at
24 hour forecast lead-time.

Control, which is expected since we set the magnitude of the additional SST perturbations to achieve
this. The pattern of differences in the Arctic region is similar to the pattern seen in the OEn3DVar
experiment with an increase in spread at the start of the forecast and a reduction after 5-days in that
region. At 5-days lead time the increase in spread in the Gulf Stream, Kuroshio and ACC regions is
more obvious and is due to the more chaotic nature of those regions being excited by the ocean/sea-ice
perturbations.

Figs. 36 and 37 are equivalent plots to the surface temperature plots above, but for the 1.5 m air tem-
perature. The general results for the ensemble mean 1.5 m air temperature are similar to those seen
with surface temperature. However, the magnitude of changes in the ensemble spread in 1.5 m air
temperature is much lower than the change in spread seen in the surface temperature over most of
the ocean regions, except for the Arctic. This low sensitivity of the spread in near-surface atmospheric
temperature to the ensemble spread in the surface ocean could explain why such large perturbations
to SST are needed to generate spread in the atmosphere. The spread in 1.5 m air temperature in the
OEn3DVar experiment is actually quite similar to the Control experiment over many regions, with the
upwelling regions and equatorial Pacific standing out as having reduced spread. It would be preferable
to be able to dispense with the need for additional SST perturbations in the atmosphere if possible. Per-
haps targeting increased spread in the ocean ensemble to these regions might be sufficient to improve
the overall performance of the coupled ensemble rather than adding the extra SST perturbations based
on OSTIA variability as was done in the OEn3DVar_SSTperts experiment.

The impact of the ocean/sea-ice changes on the ensemble mean atmospheric pressure at mean sea
level is shown in Fig. 38. At T+0 lead time there is almost no change compared to the Control for both
the OEn3DVar and OEn3DVar_SSTperts experiments since the PMSL is strongly constrained by the
atmospheric DA. At T+120 lead time there are larger changes though still only up to a magnitude of
about 80 Pa. Both experiments show a reduced PMSL over the Arctic. They also both show a dipolar
structure in the PMSL changes with a positive change over the Greenland Sea (and Greenland itself in
experiment OEn3DVar) and a negative change over Iceland. There are many changes in the Southern
Ocean region though not anything very systematic, except a small reduction in PMSL over Antarctica
in experiment OEn3DVar_SSTperts. The spread in PMSL is shown in Fig. 39 where there is almost
no change in spread from the ocean/sea-ice changes at T+0 as might be expected. At T+120 there
is a large reduction in PMSL spread in the OEn3DVar experiment in the Northern Hemisphere. The
experiment OEn3DVar_SSTperts has less of a reduction in spread overall, though there is quite a large-
scale reduction in the Greenland and Barents Seas. As with previous results the high sensitivity of the
results seen at high latitudes motivates specific attention being paid to improving the sea-ice ensemble
in future work.
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Figure 34: Surface temperature ensemble mean (K) at T+0 (left) and T+120 (right) averaged over
forecasts initialised between 1st — 15th January 2020. Top plots: Control, middle plots: OEn3DVar
minus Control, bottom plots: OEn3DVar_SSTperts minus Control.
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Figure 35: As for Fig. 34 but for surface temperature ensemble standard deviation (K).
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Figure 36: As for Fig. 34 but for 1.5 m air temperature ensemble mean (K).
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Figure 37: As for Fig. 34 but for 1.5 m air temperature ensemble standard deviation (K).
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Figure 38: As for Fig. 34 but for pressure at mean sea level ensemble mean (Pa).
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Figure 39: As for Fig. 34 but for pressure at mean sea level ensemble standard deviation (Pa).
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One interesting result is that for most of the short range (6 hour) forecast statistics it appears that
addition of SST perturbations to the SST that the atmosphere ensemble sees makes little difference to
the ensemble spread of SSTs in the ocean. This most likely because the SST is heavily constrained
by the assimilation due to the dense sampling of SST data. This interpretation is supported by looking
at the difference in the ensemble spread of OEn3DVar_SSTperts compared to OEn3DVar for the short
range and longer range forecasts (see Fig. 40). This shows a marked increase in SST spread when
SST perturbations are applied on day 5 of the forecast, but little difference on day 0. The spread is
particularly increased in the tropics and Southern Hemisphere (the summer hemisphere in January).

Figure 40: SST ensemble mean spread difference plots (°C) at T+0 (left) and T+120 (right) averaged
over forecasts initialised between 1st — 15th January 2020 for OEn3DVar_SSTperts minus OEn3DVar.
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4.3 Impact of ocean hybrid DA on the ensemble

One of the advantages of ensemble systems is that the ensemble gives uncertainty information about
the forecasts. This information is also useful for data assimilation as it can be used to give an estimate
of the background error covariance. A method to use this information in the data assimilation is hybrid
ensemble variational assimilation (Hybrid EnVar).

A hybrid B matrix is a linear combination of the localised sample ensemble covariance matrix with the
modelled covariance matrix:
By, = (1 - 82)Bm + 67B. (1)

where 32 is a weight which controls how much the modelled covariance B,,, used in standard 3DVar
NEMOVAR, and the ensemble based covariance B., contribute to the overall covariance B,;,. Note the
overall weight for both components always adds up to 1. We call the case where g, = 0 standard 3DVar,
the case where 5, = 1 3DEnVar and the case where 0 < . < 1 hybrid-3DEnVar, following Lorenc &
Jardak (2018).

In section 4.1 we showed that the hybrid-3DEnVar experiment has significantimprovements in ensemble
reliability and the fit to observations when compared to the other experiments . We explore a little why
this might be and discuss more about the impact of hybrid DA in this section.

We introduce a new experiment OHybrEn3DVar08 where the ensemble component is given a weight of
0.8 compared to OHybrEn3DVar where the weight is 0.5. To aid distinguishing the hybrid experiments
we denote the experiment named OHybrEn3DVar elsewhere in this report, as OHybrEn3DVar05 in this
section.

The SST increments for the first cycle on 1st Dec 2019 at 06Z are shown in Fig. 41 comparing the
3DVar ensemble results and the two hybrid experiments. The main thing to note is the increments are
rather similar with a slight reduction in the increments away from the Gulf Stream front for the hybrid
experiments along with smaller scale increments near the front.

South to north vertical sections across the Gulf Stream are plotted for the experiments in Fig. 42. A
striking feature is the strong increments which extend to below 800 m along the Gulf Stream front which
are not seen in the 3DVar case.

SST increments and temperature increments at 200 m depth in the Indian ocean on the first cycle are
shown in Fig. 43. For both the hybrid DA experiments there is an area of strong small scale increments
in the western Indian Ocean centred at around 5-10°N and 50—60°E. The increments are particularly
strong in OHybrEn3DVar08.

After 15 days of the trials running we see some spurious small scale features in the surface temperature
in the western Indian Ocean in OHybrEn3DVar08, as shown in Fig. 44. And a few days after this the
model blew up. It is unclear why this problem was not seen previously in the ocean only experiments of
Lea et al. (2022) but the change to 6 hourly cycling and the consequent reduction in data assimilated
on each cycle is a possible reason we did not see this issue previously. The other option is that we
are triggering a coupled instability, but given that we already see the problem starting on the first cycle
using an ensembile initialised from previous ocean only runs this seems unlikely.

The idea of doing hybrid DA and not wholly ensemble based DA is that the modelled covariance sta-
bilises the data assimilation results. If the ensemble is “noisier” with shorter time windows due to fewer
observations being in the assimilation time-window there is an argument for increasing the weight given
to the modelled part of the covariance and reducing the weight given to ensemble part of the covariance
as we have done here.
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(a) OEn3DVar (0.5 m) (b) OEn3DVar (0.5 m)

(c) OHybrEn3DVar08 (0.5 m) (d) OHybrEn3DVar05 (0.5 m)

Figure 41: Background SST (in °C) and assimilation SST increments (°C), on the first cycle, comparing
hybrid-3DEnVar experiments sand 3DVar for the unperturbed ensemble member.

(a) OEn3DVar (b) OEn3DVar

(c) OHybrEn3DVar08 (d) OHybrEn3DVar05

Figure 42: Vertical sections, on the first cycle, of background temperature from north to south across the
Gulf Stream at 66°W (in °C) and vertical sections of ocean temperature increments (°C), at the same
location and time, comparing hybrid-3DEnVar experiments and 3DVar for the unperturbed ensemble
member.
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(a) OEn3DVar (0.5 m) (b) OEn3DVar (200 m)
(c) OHybrEn3DVar08 (0.5 m) (d) OHybrEn3DVar08 (200 m)
(e) OHybrEn3DVar05 (0.5 m) (f) OHybrEn3DVar05 (200 m)

Figure 43: Temperature increments at the surface and at 200 m (in °C), on the first cycle, comparing
hybrid EnVar experiments and 3DVar for the unperturbed ensemble member.
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(a) OEn3DVar (0.5 m) (b) OEn3DVar (200 m)
(c) OHybrEn3DVar08 (0.5 m) (d) OHybrEn3DVar08 (200 m)
(e) OHybrEn3DVar05 (0.5 m) (f) OHybrEn3DVar05 (200 m)

Figure 44: Ocean model temperature at the surface and at 200 m depth (in °C) comparing hybrid EnVar
experiments and 3DVar for the unperturbed ensemble member.
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5 Summary and discussion

5.1 Summary

We have included the ocean ensemble system developed previously (Lea et al. 2022) into the coupled
NWP suite and run trials to assess the impact of ocean changes on the different components (ocean,
sea-ice and atmosphere) of the coupled ensemble forecasts. The technical implementation has worked
as expected and for the most part the upgraded system works well.

The ocean ensemble results are comparable to the previous uncoupled ocean ensembile results. In par-
ticular we have an ocean ensemble mean which gives smaller RMS errors against observations com-
pared to the deterministic forecast for most fields. The hybrid-3DEnVar approach in the ocean delivers
significantly improved SLA and profile statistics for the ocean both in the analysis and in the forecast.
There are some areas which need further attention in the ocean ensemble generation though. The
SST spread is somewhat too small compared to the uncertainty in some regions. The hybrid-3DEnVar
scheme also generated some instabilities in the western Indian Ocean when too much weight was given
to the ensemble part of the background error covariances, so some further work to understand this in
more detail would be useful.

Sea-ice variables did not receive much attention in our previous ensemble development work so we
have assessed some aspects here. The impact on the sea-ice itself was reduced RMS errors in the
ensemble mean sea-ice concentration from the hybrid-3DEnVar in the ocean, probably due to improved
ocean fields near the ice edge. However, the coupled ensemble was shown to be very sensitive to the
way the sea-ice ensemble behaves. Small changes in the ensemble mean sea-ice concentration of only
a few percent resulted in significant changes to the grid-box mean surface temperatures seen by the
atmosphere (of a few degrees) in the Arctic winter due to the large surface sea-ice/open water tempera-
ture contrasts. This demonstrates the need to improve the sea-ice ensemble generation, particularly to
develop improved methods for these non-Gaussian variables. Also, the addition of SST perturbations
in the atmospheric part of the ensemble appears to degrade the sea-ice ensemble.

The atmosphere ensemble performance was shown to be sensitive to the ocean ensemble changes,
with a large degradation in ensemble performance (CRPS scores) when the existing atmospheric SST
perturbations were replaced by the ocean ensemble SSTs. While the ocean ensemble SSTs are slightly
underspread compared to the uncertainty in the ensemble mean, the magnitude of the SST spread
needed to obtain good performance in the near-surface atmospheric ensemble is significantly larger
than the true SST uncertainty. The spread in 1.5 m air temperature is fairly insensitive to the SST
spread (compare the middle panels of Fig. 35 and Fig. 37) which perhaps explains why such large SST
perturbations are needed to generate spread in the atmosphere, which should ideally be introduced
by improving the representation of uncertainty in other aspects of the atmospheric boundary layer.
Still, when we re—introduce some of the extra SST perturbations needed by the atmosphere on top
of the ocean ensemble developments, we end up with a system with similar ensemble performance
in the atmosphere to the Control, a fairly reliable ocean ensemble, and improvements to the ocean
performance possible through the use of hybrid-3DEnVar.

5.2 Directions for future work

We plan to explore and address particular aspects of the coupled NWP system which may have been
degraded by the ocean ensemble. This will include work to increase the SST spread in the ocean so
that it has improved reliability compared to the results shown here. Ideally we would also reduce or
even eliminate the need for additional SST perturbations due to their adhoc nature. To understand how
to do this will need more detailed understanding of the workings of the atmosphere boundary layer
and requires a coordinated project with inputs from ocean, sea-ice and atmospheric boundary layer
modelling and data assimilation scientists.
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We also plan to work on developments to the ensemble aspects of the sea-ice component of the coupled
ensemble. This includes modifying the observation perturbation code to deal more appropriately with
non-Gaussianity as well as introducing sea-ice model perturbations. The move to the GC5 model in
upcoming operational updates means that the sea-ice model is changing from CICE (as used here) to
the SI3 model which is part of the NEMO software. This will make it easier to use the existing ocean
model perturbation code for the sea-ice part and make use of sea-ice ensemble perturbation methods
developed by other NEMO developers.

There will need to be work on the new JEDI-based Observations Processing Application (JOPA), in
order to implement ocean and sea-ice observation perturbations in future versions of the coupled NWP
suite. A longer term goal is to explore running the ocean data assimilation in JEDI which will provide a
convenient framework for potentially implementing more strongly coupled data assimilation.

Due to the prioritisation of other developments to the coupled NWP system there will be a delay of sev-
eral years before the ocean ensemble developments explored here will be implemented operationally.
We will need to evolve the ocean ensemble system to keep up with these developments. The plan for
coupled NWP is for all the coupled ensemble forecasts to run the ocean at 1/12° resolution (compared
to the current 1/4° resolution). In order to be ready for this we will explore, with the ocean only ensem-
ble suite, running our ocean ensemble at 1/12° resolution. To make this feasible, we will improve the
computational performance of NEMOVAR, and hybrid-3DEnVar in particular, by running the ensemble
localisation on a coarser grid.
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