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3.1 INTRODUCTION

3.1.1 The requirement for numerical models

In setting out to produce a weather forecast the meteorologist is first
of all faced with the task of assimilating a large quantity of data and
reducing it to a form which is related in some way to the physical and
dynamical processes occurring in the atmosphere - usually in terms of pressure
patterns and fronts at the surface and of the contours of isobaric surfaces
aloft. This is the analysis stage. He then has to estimate how the state of
the atmosphere is likely to change during the forecast period, using his know-
ledge of the typical life histories of various types of feature, together with
guide~-lines and rules derived from simplified versions of the equations of
motion. Finally, he must interpret his forecast charts to satisfy his
customers' needs, sometimes by further processing, but often by the use of
experience, physical reasoning or statistical relationships to predict the

sequence of weather or the behaviour of individual elements at a given place.

It is hardly surprising that, when electronic computers appeared on the
scene, attention was turned to possible ways of applying them to some of the
above tasks. Developments in computer technology have been very rapid
indeed, and so have those of the meteorological models, with new models often

being derived in anticipation of advances in computer performance.

The virtues of the computer lie in its ability to process large amounts
of data quickly and accurately according to precise instructions, and to
carry out complex and laborious arithmetical manipulations at a great speed.
Yet the quality of the products is determined entirely by the man-made
procedures for handling the data and performing the calculations. In the
analysis stage of a meteorological model, for example, the quality-control
routines may reject a perfectly good observation or accept one which contains
an error. This is because the computer model, however sophisticated, responds
inflexibly to the input, whereas a human being, faced with the same observa-
tions, is able to allow himself greater freedom in exercising his judgement.
Again, the forecast model may not reflect adequately all the complex physical
and dynamical processes occurring in the atmosphere, or the approximations
that have to be used in the treatment of the differential equations may lead
to errors. The human forecaster can quickly learn the model's shortcomings

after some experience of its use, and can apply some degree of correction to
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the computer products. For these reasons, most if not all meteorological
services use a combination of human skills and computer techniques - the
'man-machine mix'. The relative amounts of man and machine in the aggregate
vary, depending to a large extent on the characteristics of the model, but
also on the attitude of the management of a particular organization and, to
some degree, on the individual forecaster. The aim in all instances is to
make the fullest and most efficient use of both the computer, with its
capability for performing vast amounts of arithmetic, and the human being
with his capacity for exercising judgement of a kind not yet programmable

for the computer.

3.1.2 A brief history

The first attempt to produce a numerical forecast was made, long before
electronic computers were dreamed of, by L. F. Richardson' in the early 1920s.
In many ways his approach was similar to today's: in particular, he used the
basic equations of motion for his calculations, and he introduced the effects
of a number of physical processes such as radiation, condensation, etc. The
forecast was a failure, partly because of the inadequacy of the data, but
also because there were fundamental problems in the formulation of the model
and in the mathematical procedures. However, it does appear that if the
calculations could have been continued they might have settled down, after
initial large oscillations, to more reasonable values. The production of
forecasts in this way was far from a practicable proposition even if the
products had been acceptable - it would have required a battery of some

thousands of assistants merely to keep pace with actual events.

Richardson based his approach on the so-called 'primitive equations'
which, as the name implies, are the basic ones such as the momentum equation
relating the acceleration of the air to the pressure gradients. The dis-
advantage is that the equations describe atmosphefic motions on all scales,
including short-period gravity and sound waves, which are too small in scale
to be dealt with directly by the numerical model, but which are likely to
amplify rapidly and unrealistically and ruin the calculations unless very
short time-steps are used in the integrations. A second disadvantage is that
the accelerations (the terms needed to predict the development and movement

of systems) are given as the small differences between larger terms.

These two major difficulties led to the primitive-equation approach being
dropped for the first numerical models to be used operationally. Instead,

use was made of the vorticity equation (section 2.2.5.1 of Chapter 2),
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relating changes in the component of vorticity about a vertical axis to the
horizontal divergence of the motion. The relationship between the wind and
the pressure field is required in this type of model; in early experiments
the assumption was generally made that the flow was geostrophic, but more
sophisticated approximations were made later. This technique, properly
applied, ensured that the small-scale motions were filtered out (the models
are often referred to as 'filtered models'), leaving only those features

meteorologically significant on a scale of 1000 kilometres or more.

The main advantage of the filtered models was that the meteorologically
important developments could be studied with a comparatively simple computa-
tional scheme which did not take up an excessive amount of computer time or
storage. The first model used for prediction from real data (Charney et alii?)
made the further assumption that the atmosphere was barotropic, and produced
surprisingly good results, the derived motions closely resembling the flow at
500 millibars. In later models the three-dimensional, baroclinic structure
of the atmosphere was taken into account by applying the vorticity equation
at two or three levels in the atmosphere, enabling predictions to be made of
the pressure pattern near the surface and of the vertical motion on a broad
scale, giving some idea of the likely areas of cloud and precipitation.
Within these models some allowance can be made for topography, friction and
diabatic effects, and they can be made to provide useful indications of move-

ment and development for periods up to 72 hours.

The main disadvantage of the filtered models is that they deal satis-
factorily only with the major synoptic systems, on a scale of 1000 kilometres
or more. Since many of the important weather-producing features are smaller
than this, there are considerable benefits to be gained by the use of the
primitive~equation (PE) model; it has the additional advantage that it can
more readily and more directly incorporate the effects of friction, topo-
graphy, turbulence, condensation, etc. The operational use of PE models has
been made possible by the remarkable increases in speed and capacity of
electronic computers in recent years, which made feasible the use of
sufficiently short time-steps to overcome the problem of short-period oscilla-
tions, and, more recently, by improvements in the integration schemes which
enable longer time-steps to be used than hitherto. PE models are in routine
use in many countries, including the United Kingdom; the rest of this
chapter will deal almost solely with PE models, and in particular with the
10-level model in use in Britain. The treatment will be, as far as possible,

non-mathematical, although equations will sometimes be necessary to illustrate
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the basic principles. Nor will a great deal of detail be given because
improvements are continually being made to the model, and it has been thought
better to concentrate on aspects which are unlikely to change radically for

some considerable time.

3.1.3 The operational numerical analysis and forecasting system

The forecast model is only one part of the overall numerical forecasting
system. This starts with the extraction of the data required for the analysis
from the coded messages received at the meteorological centre; wherever
possible, quality control is carried out in various ways, such as checking
against climatological values, ensuring that variations in time and space
are reasonable and that there is internal consistency of the data within each

message. Next is the analysis stage, in which polynomial functions are fitted

to the data, both in the horizontal and in the vertical, to achieve a high
degree of consistency. The data being analysed are in fact used to modify
'background' fields, forecasts for the appropriate time based on earlier
data, so that an element of continuity is maintained and gaps in the observa-
tional material are filled. At this stage human intervention plays an
important part, 'correcting' what may appear to be wrong decisions by the
complex but rigid quality-control procedures (the human analyst is not always
right), and amending the analyses either directly or by the insertion of
'bogus' observations. The topic of intervention is discussed in rather more

detail in Chapter 11 - Upper-air charts.

In the filtered models, the analysed fields were completely specified by

the distribution of geopotential on a given isobaric surface. For the

primitive-equation models, however, it is necessary to define both the geo-
potential field and the wind-velocity field. The two fields must balance,
otherwise fictitious motions are set up and amplify rapidly: the process of

fitting the data in this way is known as 'initialization'.

After the analysis and initialization procedures have been completed, the
forecast model itself takes over. The equations cannot be integrated
analytically, and the calculations must be performed using the finite-difference
forms. These mathematical techniques necessarily involve some approximation,
which leads at times to errors, such as the slow movement of ridges and troughs
in the westerlies; these can be recognized and reduced to some extent but not
eliminated entirely. Physical processes, such as surface friction, diffusion,

phase changes and precipitation of water, and exchange of heat with the '

surface, are included and allowance is made for the effects of topography and

of small-scale convection.
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Finally, the output must be put in a form to suit the customer. For some
purposes, such as flight-planning, the output may be supplied to the customer
without modification, while for others subjective amendment may at times seem
worth while, as for example when forecasting upper winds for navigational
purposes. Some forms of output are provided for the guidance of the
subjective forecaster: the objective rainfall predictions and thermal
vorticity charts, for example, are valuable for the estimation of frontal
positions on the surface prognosis. More will be said about these topics in

Chapter 13 - Computer prognoses: types and uses.

3.2 SPECIFICATION OF THE UNITED KINGDOM 10-LEVEL MODEL

The 10-level primitive-equation model actually comprises two models, the
'octagon' version and the 'rectangle' version. The octagon model covers the
northern hemisphere north of about latitude 15°N; the grid points, just over
3000 in all, are regularly spaced on a polar stereographic map projection,
with a separation of 300 km at 60°N. The rectangle model covers western
Europe and much of the North Atlantic Ocean, the grid spacing being 100 km
at 60°N on a polar stereographic projection, the total number of grid points
again being rather over 3000. The grid systems for the two models are shown

in Figure 1.

Pressure is used as the vertical co-ordinate, the atmosphere from 1000 mb
to 100 mb being modelled at ten levels at intervals of 100 mb. The dependent
variables, calculated from the prognostic equations (see 3.3 below) are the
horizontal wind components (# and v), the thicknesses (b’) of the 100-mb
layers, and the geopotential of the 1000-mb surface (h,). The geopotential
of the other co-ordinate surfaces are derived from b,y and the values of b/,
while the vertical velocity is obtained from the equations of continuity.

The humidity mixing ratio is also predicted in the layers up to 300 mb, but

the atmosphere is assumed dry above.

In any finite model, the boundary conditions must be specified. In the
octagon forecasts the lateral boundary values are assumed to remain constant
throughout the period, while those for the rectangle model are derived from
the octagon forecasts. The upper boundary condition for both models is that

the vertical velocity is zero at 50 mb.

The following sections will deal with the remaining features of the model -

the system of equations and methods of solution, the problems of analysis and
initialization, and the additional effects incorporated in the model (e.gs

topography, friction). Finally, the place of the model in the operational
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forecast suite will be discussed, together with the methods of providing

output for various requirements.

3.3 SYSTEM OF EQUATIONS

Since the horizontal co-ordinates are based on a polar stereographic map
projection, the fundamental equations must be rewritten to allow for the
variations of scale with latitude. This is done by the introduction of a

map magnification factor, m, defined as the ratio of an infinitesimal distance
on the map to the corresponding distance on the earth's surface: it is given
by m=2/(1+ sing) where ¢ is the latitude.

The notation used is mostly standard, but for ease of reference a list is
given at the beginning of this chapter (page ii). The treatment will be

fairly brief; for greater detail the reader should consult References 3 and 4.
The equations may be simplified if we write:
vV* = V/m, = t/m, p=m,

The vector operator, V, is two-dimensional, i.e.

The principal equations comprise the momentum, thermodynamic and humidity
equations and the equation of continuity. The first three are termed
prognostic equations because they contain derivatives with respect to time.
The last is purely diagnostic, relating the change of vertical velocity with
pressure to the horizontal divergence of the flow. The hydrostatic equation,

also diagnostic, is implicit in the derivation of the thermodynamic equation.

The basic equations are as follows:

(a) Momentum equation

* *
%}'—+ p(VET)V*+ w%—;’- + FkaV*+ gVh + 4|V Yy = - ¢ g——:f i

The first three terms of this equation add up to the horizontal component of
the acceleration experienced by a given particle embedded in the flow, that
is the acceleration following the flow. (A more familiar form of equation
for the total derivative, d/dt, (the rate of change of a property following
the flow) is
LR
dt dt dx dy dz
where d/d¢ is the local rate of change of the property, and w(d/dz) = @ (3/dp).)

The fourth term is the Coriolis term, k being a unit vertical vector, while
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the fifth term is the pressure gradient force. The final term on the left-
hand side (l.h.s.) is to compensate for changes of the map magnification
factor. The right-hand side (r.h.s.) of the equation represents the effect
of the surface frictional stress. Equation 3.1 is simply a statement of
Newton's second law of motion, which postulates that 'the rate of change of
momentum of a body, relative to axes fixed in space, is equal to the vector

sum of the forces acting on that body'.

(b) Thermodynamic equation

3%b * o (9h b wll-K)dh w0
399 + V.V(ap B wapz + > i T S (5)

In this equation, 4 is the height of an isobaric surface, and 61,/8p is the
thickness of a layer of unit pressure difference. The equation may seem
complex, but its physical meaning is straightforward enough. The last term
on the 1.h.s. and the term on the r.h.s. together relate the added heat, Q,
to the changes of state of the air, provided that the state of the air is
not influenced by its motion. The first three terms on the 1.h.s. give the
rate of change of thickness, following the flow, of a layer of unit pressure
difference: through the relationship between the thickness of a layer and

its mean temperature they may be regarded as representing temperature changes.

Alternatively, the third and fourth terms can be shown, after some
manipulation and substitution of the hydrostatic relationship, to be pro-
portional to the product of the vertical velocity,a>(=dp/dt), and the
difference between the actual lapse rate, - (aT/az), and the dry-adiabatic
lapse rate, I, that is to say they provide a measure of the static stability.
The local thickness changes (first term on l.h.s.) can then be seen to be the
result of horizontal advection (second term on l.h.s.), vertical motion (third

and fourth terms on 1l.h.s.) and added heat (r.h.s.).

If we replace (3h/3p) by (-b’/Ap), where b’ is the thickness of a layer

defined by the pressure difference Ap, equation 3.2 becomes

ﬁz+ﬂVﬂVbﬂ+wﬁ - XxQA4p SR8 2)
atr &y

where B = [(db7/3p) + w(1- k) /p], the 'stability term'. It is this form of
the equation which is used, with Ap = 100 mb, in the 10-level model, b° now

being the thermodynamic variable.
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(¢) Humidity equation

ar+;1V*.Vr+m--a—L=W. soe e A83)

dt ap
This equation relates the change of humidity mixing ratio, following the flow,

to the amount of water vapour added or lost by evaporation, condensation or

precipitation.

(d) Continuity equation

ﬂ’-’-#divv*: 0. ...-(3.4)
ap

The vertical velocity, @, is calculated by integrating (9w/bp from the 50-mb

surface downwards using the upper boundary condition, o = O at 50 mb.

3.4 FINITE-DIFFERENCE SCHEMES

3.4.1 Introduction

Whereas the basic physics of the model as so far described are straight-
forward enough, the development of satisfactory and efficient means of
integrating the differential equations poses many problems, and a good deal

of effort has had to be expended in finding solutions.

The integration process requires the independent variables to be specified
at a set of grid points: this is the function of the analysis and initializa-
tion stages which will be described in the next section. Finite-difference
estimates of the space derivatives of the independent variables (b’ , u* »* and
r)are found for each of the appropriate grid points, and the finite-difference
forms of the governing equations are used to obtain the time derivatives.
These are then used in a truncated Taylor series to yield the new values of
the variables one time-step, &t, ahead. Not all the variables are specified
at all points of the grid, the precise disposition of the variables, and hence
the precise form of the finite-difference equations, depending upon the
integration scheme being used. Three such schemes have been used in the four
years since the introduction of the 10-level model into operational use in
August 1972. A full description of these schemes is well outside the scope of
this handbook, but an attempt will be made to outline the principles on which
the calculations are based; for further details the reader should consult

References 3 and 4.

3.4.2 The Lax-Wendroff scheme

The basis of the Lax-Wendroff scheme is the calculation of the value (zn*l)

of a variable Z at time (n+1)8¢t from its value, Z,, and the first two time
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derivatives Z,= (92/d¢) , Zo= (8*z/ 3:?), at time n 8¢, using a truncated Taylor .

series:

Z,,=2,+8t2Z, + %827, s a3

The time derivatives cannot be calculated directly and a two-step approx-
imation has to be used. The first step is a forward time-step over half the
period of integration:

Zo,i = 2o+ 48t 2Z o v e (3.60)

New values of the variables at ¢ = (n+%)8¢ are then calculated and used in
the second step, which is a centred time-step over the whole of the integration
period, 8t

Zooy = Zot 8t Z,,y e SSEE)

By differentiating equation 3.6a with respect to time and substituting in
equation 3.6b, the process can be seen to be equivalent to the use of equation
3.5. The time derivatives, in and En, are calculated, using the finite-

difference form of the primitive equations by the methods indicated below.

The 'staggered grid' used with the Lax-Wendroff integration is shown in
Figure 2, with the disposition of the variables at times n 8¢, (n+%)d¢ and
(n+1)8t. It will be noted that there is only one variable at most grid
points, and that the grid for the intermediate time is displaced half a grid
length in each of the x- and y-directions from that at the main times. This
'staggering' is essential for the proper operation of the Lax-Wendroff scheme.
The vertical disposition of the variables is shown in Figure 3; «, v and b

are calculated at the ten isobaric co-ordinate surfaces, while b’ (or ab/a;:),

r and o are derived at the intermediate levels, with o also at 1000 mb.

The use of the staggered grid and the finite-difference form of the
equations will now be illustrated by a simple example. Figure 4(a) shows a
small section of the grid with the variables appropriate to each grid point.
In the calculation of a new value of v at A at (n+ 1)6¢, it is first of all
necessary to calculate the variables at the intermediate time, (n+ %)8:¢, as
shown in Figure 4(b). It will be noted that the variable # occurs at A at the
intermediate time, so that one of the values required is #,,, at A at time
(n+%)8¢: this is calculated from the momentum equation (page 7) and equation

3.6a. Consider the advection term for the z-component of the momentum equation:

du du |
u -a—x + v W ’
this becomes, in terms of the averages and finite differences between grid .
points,
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‘ A n+1

6t n+%

FIGURE 2. Staggered grid used in the Lax-Wendroff
integration scheme

11



12

ll1

u 3

Chapter 3

Handbook of Weather Forecasting

mb
.............................. w=0 at 50mb
100 hou,v
.............................. /)f(;)
200 hou,v
.............................. h!w
300 h,u,v
.............................. }l:)“a)
400 hyu,v
.............................. h:)'.a)
500 h,u,v
.............................. Kro  dp
600 h,u,
........................... hirw
700 h,u,e
.............................. hr.w
800 h,u,v
.............................. hlr.w
900 h.u.z'
............................... hlr.w
1000 /1, uur,w

FIGURE 3. The vertical deployment of variables in the
10-level model

(a) At time n§¢
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(b) At time (n+%) 8¢

FIGURE 4. Diagram to illustrate the finite-difference scheme
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41("1“‘2’“"3+ #y) x ﬁ‘[(“z“ﬁ) = (uy + "3)] + z—uf [(u,+ u,) - (“3+'44)].
The remaining terms of the equation are calculated in a similar way, the time
derivative of u#, z, is calculated from the momentum equation and used to
compute #,41,. The other grid-point variables are treated in the same way, and

the whole process repeated to obtain the values of the variables at (n+1)5s.

Before the vertical velocity is computed from the continuity equation, the
effects of frictional stress and horizontal diffusion are incorporated. This
is done by means of a sihple forward step over the whole of 8¢, the product
of 8¢ and the tendencies, 2F and éD, due to these effects simply being added
to equation 3.6b:

Toiv ™ Zy+ 80T % % 00 (Zs)h DI(E):

where Z, is the finite-difference equivalent of KV22=[(022/6x2) + (322/33'2)]’(,
and Z is the meteorological quantity under consideration, e.g. # or ». This
term, being a second-order derivative, has to be calculated from grid-point
values over a wider area than is necessary for the first space derivatives.
The evaluation of iF is discussed in 3.6.2.1 (page 21). Then, remembering
that © is found at intermediate levels, we have for the calculation of ® at
one level (k+%) from its value at another level (k-%),

A ]
Oy i = Op_1c - Pa# [(“2_“1)+(”2_”1)]v

the finite-difference form of the continuity equation.

Finally, the effects of Q and W are added to the values of 4°;.; and rg41
as outlined in 3.6.2.2 (page 21).

3.4.3 The split semi-implicit integration scheme

The main disadvantage of most explicit integration schemes for use with
primitive-equation models is that they suffer from instability unless the
time-step is very short. The longest permissible time-step depends upon the
grid length and wind speed; for the rectangle model, with @ = 100 km, the
maximum time-step is about three minutes. This time is determined by the
speed of fast-moving gravity waves which, although forming only an insig-
nificant part of the pressure variation of synoptic-scale systems, may
amplify unrealistically in the model and disrupt the calculations. Implicit
schemes do not have the same stringent stability criterion, and appreciably
longer time-steps may be used to speed up the model's calculations, but
there is a disadvantage in that more complex arithmetical operations are

necessary. Why this is so can be seen if we consider the nature of the
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implicit integration scheme. For the equation
X
o= F(X)

an explicit integration scheme might be

X = Xq.1 + 282 F(X,),

n+1
defining Xp+1 explicitly in terms of values at earlier times. On the other

hand, the integration represented by

sz[F(x,,) & r(x,,”)]

defines X,,; implicitly in terms of itself and earlier values, and the equation

Xns1 = Xnt

must be solved by matrix inversion, often by an iterative method. A compromise
is attained in the semi-implicit schemes in which some terms are treated
explicitly, while those which govern the motion of gravity waves are treated
implicitly. The gravity waves have different modes which travel at different
speeds, and in the scheme devised by Burridge,5 and used for some time in the
10-level model, it is necessary to treat only the two fastest of ten possible

gravity waves implicitly, giving a considerable saving of computation time.

The treatment of the equations is split into two stages - the 'advective!
and the 'adjustment' stages. For the momentum equation (3.1 on page 7), for

example, the terms are split as follows:

(a) Advective stage

IN* . vt Tyves Y L
3¢ p(V.VIV' - @ ap

(the last term being added now to allow for lateral diffusion). This is

L2 vy -, 9T 2(, y*
2|Vl Vi €55 +mKV*(mV*)

integrated forward in time through a single time-step, 8¢, using the Lax-

Wendroff explicit scheme described in the preceding section.

(b) Adjustment stage

av*
dt
After some manipulation, the equations for the adjustment stage yield solu-

- ‘kav*-ng.

tions which correspond to ten gravity-wave modes, each characterized by a
different propagation speed. The three fastest travel at speeds, ¢, of
roughly 300, 100 and 50 m s8?: the maximum time-step is given by

At = a/(V2c)
so that for ¢ = 50 m s a maximum time-step of rather over 20 minutes may be
used and gravity waves of this and lower speeds may be treated explicitly.
The two fastest must, however, be treated implicitly if such a time-step is

to be used.
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The introduction of the split semi-implicit scheme achieved substantial
savings in computer time -~ by a factor of four for the rectangle forecasts

and two for the octagon forecasts.

3.4.4 The split explicit scheme

Again the governing equations are split into advection and adjustment
stages as in the split semi~implicit method. The advection stage is
integrated by a modified Lax-Wendroff scheme in which the first space
derivatives are evaluated to fourth-order accuracy (instead of the second
order as in the original scheme). The adjustment stage is carried out in
three short explicit steps instead of a single implicit step. The result
is that a longer time-step of 30 minutes can be used for the advective stage,
resulting in a reduction in computer time by a factor of two over the semi-
implicit scheme. A more accurate treatment of the Coriolis term is possible
than with the semi-implicit scheme, which at times led to spurious develop-
ment of intense cold pools. The changes resulting from physical processes

are now incorporated into the adjustment stage.

3.4.5 Lateral boundary conditions

In the octagon model the geopotentials of the isobaric surfaces, the
humidity mixing ratios and wind velocities at the boundary are kept constant
throughout the forecast period. For the rectangle forecasts the boundary
conditions are mostly derived from the tendencies interpolated from the
octagon model. In both models, stability near the boundary is maintained by

using an enhanced horizontal diffusion coefficient in a narrow boundary zone.

3.5 ANALYSIS AND INITIALIZATION

Before the procedures of 3.4 can be put into operation, it is necessary to
specify the initial values of the variables at the appropriate grid points
and levels. The means whereby this is done can be divided into two stages -

analysis and initialization.

The analysis stage produces fields, or sets of grid-point values, of the
geopotentials of isobaric surfaces and of the components of the wind velocity.
Initialization is designed to ensure that the wind and height fields are care-
fully balanced in order to avoid the initiation of fast-moving and rapidly

amplifying gravity waves.
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3.5.1 Analysis
The analysed field for a given time and pressure level is based upon the

following:
(a) a background field, usually a 12-hour forecast based on
the analyses for 12 hours earlier;
(b) the observations for that time;
(c) human intervention; and
(d) for certain non-standard levels, interpolation from
the standard levels.

The background field is necessary to fill gaps in areas where observa-
tions are sparse or missing entirely, and also at times to check the validity
of an observation. The method of analysis for contour height which was used
when the 10-level model was first introduced was to fit a quadric surface to
the observations in the vicinity of each grid point, the weight given to each
observation decreasing with increasing distance from the grid point. The
surface had the form

bs= ax? + bxy + by2+ 2gx + 2fy + ¢
where b, is the geopotential of the quadric surface at the point (x,y), the
origin of co-ordinates bheing at the grid point. The coefficients a, b, ¢, f,
g, b are found by the method of least squares, and the procedure is repeated
for every grid point. Allowance was also made for reported winds, to deter-
mine the local contour gradient near an observation and hence, in regions
with sufficient observations, to provide new estimates of the geopotential at
one or more grid points. Curvature of the flow was also taken into account
(see Corby®). The precise way in which the computer model proceeds with the
analysis to ensure vertical consistency and to allow for interpolation between
the standard analysis levels is discussed in a little more detail in Chapter
11 - Upper-air charts, as also are the methods of intervention designed to

improve the analysis at the main standard levels and, indirectly, at all levels.

The analysis of relative humidity has been described by Atkins:’

it is
carried out in much the same way except that the weighting factors fall off
much more rapidly in a direction perpendicular to the isopleths, particularly
when the gradient is strong, than they do in a direction parallel to the
isopleths. Intervention is again used and, in particular, relative humidities
may be estimated from a study of visible and infra-red satellite photographs

of cloudiness.

An improved method of geopotential analysis, known as orthogonal poly-

nomial analysis, is currently in use. The theory has been described by Dixon®
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and by Dixon and Spackman.9 The practical application is similar to the grid-
point analysis described above in so far as the analysis proceeds level by
level, each level being scanned a number of times to allow data rejected by
the quality-control checks to be excluded from the following scans. The geo-
potential at each grid point is derived as in the grid-point analysis (see
Chapter 11 - Upper-air charts), using wind data to supplement the height
information. No correction is made for the asynoptic nature of satellite and
aircraft data, while the latter are also assigned to the nearest standard
level without correction; however, non-standard data are given a lower

weighting than synoptic data.

The next step is that which gives its name to the overall procedure: the
entire set of grid-point geopotentials is fitted, in the least-squares sense,
to a series expansion of empirical orthogonal polynomials. A full description
is outside the scope of this handbook and of interest mainly to specialists,

so only a very brief, simplified account will be given here.

In one dimension, for any set of points x;, where i = 1, 2, ..., N,

will exist a set of pblynomials of the form

fo(x)=a,+a,x + ajx2+ ...+ a x" a5 3.7

wheren= 0, 1, ..., (N-1), such that for all combinations of m and n

; =0 for m#n. %
i=1 fm(xi) fa (x1) #0 for m=n. Rl

Such a set of polynomials is said to be orthogonal over the set of points,

x.. A more familiar interpretation of equation 3.8 is that fn(x;) and f,(x;) are

i*

not correlated when m # n, the left-hand side of the equation being analogous

to the numerator in the expression for a correlation coefficient.

If » is a quantity which varies with x, and the values of b are known for
all values of x;, then b may be expressed in terms of the N polynomials: at

each point
b, = Ay folx;) + @ Fq (%) » s ® @t Frer (%1) s mrren(3:9)

Equation 3.9 is a set of N simultaneous equations, from which the N

coefficients, @, ... a, ,, may be determined, in principle uniquely. In

N-1
practice, the degree, q, of the highest-order polynomial to be fitted, is
mich less than N, and the number of equations consequently much greater than
the number of unknowns: the 'best' values of the coefficients must therefore
be found in some way. Usually this is done by the method of least squares, a

basically similar process to that used for simple linear regression (see
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Chapter 24 - Local forecast studies). In fact, the least-squares solution
for the determination of the q +1 coefficients, as will be seen in the
Appendix (page 29), is particularly simple. The coefficients are given by

expressions of the form
Shf,
ana anz v e ey s 10)

where the summation is taken over all values of x;, i.e.

N
ThE, = 2 b(x;) £ (x;).
i=1
The method can readily be extended to two (or more) dimensions, which

allows, say, a geopotential field to be expressed in terms of the horizontal

co~ordinates, x and y, of a network of grid points:

b(x,y) =2 B.. ¢..(x,y)
T A P

where ¢ii is a set of polynomials orthogonal over the set of grid points. The

least-squares solution for the coefficients,ﬁﬁ, is simply

2hobi;
g o 2R
ij 2¢f,

where the summation is taken over the network of points.

In practice, in the objective-analysis model, since the grid is square,
$;;(xy) may be reduced to #;(x) #;(»): if this could not be done the method
would at present be impracticable because of the enormous demand on the
computer. The power, p, of the highest-order polynomial is much less than
the number of grid points, N, in a row or column of the grid. The fitted
heights are given by the equation

P

i,j=0

where p must be <N. The value of p used in the model varies with the pressure

level and scan, with a maximum value of over 30.

Any observation which differs by too great an amount from a fitted surface
can readily be spotted, and amended or rejected if necessary, providing a

valuable addition to the gquality-control procedures.

- When all pressure levels have been analysed, the coefficients Biiare
fitted in the vertical by another set of orthogonal polynomials, giving a
three-dimensional fit to the original data and helping to ensure vertical

consistency in the analysis.

3.5.2 Initialization

In general, the primitive equations are capable of predicting the motion

of gravity waves. Gravity waves of small amplitude occur in the real atmos-

phere, but when analysing initial conditions it is not easy to distinguish
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between those wind and height fields which lead to realistic gravity-wave
predictions, and slightly different fields which lead to the production of
large-amplitude gravity waves which disrupt the forecast calculations. For
this reason, the initialization stage has been designed to eliminate gravity

waves entirely during the initial stages of the forecast.

Thompsonloshowed that a rotating atmosphere in hydrostatic equilibrium
is unable to support gravity-wave propagation if the total rate of change of
the divergence, D, of the horizontal wind is zero, i.e.
dp _[3 (1 i) X e
dt_[at+' "ax+"ay+“’ap"° S A3TEL)

and, to ensure that this condition does not change with time,

d (dp
5_‘((‘_‘ S0 bt (A
These equations, however, are not in a suitable form for an analysis scheme,

since they contain time derivatives, and they must be converted into purely
diagnostic expressions for use in the initialization procedure. This is
done for equation 3.11 by substituting for du/d: and au/a: from the momentum
equation (page 7); ignoring friction and diffusion we now have a form of

the balance equétion:

[( ) ( ) (g;)]'f(+m8V2b+kAV~Vf+gV--Vb=o. (3.0 %)

To fulfil the condition of equation 3.12, the local derivative of equation 3.13
with respect to time should also equal zero: differentiating and taking only

the most important terms gives:

5—‘- (-f¢ +mgV2h) =0 S
Substituting for 9{/d: from the vorticity equation and for ab/a: from the

thermodynamic equation, a form of the omega-equation is obtained,

m2V2(ow)+ f(m{+f) gp + gm?V2 (mV Vab) - fm ——[V V(m(+f)] 0. . (3.15)
where o= -1/p[d(In0)/dp].

In principle, equations 3.13 and 3.15, together with the continuity equation,

du  dv dw
— 4+ — = 0 a-calelde .16
or ay) ap 89
may be solved simultaneously to derive the fields of b,#, v and w, but the
amount of computation is formidable, and in practice much shorter methods of

solution can be found (see Reference 3).

Having undergone the analysis and initialization procedures, the 'actual'

fields are now ready to be used as input for the forecast scheme. The
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initialization procedure, and to a lesser extent the analysis procedure, will
have introduced a degree of over-smoothing which may affect the fields,
particularly of vertical velocity, for the first few hours of forecast time,
but which has little effect on the forecast fields which are actually used -

for 12 hours and longer periods ahead.

3.6 ADDITIONAL EFFECTS

The 10-level model takes into account the effects of a number of physical
processes through the terms Q, W, T and K: these include the addition and
removal of heat, changes of phase of water and precipitation, surface friction
and lateral diffusion. The effects of topography are included, the height of

the ground being a substantially smoothed representation of the actual surface.

3.6.1 Water: phase changes and precipitation

The phase changes of water and the precipitation of water from the atmos-
phere contribute to the terms Q and W in the basic equations. Each of the
100-mb layers of the model is tested to see if the actual humidity mixing
ratio, r, is greater than the saturated mixing ratio, r,, (with respect to
water or ice as appropriate), the values of r, being derived from polynomial
expressions in terms of the layer thicknesses. If rs>r, condensation of the

excess occurs and latent heat is released.

In the model there is no storage of liquid water in any layer: any
liquid water or snow falls through the layers below. Evaporation occurs if
the precipitation falls through an unsaturated layer, the latent heat of
evaporation used resulting in a cooling of the layer. Any such evaporation
and cooling that has occurred in previous steps is taken into account when
testing the layer for supersaturation. Liquid water or snow reaching the
ground is interpreted as surface precipitation. The melting layer is that
which contains the (highest) 0°C isotherm; in layers above this any precipita-
tion is taken to be snow, and any below this layer to be rain. If the tempera-
ture is above -SOC, precipitation is assumed to form at a rate sufficient to
keep the air just saturated with respect to liquid water. Below -5°C, Snow-
flakes are grown at a temperature intermediate between water and ice satura-
tion (see Wexler!!). The latent heat of melting is taken into account when
calculating the thickness of the melting layer and testing it for super-

saturation.
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3.6.2 Surface exchanges

3.6.2.1 Surface friction. Surface friction is a manifestation of the

exchange of momentum between the lowest layers of the atmosphere and the under-
lying surface: it is represented in the equations of motion by -g(a?/ap). If

T,o is the surface (1000-mb) stress vector and Vo the 1000-mb wind velocity, then

%6 = Py ol ¥lv, e A
where p,, is the density of air at 1000 mb in the International Standard Atmos-
phere and Cp is the surface drag coefficient. Values of Cj used in the model
are

(a) over sea: Cp = 1.0 x 1073
(b) over land: Ci = (lﬁ + z%a)x 1073

where H is the smoothed topography height in metres. The variation with H over
land is introduced to allow for excess drag over high ground without intro-

ducing a large discontinuity at a coastline.

In the model it is assumed that the friction layer is confined to the
lowest model layer, i.e. at 900 mb T = 0 and ar/ap = 0. The profile is assumed

to be quadratic, so that

( : "“ : e
99 /10

The value of (ar/apxo is then used in equation 3.1 (page 7) to calculate the
time derivatives, iF‘and 6;5 of the 1000-mb wind-velocity components resulting

from frictional losses of momentum.

3.6.2.2 Surface exchanges of sensible and latent heat. Formulae similar

to equation 3.17 are used to calculate the flux of sensible heat, Fy, across
the 1000-mb surface, the net flux depending upon the difference between the
values of temperature or mixing ratio at the surface and at a level in the
atmosphere close to the surface (the 10-metre level is generally used). The
formulae are:
Fy = 014Cg | Vigl cp (To-T,)
Fy = P1aCp | Vigl(rg=14)

. = (3.19)

where C. is analogous to the drag coefficient.
T, and r, are obtained from the 10-level model on the following assumptions:

(a) if the air is heated from below, there is a dry-adiabatic lapse

rate and the relative humidity is constant from 10 metres to 950 mb;

(b) if the surface is colder than the air, (T,-T,) = 0.1(7T,- 7,'), where

T,! is the value obtained for the near-surface temperature by applying
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an extrapolation of the 900-mb lapse rate to the 950-mb temperature.
One tenth of the relative humidity change from the surface to 950 mb

is assumed to take place in the lowest 10 metres.

Over the sea, the surface temperature T, is assumed to remain constant over
the forecast period, and the humidity mixing ratio is taken as its saturation

value. The exchange coefficient is given by
Cp = |1+0.1(Ts- T.)] x 107
taking some account of the variation of Cy with stability.

Over land, the fluctuations of T, are generally so great that equations
3.19 cannot be used, and the calculation of Fy and Fy is more complex, taking
into account the net radiation flux at the surface, Ry, the flux of heat into
the ground, F;, and the partitioning of the available energy into sensible and
latent heat. The net radiation flux depends upon solar altitude, calculated
by the use of standard astronomical formulae, and cloudiness, estimated from

the model's relative humidities by the method described by Ricketts !?

The heat flux into the ground, F;, is fairly small, and is given with
sufficient accuracy by XRy, Where

X

otherwise X = 0.1 for Ry >0,

0.5 for Ry<O0.

0.0 for snow-covered surfaces,

or X

]

For Ry<0 it is assumed that Fy = O (neglecting dew formation) and F, = 0.5Ry.

For Ry >0, a Penman-type method is used to determine the amount of evaporation
and the heat required to bring this about. The rest of the available energy

appears then as sensible heat.

Surface energy fluxes over sea ice are also included, and allowance is

made for the heat used in melting sea ice where appropriate.

3.6.3 Convective adjustments

The effects of convection on scales smaller than that of the grid-point
network must be allowed for to prevent the growth in the model of unrealistic
convection on the scale of the grid itself. Convective adjustment schemes
designed for this purpose also allow for the redistribution of heat and

moisture throughout the lower atmosphere by convection.

It is assumed that the vertical transport of heat by sub-grid-scale
convection maintains a neutral lapse rate on the grid scale whenever this

would otherwise be exceeded. The neutral lapse rate for the purposes of this
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model varies between the dry-adiabatic lapse rate, when the relative humidity
is less than a critical value, to the saturated-adiabatic lapse rate for
saturated air. It is further assumed that vertical transport of water vapour
leaves the grid-scale relative humidity unchanged. Excess water vapour is
allowed to condense: if it reaches the surface it is regarded as convective
rainfall. The final assumption is that the vertically integrated sum of

potential, internal and latent energies is conserved, i.e.
100

(e, T + Lr)dp = constant.

P=1000
The mechanics of the operation is first of all, after each time-step, to

add the thickness increments 84" from surface fluxes to the thickness, b s,

of the lowest layer. The corresponding humidity increment is added to those
layers involved in the convective adjustment at the end of the previous time-
step. A check is made to see if supersaturation occurs in any layer affected;
if it does, the surface flux of water vapour is reduced to prevent this

happening. The convective adjustment is then carried out as indicated earlier.

Convective adjustments are also made in the analysis stage - otherwise
there might be a sudden change in the lapse rate or spurious convective rain-

fall in the early stages of the forecast model.

The scheme outlined above allows only for shallow convection, but a more
comprehensive model, which copes with deep convection, has recently been

introduced into the operational routine.

3.7 THE OPERATIONAL SUITE

The forecast model itself is just one part of the 'operational suite' of

programs which deal with every process from the receipt of the data to the
despatch of the forecast products to the users.

Incoming data are first checked for correct format and then put into the
Synoptic Data Bank. Quality control and further checking procedures (see
Chapter 11 - Upper-air charts) are carried out, and suspect data may be
rejected or corrected by human intervention before the data required for the

analysis are selected and stored in the Basic Analysis Data Sets.

Data come in for many hours after the main synoptic observation time,
rapidly at first and then at a rate which decreases with time. A compromise
has to be reached between the opposing needs for timeliness, i.e. for the
analyses to be available as soon as possible after the observation time, and

for accuracy, i.e. for the analyses to be based on as complete a data set as
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possible. In current practice, two runs* are carried out:

(a) the 'operational' run, with a 'cut-off time' of HH + 0220 for

the rectangle run and HH + 0315 for the octagon run; and
(b) an 'update' run, with a cut-off time of HH + 1100.

The operational run, as its name implies, produces the model's operational
analyses and forecasts. There may be further human intervention, based on
the results of these analyses, on any of the incoming data. 'Bogus' data may
also be inserted to amend the analyses in certain areas, and direct modifica-
tion of the background fields may be carried out by means of a visual display
unit. The update run is then carried out, its main purpose being to provide
the best possible set of analyses and a 12-hour forecast for use as a back-

ground field in the next operational run.

In the output phase, the forecast data are put into a common data set.
Some processing is carried out during this stage: for example, the wind
components and heights are held at different points in the grid, but the out-
put requires wind speed and direction and height at the same points. Other,
indirect output may also be derived, such as the maximum wind and the height
at which it occurs, the vertical temperature profile and the level of the
tropopause, and so on. Once this processing has been done, the various out-
put programs may access the data set. This system has the advantage that
modifications can be made to the format of the data from the forecast model,
such as occurred when the integration scheme was changed, without any changes

being necessary in the output programs.

Output may be in the form of paper or magnetic tape (for transfer to
another computer) or in chart form for visual inspection by the forecaster.
The types of output available are discussed in Chapter 13 - Computer prognoses:

types and uses.

3.8 CONCLUDING REMARKS

Rapid strides have been made in the past decade in the speed and power of
electronic computers, and advances in meteorological numerical models have at
least kept pace with, and have often anticipated, computer technology. Never-
theless, there is still a great demand for the skill and judgement of the

human forecaster in ensuring that the quality-control and analysis stages

*An intermediate run has recently been introduced to provide analyses of data
received by HH + 0700 as an aid in the intervention process.
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produce the best possible results. There is equally a need for the human
forecaster in the use and interpretation of the numerical forecasts. No
numerical model is perfect, errors arising both in defining the initial
state (i.e. arising from the data, analysis and initialization) and in the
forecast stages from the finite and discrete nature of the grid and in the
integration of the differential equations. The human being, however, can
study the output of the model in a variety of situations, and make allowances
for known error tendencies when preparing a subjective forecast or modifying
an objective one for some purpose. Even though for many uses the objective
prognoses, particularly the upper-air ones, are satisfactory as they come
from the computer, there seems little likelihood that the human component of
the 'man-machine mix' will become redundant. Indeed, with increasing
complexity of the models there may even be a greater demand for subjective

intervention of some kind.

25



10.

11.

12.

Chapter 3

Background to computer models

BIBLIOGRAPHY

RICHARDSON, L.F.; Weather prediction by numerical process. Cambridge
University Press, 1922.

CHARNEY, J.G., FJORTOFT, R. and NEUMANN, J.Von; Numerical integration
of the barotropic vorticity equation. Tellus, Stockholm, 2, 1950,

pp. 237-254.

BENWELL, G.R.R., GADD, A.J., KEERS, J.F., TIMPSON, M.S. and WHITE, P.W.;
The Bushby-Timpson 10-level model on a fine mesh. Scient Pap, Met Off,
London, No. 32, 1971.

BURRIDGE, D.M. and GADD, A.J.; The Meteorological Office operational
10-level numerical weather prediction model. Scient Pap, Met Off,
London, No. 34 (to be published in 1977).

BURRIDGE, D.M.; A split semi-implicit reformulation of the Bushby-Timpson
10-level model. Q J R Met Soc, London, 101, 1975, pp. 777-792.

CORBY, G.A.; Some experiments in the objective analysis of contour charts.
Q J R Met Soc, London, 87, 1961, pp. 34-42.

ATKINS, M.J.; The objective analysis of relative humidity. Tellus,
Stockholm, 26, 1974, pp. 663-671.

DIXON, R.; Orthogonal polynomials as a basis for objective analysis.
Scient Pap, Met Off, London, No. 30, 1969.

DIXON, R. and SPACKMAN, E.A.; The three-dimensional analysis of meteoro-
logical data. Scient Pap, Met Off, London, No. 31, 1970.

THOMPSON, P.D.; Numerical weather analysis and prediction. New York,
Macmillan, 1961.

WEXLER, R.; Precipitation growth in stratiform clouds. Q J R Met Soc,
London, 78, 1952, pp. 363-376.

RICKETTS, J.N.; An investigation into a relationship between upper-air
relative humidity and cloud cover, Met Mag, London, 102, (May) 1973,

27



Chapter 3
Background to computer models

APPENDIX

Orthogonal polynomials - a simple example

1. Consider the set of points, x, = i, where i = 1, 2, 3: a set of orthogonal

polynomials may be derived, namely

fo (%) a, voie
fi(x) = by +b;x S iae S (ATL)

fz(x) = CO +C1x+C2x2 e e
3
Writing 3 fo(%;) fa(x;) as Zf,f,, the conditions for orthogonality are
i=

Shle = Tty W S F 50 e oo (A2)
while for a non-trivial solution
‘ 262 Xf? and T2 4 0. i AD)

The orthogonality condition, as will be seen below, leads to n simulta-
neous equations for a polynomial with (n +1) coefficients: this means that
absolute values cannot be assigned to the coefficients, but that one
coefficient in each polynomial must be given an arbitrary value, the remaining

coefficients being determined relative to the first.

2. There is no orthogonality condition involving a, alone, for example, and
s0 a, may be given an arbitrary value, subject to the condition that Ef: #0,

i.e. ag# 0. Let ay,= fp=1. Then equation A.2 for f, and f, leads to

Shf = 0
= is_'l’o“’o*bl‘i)
| . = ag(by+b,) + a5(by+2b,) + ag(by+3b,)
= a4 (3b,+ 6b,)
= 3(by+ 2by)
T S

Let by = -2, thenb, =1, and f;= 2 - x,

The equations for ¢4, ¢, and ¢, are derived from the summed products Xf f, =

=2flf2-o, which give cj2 ¢;3¢c, a8 10 ¢ -12 : 3, i.e. f, = 10 - 12« +3x%

The polynomials, and their values for x = 1, 2 and 3, are summarized below:

x 1 2 3
fo 1 1 1
£y 2% % 1 0 23

I A 10 =925 3x? 1 -2
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3. The polynomials can also be derived by the Gram-Schmidt orthogonalization
process, as described ir equations Ta to Te on page 2 of Reference 9. In the

notation used above, the equations become:

fo. =1
o = (fgo X)fo

fl 'x (%.'o) “ e s (A.4)
. Wex)fy  (f.x2) §

w G (Foefy) (9

where the bold type represents a vector in the matrix sense, a one-dimensional

array of numbers.

For i = 1, 2, 3 we have:

fo = 1
2 fo xj
{1 = X - 2[02 . fo
(XD + (1x2) + (1X3)
5 1+1+1
Ve, b "3'
= " et 2.

(The change of sign of f, compared with that of paragraph 2 above is immaterial -

it is only the relative magnitude of the coefficients that matters.)
3 fp x;? T f1 x1?

o R MDA gl SeDLNETL
Carhe P s R
S (XD + (11X + (1X9) (-1x1) + (0x4) + (1x9)
TR e At oY 17151 el 1+1 .(x-—Z)
SRR s | s TR
x 3 z(x 2)
- 10

%2- 4x+ 3

equivalent to the equation given in paragraph 2.

4. Let h(x) be a quantity which varies with x, and let its values at x = 1, 2

and 3 be 10, 6 and 5 respectively. Put bh(x) = @y fo(x)+ @, f, (%) + @, fy(x). Then,

substituting for the values of f, f, and f, from the table of paragraph 2, we have:

10 = Gg+ @+ ay
6 = 0O -20,
= Qg ~ 0+ 0,
giving oot
0, = 2.5
a; = 0.5

Whence b(x) = 17 - 8058 o 1.5:2.
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Alternatively, from equation 3.10 on page 18 (see also the derivation in

paragraph 5 below),

| X hf 10+6+ 5
: a = = = 7

S e 3
| 2hf 10-5

o = = = 2.5
NP 2
2hfy 10-12+5§
and 0, = = = = 0.5,

| e 6

5. Least-squares derivation of a,

Let » be the true value of A(x) at a given point, and E(h) the 'fitted!

value, i.e. considering only the first three terms,

E(b) = ayfy + a,f, + a,f,,

Then €, the error of the estimate, is given by
€ = E(b)-»
- (ayfy+af +a,f)-b
g? = [(“o’o +a f +a, fz)-b]2
= qoz ;02 + alz flz + azz f22 +
+2(ega fof + a aftfrea )=
- 2h(@ Fo + O + @yhF) + b3
Summing over all values:
3¢ = Zaq2f2 + Ta2f2+ Zay?f? -
23 b(agfy+ a f, + ayf;) + $H3,
. since Zfyf, = Zff;=3fif; = 0 by the orthogonality condition.

The least-squares condition is that 2e?is a minimum, i.e.

2
a;ii) -2Zhfy + Zaozfoz = 0
53
a‘(’zae 1 = -22bf, + 2“1zf12 2
1
2
and L;_:-_E_L = -2Zbf) + 20,367 =0,
2
PRl ) zb{o
giving fo = iRl

with similar expressions for @, and @¢,. The expressions for the as are analogous
to those found in simple linear regression, for, if ¥ = bx + ¢, the least-

squares estimate of b is Sxy/Zx2

2(3e2
Differentiation a second time shows that %‘3—,—) = 23f2? >0, and the above
n
. conditions are therefore for Xe?to be a minimum.
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