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le Introduction

As is the case with most numerical models of the atmosphere, the
speed at which meteorological features move in 10 level model forecasts is
noted to be slower in general than in the real atmosphere. A change in the
method of calculating the static stability of the model atmosphere (Gadad 1973)
has contributed significantly to a removal of this systematic trend, Efforts
have also been made to reduce the phase lug errors through the reduction of -
truncation errors in finite difference approximations to horizontal derivatives.
Reduction in truncation error has been achieved through the use of fourth order
accurate approximations to derivatives in the horizontal advection terms.
Fourth order approximations to pressure gradient and divergence terms would
have a dramatic impact on the linear computational stability criterion and
therefore have not been considered.

Two schemes have been developed. One is designed for use with the
original explicit integration scheme of the 10 level model and has been used
operationally in the 'Octagon' version of the model since September 1972.

The second scheme is designed for use with the semi-implicit reformulation
of the model (Burridge 1974) but hes not been adopted for routine use.

Both schemes are extensions of the basic two-step Lax-Wendroff scheme used
in the original 10 level model and for advection terms in the semi=- implicit
model. One or other of the two steps is modified so as to reduce the
truncation error implied by the complete two-step cycls, The principles of
the schemes are best illustrated by their application to a highly simplified
equation,

2. Simple sdvection

Following Morton (1971) we consider the properties of the difference
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schemes in advecting some property h. in ons spece dimension with a

uniform velocity (We ) as described by the linear equation
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Using the finite difference grid illustrated in Figure 1 and considering

)
solutions h.j for h at grid point ) , time step ™ , of the form

“\:ﬂ = Hn Q&P th = Hw QXP 2;d\i where o= Kox

' 2
we may show that

Hoo = }'C(.a‘./u.) Hn

where /"’: uoét’/c& and the function M  depends on the
particular finite difference scheme, d, reflects the scale of the

wave relative to the grid mesh, whilst /U.' is a measure of the advecting

velocity. 3
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Figure 1 Finite difference grid for simple advection,.

3¢ The Lax-Wendroff schems and the fourth order modifications

(A) The two step Lax-Wendroff scheme applied to equation (1) is as

e helie RO 0 au(hn-K) @)
hju = K - u (R -k%) @)
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' On combining thess two steps it may be shown that

Ky = 1= Z/u’s.‘nzo( = 2 sinol cosal

Now D=|K| gives the damping per time step, whilst P= arg K/z/“ot
is the relative phase speed, i.e. the ratio of the numerical to the
snalytical phase speed.

(B) If the second step of the Lax~Wendroff scheme is replaced by

R e K- p-ed) - sE- ) @

and the first step is unchanged, it may be shown that the approximation
to 3'1./'3::_ used in the complete integration cycle is of fourth order
accuracy. (However the estimate of ’a L\ / ax o Which is also required,

w remains second order accurate), . Equations (2) and (4) together lead to

(C) Alternatively, if the first step of the Lax-Wendroff scheme is

‘ : KB‘ |" Z/u sinol H"3$mo() Z/us»\dcosd(l-!--s:n )
|

replaced by

g = [2(555) - ¢ (g b)) - (s)
‘ - Fp[E(Ru-F) -;,-(t....__....v; )
+ [ R KR ] = 5 K35+ 3 - K2 ]
and the second step is unchanged, it may be shown that the complete two

step scheme is identical to Crowley's (1968) fourth order accurate

scheme.,  Equations (5) anmd (3) togather‘give

KC"‘ = 2}‘ s‘““[' * 3(" ‘)Sm"alJ Zw:‘m\d cosod [l +-—(| ?) sin alJ



Lo Properties of the three achemes

Important properties of the Lax-Wendroff scheme and its two

modifications as applied to the simple advection equation are revealed by

D=IK] anda P= af-sk./z/,,aL which are illustrated in Figures 2 and 3 as
functions of Iu| and of .+ D and P would both take the
value unity in a perfect numerical simulation of simple advection.

It may be seen that the modified schemss B and C improve the damping in
simple advection relative to the basic Lax-Wendroff scheme A, Schemes A and
C are stable (D& ) for l/ul < | , but scheme B is stable only if

1/_.,| L 0.6 . The more significant feature in the present context is
the significantly reduced relative phase errors of schemes B and C, reflected
in the fact that the values of P are closer to unity for given values of

bl ama oL .

5 Applications to the 10 level models

The schemes introduced above may easily be extended to two space
directions and applied to the advection terms in the 10 level model equations.
Of course, the staggered grid arrangements used in the models add some
complications, but these in fact only amount of interpolation in the direction
normal to the direction of differentiation before the application of
equations (2), (3), (4) or (5)s The single exception is the first term in

equation (5) which in two dimensions becomes the following 16 point operator.
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Computational economy must be kept in mind when choosing a higher
order scheme for the 10 level model.s Scheme B is well suited to the
original explicit integration scheme, where the stability criterion is so
dominated by the gravity wave terms that the adoption of more accurate
approximations to the advection terms imposes no further significant
restriction on the time step. In addition scheme B adds only about 57 to
the computation required per time step. |

Scheme B is however, quite inappropriate to the semi-implicit integration
schems, where advection imposes the most restrictive stability criterion.
Scheme B would add 664 to the computation here because of the sign:’Lficantly
reduced time step which would be required., Scheme C, on the other hand,
allows the same time step as the basic Lax-Wendroff scheme, although
unfortunately it adds almost 257 to the computation required per time step.

6. Note on the impact of the modified schemes on forecasts

No attempt is made in this note to illustrate the results of using the
modified schemss in the 10 level models, It should be recorded, however,
that the improvements produced have been generally disappointing, The speed
of movement of systems is indeed improved compared with the basic Lax-Wendroff
scheme, but major forecast errors are not accounted for, and much greater
improvements have been achieved by changing the calculation of the static
stability temm.

The implication of such results is that truncation errors in horizontal
advection terms are not a major problem in the 10 level model., This is at
variance with the gensral climate of opinion among meteorologists. It may
of course be the case that the more significant truncation errors are in
the pressure gradient or divergence terms, although in the semi-implicit
version these are already resolved with smaller truncation by the staggering
of the grid. Alternatively, errors in vertical differencing might be
dominant over those in horizontal differencing. ‘Thia question is as yet

unresolveds
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