
The effect of time-step size on particle pair 
separation in kinematic simulation
 
 

B.J.Devenish and D.J.Thomson
 
 
 

26 April 2006

Hadley Centre technical note 65



The effect of time-step size on particle pair separation

in kinematic simulation

B. J. Devenish and D. J. Thomson

26th April 2006

Abstract

An understanding of the rate of separation of particle pairs in turbulent flows is crucial for
predicting the variability and extremes of concentration in turbulent dispersion problems.
In a previous study (Thomson and Devenish, 2005, J. Fluid Mech. 526, 277-302) we
explored the ability of the kinematic simulation approach to represent the separation
process and concluded that it did not correctly reproduce the t3 Richardson law which is
expected to hold in reality in the turbulent inertial subrange. The simulations presented
in that study used a time step which varied with the particle pair separation. This choice
of time step was made to reduce the cost of the simulations, but is a source of some doubt
over the validity of the conclusions. Here we repeat some of the simulations with a small
fixed time-step. These new simulations show similar results, enabling us to confirm that
the previous study was not compromised by the variable time-step used.

1 Background

Mathematically one can consider the problem of turbulent dispersion for an arbitrary sto-
chastic flow field, and not just for realistic flows obeying the Navier-Stokes equation. This
can be useful, for example, for developing and testing ideas using simpler flows than those
generated by Navier-Stokes, for understanding what aspects of the flow are important for
the dispersion, and for searching for flows which, while not completely realistic, may be
useful models for real turbulence. One class of flows which has been much studied in this
connection is the class of flows generated by ‘kinematic simulation’ (see e.g. Kraichnan,
1970; Fung, Hunt, Malik and Perkins, 1992). Such flows consist of a superposition of
random independent Fourier modes and can be regarded as approximations to Gaussian
random flows.

An important question in turbulent dispersion is the way pairs of particles separate, a
question which was first studied by Richardson (1926). An understanding of the rate of
separation is crucial for predicting the variability in the concentration of dispersing mate-
rial. This is important, for example, in atmospheric dispersion problems involving toxic,
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flammable or odorous substances — here assessment of the hazard should take account of
the variability and extremes — and in chemically reacting flows in the atmosphere or in
engineering — here the reaction rate depends on the instantaneous concentrations and so
the speed of the reaction can be limited by the time to mix the materials together rather
than by the reaction rate which would apply for pre-mixed materials.

Particle pair separation has been explored extensively in the context of kinematic simu-
lation (Sabelfeld and Kurbanmuradov, 1990; Fung, Hunt, Malik and Perkins 1992; Elliott
and Majda, 1996; Kurbanmuradov, Sabelfeld and Koluhin, 1997; Fung and Vassilicos,
1998; Malik and Vassilicos, 1999; Flohr and Vassilicos, 2000). Recently we argued that,
in kinematic simulation of 3-D flow with an inertial subrange spectrum proportional to
ε2/3k−5/3, the mean square pair separation does not follow the Richardson law 〈r2〉 ∼ εt3

as expected in real flows (see Thomson and Devenish 2005). [Here ε is the notional energy
dissipation rate per unit mass in the kinematic simulation, k is wave number, r is the
particle separation and t is time.] Instead we argued that, because of the lack of ‘sweep-
ing’ (i.e. advection) of the small scale modes by larger modes in kinematic simulation,
the separation should, in the limit of a long inertial subrange, grow like t6 if a strong
mean flow is present, and like t9/2 for no mean flow. These predictions were supported by
numerical simulations. Note that, by a strong mean flow, we mean that a strong mean
flow is simply added to a k−5/3 velocity field, without advection of the k−5/3 velocity field
by the mean flow. This is clearly unrealistic, but exaggerates the sweeping problem and
is useful to help understand the limitations of kinematic simulation as a realistic model
for turbulence. If the arguments and simulation results in Thomson and Devenish (2005)
are correct, this indicates that kinematic simulation does not treat the pair separation
problem realistically, at least in the 3-D turbulence inertial subrange.

The simulations which were carried out in support of our arguments used an adaptive
time-step in calculating the particle pair trajectories through the turbulent velocity field.
This time step was determined separately for each pair and depended on the pair separa-
tion. The aim here was to reduce the computational effort. A justification was offered for
the choice of time step on the basis that the eddies much smaller than the pair separation
have negligible effect on the separation process and so do not need to be resolved by the
time step. We believe this is correct and it was supported by some simulations using
a fixed small time-step. However these simulations, for reasons of computational cost,
extended over only a small fraction of the time required for the pair separation to reach
the integral scale of the turbulence. This leaves some room for doubt over the validity of
the results. Note that the adaptive time-step was chosen to resolve the time scale of what
we believe to be the key physics of the separation process in kinematic simulation, namely
the sweeping of a pair with separation r through an eddy of size ∼ r by the sweeping
velocity, the latter being the larger of the standard deviation of the velocity (at a fixed
point) and the mean flow velocity. When the separation is much less than the integral
scale, this yields a time step which is much smaller than the expected time-scale of the
physics in real Navier-Stokes flows, which is of order r2/3/ε1/3.

Our aim in this short note is to repeat some of the simulations presented in Thomson
and Devenish (2005) with the adaptive time-step replaced by a fixed small time-step, in
order to confirm that the use of an adaptive step did not lead to incorrect conclusions.
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2 Simulations

The method used to generate the random flows is identical to that used by Thomson
and Devenish (2005) and closely follows that used by e.g. Fung and Vassilicos (1998) and
Malik and Vassilicos (1999). The velocity at position x at time t is given by

u(x, t) = U +
N
∑

n=1

An cos(kn.x + ωnt) + Bn sin(kn.x + ωnt)

where U = (U, 0, 0) is the mean velocity, N is the number of modes, kn and ωn are
the wave number vector and frequency of the nth mode, and An and Bn are the mode
amplitudes. The wave number vector kn is chosen as knk̂n where k̂n is a unit vector in
a random direction and kn is chosen as described below. The amplitudes An and Bn are
chosen to have random directions perpendicular to k̂n and magnitudes An and Bn given
by

A2
n = B2

n = 2E(kn)∆kn.

Here E(k) is a prescribed energy spectrum

E(k) =

{

αε2/3k−5/3 for 2π/L ≤ k ≤ 2π/η
0 otherwise

where L and η are proportional to the integral length scale and the Kolmogorov dissipation
length scale respectively, and α is the Kolmogorov constant. The energy spectrum is
defined here so that ∫

∞

0
E(k) dk

is the turbulent energy per unit mass. The interval ∆kn is defined by

∆kn =











(k2 − k1)/2 for n = 1
(kn+1 − kn−1)/2 for 2 ≤ n ≤ N − 1
(kN − kN−1)/2 for n = N

where k1 = kL = 2π/L and kN = kη = 2π/η. The wavenumbers are discretized according
to the geometric sequence

kn = kLan−1, n = 1, . . . , N

where a = (L/η)1/(N−1).

The frequency ωn determines the unsteadiness associated with the nth mode. Some
of our simulations involve a frozen velocity field with ωn = 0. However we also conduct
some simulations with ωn proportional to the eddy-turnover time of the nth mode, that
is,

ωn = λ
√

k3
nE(kn)ξ

where λ is a dimensionless constant of order one and ξ is either one or a random number
uniformly distributed in [0, 2].

With the above form for E(k) we have σ2
u = α(ε/2π)2/3(L2/3 − η2/3) where σu is the

r.m.s. value of any one component of the velocity fluctuations. In all our simulations we
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have η � L and so σ2
u = α(ε/2π)2/3L2/3 to quite high accuracy. We choose σu = L = 1 for

all our simulations, but present results in non-dimensional form so that this is transparent
to the reader.

Particle pairs are released with separation r0 and tracked through the flow using a
forward Euler method. In the adaptive time-step simulations presented by Thomson and
Devenish (2005), the time step was given by

∆t = min

(

0.1
min(r, L)

max(U, σu)
, 0.01

[min(r, L)]2/3

λσu/L1/3

)

.

The justification offered for this choice was that it should ensure that the time step is
small enough to resolve the changes in particle velocity due to (i) the sweeping of particles
through the eddies that dominate the separation process, and (ii) the temporal change of
such eddies caused by λ. In addition some sensitivity tests and comparisons with short-
duration fixed-time-step simulations were presented in support of the choice of time step.
The new longer-duration fixed-time-step simulations presented here are designed to test
this more rigorously. For these simulations, we use a time step given by

∆t = min

(

0.1
η

max(U, σu)
, 0.01

η2/3

λσu/L1/3

)

.

This should be small enough to resolve the effect of even the smallest eddies throughout
the evolution of the pair separation.

For the adaptive time-step simulations presented in Thomson and Devenish (2005), a
number of pairs were tracked in each realisation of the flow and the initial positions of
the pairs were chosen by placing one particle from each pair on a uniform cubic lattice
of side L and placing the other particle at a distance r0 in a random direction. For
the new simulations we only follow one pair in each realisation of the velocity field to
maximise the statistical accuracy for the available computing time (following a pair is far
more expensive than generating a flow field, and so it makes sense to ensure the pairs are
completely independent).

Figures 1-4 show comparisons between the adaptive time-step simulations presented
in Thomson and Devenish (2005) and the new fixed time-step simulations. The new
simulations stop at times significantly smaller than the adaptive simulations; however the
time covered is much longer than that in the fixed time-step simulations presented in
Thomson and Devenish (2005) and is long enough for 〈r2〉 to reach the point of transition
towards a diffusive regime proportional to t. There is significant noise in the new results
because the computational cost of the simulations makes it prohibitive to follow as many
particle pairs as we would like. However the results are close enough (on the log-log
plots) to those with the adaptive time-step to confirm that the deductions about power
law behaviour made previously were not compromised by the use of an adaptive time-step.

The results do not show a clear t6 power law for the strong mean flow cases (see figures
1 and 2). Because t6 would take one from r2

0 to L2 in less than two decades of time this
should not be expected, even for the small values of r0/L used here. However, taken with
the other evidence given in Thomson and Devenish (2005), which includes simulations
with even smaller values of r0/L and/or η/L, it provides support for t6 being approached
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Figure 1: Comparison of adaptive and fixed time-step simulations for the case with a
strong mean flow and frozen turbulence. Dashed curve: adaptive time-step (from Thom-
son and Devenish, 2005, figures 1a and 5); solid curve: fixed time-step. Parameters:
U/σu = 10, η/L = 10−6, r0/L = 10−5, 1200 modes, λ = 0. The adaptive (fixed) time-step
simulation used 5 (100) realisations of the flow with 125 (1) pairs per realisation. The
straight lines are proportional to t6 and t3.
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Figure 2: Comparison of adaptive and fixed time-step simulations for the case with a
strong mean flow and unsteady turbulence. Dashed curve: adaptive time-step (from
Thomson and Devenish 2005, figure 10); solid curve: fixed time-step. Parameters: U/σu =
10, η/L = 10−6, r0/L = 10−5, 1200 modes, λ = 5 with ξ = 1. The adaptive (fixed) time-
step simulation used 5 (100) realisations of the flow with 125 (1) pairs per realisation.
The straight lines are proportional to t6 and t3.

asymptotically as the inertial subrange becomes very long (see discussion in Thomson and
Devenish). The support for t9/2 for the steady no mean flow case (see figure 3) is more
clear cut. Figure 3 itself shows results very close to t9/2 and, by combining (i) the evidence
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Figure 3: Comparison of adaptive and fixed time-step simulations for the case with no
mean flow and frozen turbulence. Dashed curve: adaptive time-step (from Thomson and
Devenish 2005, figures 12 and 13); solid curve: fixed time-step. Parameters: U = 0,
η/L = 10−8, r0/L = 10−7, 1600 modes, λ = 0. The adaptive (fixed) time-step simulation
used 20 (80) realisations of the flow with 125 (1) pairs per realisation. The straight lines
are proportional to t9/2 and t3.
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Figure 4: Comparison of adaptive and fixed time-step simulations for the case with no
mean flow and unsteady turbulence. (a) shows the case with ξ = 1 (deterministic ωn),
while (b) shows the case with ξ uniformly distributed in [0, 2]. Dashed curve: adaptive
time-step (from Thomson and Devenish 2005, figure 15); solid curve: fixed time-step.
Parameters: U = 0, η/L = 10−8, r0/L = 10−7, 1600 modes, λ = 5. The adaptive
(fixed) time-step simulations used 20 (80) realisations of the flow with 125 (1) pairs per
realisation. The straight lines are proportional to t9/2 and t3.

in figure 3 that the adaptive time-step numerics are reliable with (ii) the adaptive time-
step results given in Thomson and Devenish (2005) for even smaller r0/L and/or η/L, it
seems clear that t9/2 is at least very close to the true asymptotic behaviour. The unsteady
no mean flow cases are more complicated (see figure 4). As t increases, the growth rate
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increases towards a t9/2 power law but, before really reaching this, the growth rate slows
back down as the effects of unsteadiness become important (see discussion in Thomson
and Devenish).

To summarise, we have repeated some of the simulations presented in Thomson and
Devenish (2005) with the adaptive time-step replaced by a fixed small time-step, with a
view to assessing if the deductions made by Thomson and Devenish were compromised
by the use of an adaptive time-step. We conclude that they were not.
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